summaryrefslogtreecommitdiff
path: root/tests/lean/Hashmap/Properties.lean
blob: 76bd2598fbeb71d43a07e5f5e976a600001035b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
import Hashmap.Funs

open Primitives
open Result

namespace hashmap

namespace AList

@[simp]
def v {α : Type} (ls: AList α) : List (Usize × α) :=
  match ls with
  | Nil => []
  | Cons k x tl => (k, x) :: v tl

@[simp]
abbrev lookup {α : Type} (ls: AList α) (key: Usize) : Option α :=
  ls.v.lookup key

@[simp]
abbrev len {α : Type} (ls : AList α) : Int := ls.v.len

end AList

namespace HashMap

def distinct_keys (ls : List (Usize × α)) := ls.pairwise_rel (λ x y => x.fst  y.fst)

def hash_mod_key (k : Usize) (l : Int) : Int :=
  match hash_key k with
  | .ok k => k.val % l
  | _ => 0

@[simp]
theorem hash_mod_key_eq : hash_mod_key k l = k.val % l := by
  simp [hash_mod_key, hash_key]

def slot_s_inv_hash (l i : Int) (ls : List (Usize × α)) : Prop :=
  ls.allP (λ (k, _) => hash_mod_key k l = i)

def slot_s_inv (l i : Int) (ls : List (Usize × α)) : Prop :=
  distinct_keys ls 
  slot_s_inv_hash l i ls

def slot_t_inv (l i : Int) (s : AList α) : Prop := slot_s_inv l i s.v

@[simp] theorem distinct_keys_nil : @distinct_keys α [] := by simp [distinct_keys]
@[simp] theorem slot_s_inv_hash_nil : @slot_s_inv_hash l i α [] := by simp [slot_s_inv_hash]
@[simp] theorem slot_s_inv_nil : @slot_s_inv α l i [] := by simp [slot_s_inv]
@[simp] theorem slot_t_inv_nil : @slot_t_inv α l i .Nil := by simp [slot_t_inv]

@[simp] theorem distinct_keys_cons (kv : Usize × α) (tl : List (Usize × α)) :
  distinct_keys (kv :: tl)  ((tl.allP fun (k', _) => ¬↑kv.1 = k')  distinct_keys tl) := by simp [distinct_keys]

@[simp] theorem slot_s_inv_hash_cons (kv : Usize × α) (tl : List (Usize × α)) :
  slot_s_inv_hash l i (kv :: tl) 
    (hash_mod_key kv.1 l = i  tl.allP (λ (k, _) => hash_mod_key k l = i)  slot_s_inv_hash l i tl) :=
  by simp [slot_s_inv_hash]

@[simp] theorem slot_s_inv_cons (kv : Usize × α) (tl : List (Usize × α)) :
  slot_s_inv l i (kv :: tl) 
    ((tl.allP fun (k', _) => ¬↑kv.1 = k')  distinct_keys tl 
     hash_mod_key kv.1 l = i  tl.allP (λ (k, _) => hash_mod_key k l = i)  slot_s_inv l i tl) := by
    simp [slot_s_inv]; tauto

-- Interpret the hashmap as a list of lists
def v (hm : HashMap α) : List (List (Usize × α)) :=
  hm.slots.val.map AList.v

-- Interpret the hashmap as an associative list
def al_v (hm : HashMap α) : List (Usize × α) :=
  hm.v.flatten

-- TODO: automatic derivation
instance : Inhabited (AList α) where
  default := .Nil

@[simp]
def slots_s_inv (s : List (AList α)) : Prop :=
   (i : Int), 0  i  i < s.len  slot_t_inv s.len i (s.index i)

def slots_t_inv (s : alloc.vec.Vec (AList α)) : Prop :=
  slots_s_inv s.v

@[simp]
def slots_s_lookup (s : List (AList α)) (k : Usize) : Option α :=
  let i := hash_mod_key k s.len
  let slot := s.index i
  slot.lookup k

abbrev Slots α := alloc.vec.Vec (AList α)

abbrev Slots.lookup (s : Slots α) (k : Usize) := slots_s_lookup s.val k

abbrev Slots.al_v (s : Slots α) := (s.val.map AList.v).flatten

def lookup (hm : HashMap α) (k : Usize) : Option α :=
  slots_s_lookup hm.slots.val k

@[simp]
abbrev len_s (hm : HashMap α) : Int := hm.al_v.len

instance : Membership Usize (HashMap α) where
  mem k hm := hm.lookup k  none

/- Activate the ↑ notation -/
attribute [coe] HashMap.v

abbrev inv_load (hm : HashMap α) : Prop :=
  let capacity := hm.slots.val.len
  -- TODO: let (dividend, divisor) := hm.max_load_factor introduces field notation .2, etc.
  let dividend := hm.max_load_factor.1
  let divisor := hm.max_load_factor.2
  0 < dividend.val  dividend < divisor 
  capacity * dividend >= divisor 
  hm.max_load = (capacity * dividend) / divisor

@[simp]
def inv_base (hm : HashMap α) : Prop :=
  -- [num_entries] correctly tracks the number of entries
  hm.num_entries.val = hm.al_v.len 
  -- Slots invariant
  slots_t_inv hm.slots 
  -- The capacity must be > 0 (otherwise we can't resize)
  0 < hm.slots.length  -- TODO: normalization lemmas for comparison
  -- Load computation
  inv_load hm

def inv (hm : HashMap α) : Prop :=
  -- Base invariant
  inv_base hm
  -- TODO: either the hashmap is not overloaded, or we can't resize it

def frame_load (hm nhm : HashMap α) : Prop :=
  nhm.max_load_factor = hm.max_load_factor 
  nhm.max_load = hm.max_load 
  nhm.saturated = hm.saturated

-- This rewriting lemma is problematic below
attribute [-simp] Bool.exists_bool

attribute [local simp] List.lookup

-- The proofs below are a bit expensive, so we deactivate the heart bits limit
set_option maxHeartbeats 0

open AList

@[pspec]
theorem allocate_slots_spec {α : Type} (slots : alloc.vec.Vec (AList α)) (n : Usize)
  (Hslots :  (i : Int), 0  i  i < slots.len  slots.val.index i = Nil)
  (Hlen : slots.len + n.val  Usize.max) :
   slots1, allocate_slots α slots n = ok slots1 
  ( (i : Int), 0  i  i < slots1.len  slots1.val.index i = Nil) 
  slots1.len = slots.len + n.val := by
  rw [allocate_slots]
  rw [allocate_slots_loop]
  if h: 0 < n.val then
    simp [h]
    -- TODO: progress fails here (maximum recursion depth reached)
    -- progress as ⟨ slots1 .. ⟩
    have  slots1, hEq, _  := alloc.vec.Vec.push_spec slots Nil (by scalar_tac)
    simp [hEq]; clear hEq
    progress as  n1 
    have Hslots1Nil :
       (i : ), 0  i  i < (alloc.vec.Vec.len (AList α) slots1)  slots1.val.index i = Nil := by
      intro i h0 h1
      simp [*]
      if hi : i < slots.val.len then
        simp [*]
      else
        simp_all
        have : i - slots.val.len = 0 := by scalar_tac
        simp [*]
    have Hslots1Len : alloc.vec.Vec.len (AList α) slots1 + n1.val  Usize.max := by
      simp_all
    progress as  slots2 .. 
    simp
    constructor
    . intro i h0 h1
      simp_all
    . simp_all
  else
    simp [h]
    simp_all
    scalar_tac
termination_by n.val.toNat
decreasing_by scalar_decr_tac -- TODO: this is expensive

theorem forall_nil_imp_flatten_len_zero (slots : List (List α))
  (Hnil :  i, 0  i  i < slots.len  slots.index i = []) :
  slots.flatten = [] := by
  induction slots <;> simp_all
  have Hhead := Hnil 0 (by simp) (by scalar_tac)
  simp_all; clear Hhead
  rename _  _ => Hind
  apply Hind
  intros i h0 h1
  have := Hnil (i + 1) (by scalar_tac) (by scalar_tac)
  have : 0 < i + 1 := by scalar_tac
  simp_all

@[pspec]
theorem new_with_capacity_spec
  (capacity : Usize) (max_load_dividend : Usize) (max_load_divisor : Usize)
  (Hcapa : 0 < capacity.val)
  (Hfactor : 0 < max_load_dividend.val  max_load_dividend.val < max_load_divisor.val 
             capacity.val * max_load_dividend.val  Usize.max 
             capacity.val * max_load_dividend.val  max_load_divisor)
  (Hdivid : 0 < max_load_divisor.val) :
   hm, new_with_capacity α capacity max_load_dividend max_load_divisor = ok hm 
  hm.inv  hm.len_s = 0   k, hm.lookup k = none := by
  rw [new_with_capacity]
  progress as  slots, Hnil .. 
  . intros; simp [alloc.vec.Vec.new] at *; scalar_tac
  . simp [alloc.vec.Vec.new]; scalar_tac
  . progress as  i1 .. 
    progress as  i2 .. 
    simp [inv, inv_load]
    have : (Slots.al_v slots).len = 0 := by
      have := forall_nil_imp_flatten_len_zero (slots.val.map AList.v)
        (by intro i h0 h1; simp_all)
      simp_all
    have : 0 < slots.val.len := by simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
    have : slots_t_inv slots := by
      simp [slots_t_inv, slot_t_inv]
      intro i h0 h1
      simp_all
    split_conjs
    . simp_all [al_v, Slots.al_v, v]
    . assumption
    . scalar_tac
    . simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
    . simp_all
    . simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
    . simp_all [alloc.vec.Vec.len, alloc.vec.Vec.new]
    . simp_all [al_v, Slots.al_v, v]
    . simp [lookup]
      intro k
      have : 0  k.val % slots.val.len := by apply Int.emod_nonneg; scalar_tac
      have : k.val % slots.val.len < slots.val.len := by apply Int.emod_lt_of_pos; scalar_tac
      simp [*]

@[pspec]
theorem new_spec (α : Type) :
   hm, new α = ok hm 
  hm.inv  hm.len_s = 0   k, hm.lookup k = none := by
  rw [new]
  progress as  hm 
  simp_all

--set_option pp.all true
example (key : Usize) : key == key := by simp [beq_iff_eq]

theorem insert_in_list_spec_aux {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α)
  (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
  (hdk : distinct_keys l0.v) :
   b l1,
    insert_in_list α key value l0 = ok (b, l1) 
    -- The boolean is true ↔ we inserted a new binding
    (b  (l0.lookup key = none)) 
    -- We update the binding
    l1.lookup key = value 
    ( k, k  key  l1.lookup k = l0.lookup k) 
    -- We preserve part of the key invariant
    slot_s_inv_hash l (hash_mod_key key l) l1.v 
    -- Reasoning about the length
    (match l0.lookup key with
     | none => l1.len = l0.len + 1
     | some _ => l1.len = l0.len) 
    -- The keys are distinct
    distinct_keys l1.v 
    -- We need this auxiliary property to prove that the keys distinct properties is preserved
    ( k, k  key  l0.v.allP (λ (k1, _) => k  k1)  l1.v.allP (λ (k1, _) => k  k1))
  := by
  cases l0 with
  | Nil =>
    exists true -- TODO: why do we need to do this?
    simp [insert_in_list]
    rw [insert_in_list_loop]
    simp (config := {contextual := true}) [AList.v]
  | Cons k v tl0 =>
     if h: k = key then
       rw [insert_in_list]
       rw [insert_in_list_loop]
       simp [h, and_assoc]
       split_conjs <;> simp_all [slot_s_inv_hash]
     else
       rw [insert_in_list]
       rw [insert_in_list_loop]
       simp [h]
       have : slot_s_inv_hash l (hash_mod_key key l) (AList.v tl0) := by
         simp_all [AList.v, slot_s_inv_hash]
       have : distinct_keys (AList.v tl0) := by
         simp [distinct_keys] at hdk
         simp [hdk, distinct_keys]
       progress as  b, tl1 .. 
       have : slot_s_inv_hash l (hash_mod_key key l) (AList.v (AList.Cons k v tl1)) := by
         simp [AList.v, slot_s_inv_hash] at *
         simp [*]
       have : distinct_keys ((k, v) :: AList.v tl1) := by
         simp [distinct_keys] at *
         simp [*]
       -- TODO: canonize addition by default?
       exists b
       simp_all [Int.add_assoc, Int.add_comm, Int.add_left_comm]

@[pspec]
theorem insert_in_list_spec {α : Type} (l : Int) (key: Usize) (value: α) (l0: AList α)
  (hinv : slot_s_inv_hash l (hash_mod_key key l) l0.v)
  (hdk : distinct_keys l0.v) :
   b l1,
    insert_in_list α key value l0 = ok (b, l1) 
    (b  (l0.lookup key = none)) 
    -- We update the binding
    l1.lookup key = value 
    ( k, k  key  l1.lookup k = l0.lookup k) 
    -- We preserve part of the key invariant
    slot_s_inv_hash l (hash_mod_key key l) l1.v 
    -- Reasoning about the length
    (match l0.lookup key with
     | none => l1.len = l0.len + 1
     | some _ => l1.len = l0.len) 
    -- The keys are distinct
    distinct_keys l1.v
  := by
  progress with insert_in_list_spec_aux as  b, l1 .. 
  exists b
  exists l1

-- Remark: α and β must live in the same universe, otherwise the
-- bind doesn't work
theorem if_update_eq
  {α β : Type u} (b : Bool) (y : α) (e : Result α) (f : α  Result β) :
  (if b then Bind.bind e f else f y) = Bind.bind (if b then e else pure y) f
  := by
  split <;> simp [Pure.pure]

-- Small helper
-- TODO: let bindings now work
def mk_opaque {α : Sort u} (x : α) : { y : α // y = x}  :=
   x, by simp 

-- For pretty printing (useful when copy-pasting goals)
set_option pp.coercions false -- do not print coercions with ↑ (this doesn't parse)

@[pspec]
theorem insert_no_resize_spec {α : Type} (hm : HashMap α) (key : Usize) (value : α)
  (hinv : hm.inv) (hnsat : hm.lookup key = none  hm.len_s < Usize.max) :
   nhm, hm.insert_no_resize α key value = ok nhm  
  -- We preserve the invariant
  nhm.inv 
  -- We updated the binding for key
  nhm.lookup key = some value 
  -- We left the other bindings unchanged
  ( k, ¬ k = key  nhm.lookup k = hm.lookup k) 
  -- Reasoning about the length
  (match hm.lookup key with
   | none => nhm.len_s = hm.len_s + 1
   | some _ => nhm.len_s = hm.len_s) := by
  rw [insert_no_resize]
  -- Simplify. Note that this also simplifies some function calls, like array index
  simp [hash_key, bind_tc_ok]
  have _ : (alloc.vec.Vec.len (AList α) hm.slots).val  0 := by
   intro
   simp_all [inv]
  progress as  hash_mod, hhm 
  have _ : 0  hash_mod.val := by scalar_tac
  have _ : hash_mod.val < alloc.vec.Vec.length hm.slots := by
    have : 0 < hm.slots.val.len := by
      simp [inv] at hinv
      simp [hinv]
    -- TODO: we want to automate that
    simp [*, Int.emod_lt_of_pos]
  progress as  l, index_mut_back, h_leq, h_index_mut_back 
  simp [h_index_mut_back] at *; clear h_index_mut_back index_mut_back
  have h_slot :
    slot_s_inv_hash hm.slots.length (hash_mod_key key hm.slots.length) l.v := by
    simp [inv] at hinv
    have h := (hinv.right.left hash_mod.val (by assumption) (by assumption)).right
    simp [slot_t_inv, hhm] at h
    simp [h, hhm, h_leq]
  have hd : distinct_keys l.v := by
    simp [inv, slots_t_inv, slot_t_inv, slot_s_inv] at hinv
    have h := hinv.right.left hash_mod.val (by assumption) (by assumption)
    simp [h, h_leq]
  progress as  inserted, l0, _, _, _, _, hlen .. 
  rw [if_update_eq] -- TODO: necessary because we don't have a join
  -- TODO: progress to ...
  have hipost :
     i0, (if inserted = true then hm.num_entries + Usize.ofInt 1 else pure hm.num_entries) = ok i0 
    i0.val = if inserted then hm.num_entries.val + 1 else hm.num_entries.val
    := by
    if inserted then
      simp [*]
      have hbounds : hm.num_entries.val + (Usize.ofInt 1).val  Usize.max := by
        simp [lookup] at hnsat
        simp_all
        simp [inv] at hinv
        int_tac
      progress as  z, hp 
      simp [hp]
    else
      simp [*, Pure.pure]
  progress as  i0 
  -- TODO: hide the variables and only keep the props
  -- TODO: allow providing terms to progress to instantiate the meta variables
  -- which are not propositions
  progress keep hv as  v, h_veq 
  -- TODO: update progress to automate that
  -- TODO: later I don't want to inline nhm - we need to control simp: deactivate
  -- zeta reduction? For now I have to do this peculiar manipulation
  have  nhm, nhm_eq  := @mk_opaque (HashMap α) {
      num_entries := i0,
      max_load_factor := hm.max_load_factor,
      max_load := hm.max_load,
      saturated := hm.saturated,
      slots := v }
  exists nhm
  have hupdt : lookup nhm key = some value := by
    simp [lookup] at *
    simp_all
  have hlkp :  k, ¬ k = key  nhm.lookup k = hm.lookup k := by
    simp [lookup] at *
    intro k hk
    -- We have to make a case disjunction: either the hashes are different,
    -- in which case we don't even lookup the same slots, or the hashes
    -- are the same, in which case we have to reason about what happens
    -- in one slot
    let k_hash_mod := k.val % v.val.len
    have : 0 < hm.slots.val.len := by simp_all [inv]
    have hvpos : 0 < v.val.len := by simp_all
    have hvnz: v.val.len  0 := by
      simp_all
    have _ : 0  k_hash_mod := by
      -- TODO: we want to automate this
      simp only [k_hash_mod]
      apply Int.emod_nonneg k.val hvnz
    have _ : k_hash_mod < alloc.vec.Vec.length hm.slots := by
      -- TODO: we want to automate this
      simp only [k_hash_mod]
      have h := Int.emod_lt_of_pos k.val hvpos
      simp_all
    cases h_hm: k_hash_mod == hash_mod.val <;> simp_all (config := {zetaDelta := true})
  have _ :
    match hm.lookup key with
    | none => nhm.len_s = hm.len_s + 1
    | some _ => nhm.len_s = hm.len_s := by
    simp only [lookup, len_s, al_v, HashMap.v, slots_s_lookup] at *
    -- We have to do a case disjunction
    simp_all [List.map_update_eq]
    -- TODO: dependent rewrites
    have _ : key.val % hm.slots.val.len < (List.map AList.v hm.slots.val).len := by
      simp [*]
    split <;>
    rename_i heq <;>
    simp [heq] at hlen <;>
    -- TODO: canonize addition by default? We need a tactic to simplify arithmetic equalities
    -- with addition and substractions ((ℤ, +) is a group or something - there should exist a tactic
    -- somewhere in mathlib?)
    (try simp [Int.add_assoc, Int.add_comm, Int.add_left_comm]) <;>
    int_tac
  have hinv : inv nhm := by
    simp [inv] at *
    split_conjs
    . match h: lookup hm key with
      | none =>
        simp [h, lookup] at *
        simp_all
      | some _ =>
        simp_all [lookup]
    . simp [slots_t_inv, slot_t_inv] at *
      intro i hipos _
      have _ := hinv.right.left i hipos (by simp_all)
      -- We need a case disjunction
      cases h_ieq : i == key.val % List.len hm.slots.val <;> simp_all [slot_s_inv]
    . simp [hinv, h_veq, nhm_eq]
    . simp_all [frame_load, inv_base, inv_load]
  simp_all

private theorem slot_allP_not_key_lookup (slot : AList α) (h : slot.v.allP fun (k', _) => ¬k = k') :
  slot.lookup k = none := by
  induction slot <;> simp_all

@[pspec]
theorem move_elements_from_list_spec
  {T : Type} (ntable : HashMap T) (slot : AList T)
  (hinv : ntable.inv)
  {l i : Int} (hSlotInv : slot_t_inv l i slot)
  (hDisjoint1 :  key v, ntable.lookup key = some v  slot.lookup key = none)
  (hDisjoint2 :  key v, slot.lookup key = some v  ntable.lookup key = none)
  (hLen : ntable.al_v.len + slot.v.len  Usize.max)
  :
   ntable1, ntable.move_elements_from_list T slot = ok ntable1 
  ntable1.inv 
  ( key v, ntable1.lookup key = some v  ntable.lookup key = some v  slot.lookup key = some v) 
  ( key v, ntable.lookup key = some v  ntable1.lookup key = some v) 
  ( key v, slot.lookup key = some v  ntable1.lookup key = some v) 
  ntable1.al_v.len = ntable.al_v.len + slot.v.len
  := by
  rw [move_elements_from_list]; rw [move_elements_from_list_loop]
  cases slot with
  | Nil =>
    simp [hinv]
  | Cons key value slot1 =>
    simp
    have hLookupKey : ntable.lookup key = none := by
      by_contra
      cases h: ntable.lookup key <;> simp_all
      have h := hDisjoint1 _ _ h
      simp_all
    have : ntable.lookup key = none  ntable.len_s < Usize.max := by simp_all; scalar_tac
    progress as  ntable1, _, hLookup11, hLookup12, hLength1 
    simp [hLookupKey] at hLength1
    have hTable1LookupImp :  (key : Usize) (v : T), ntable1.lookup key = some v  slot1.lookup key = none := by
      intro key' v hLookup
      if h: key = key' then
        simp_all [slot_t_inv]
        apply slot_allP_not_key_lookup
        simp_all
      else
        simp_all
        cases h: ntable.lookup key' <;> simp_all
        have := hDisjoint1 _ _ h
        simp_all
    have hSlot1LookupImp :  (key : Usize) (v : T), slot1.lookup key = some v  ntable1.lookup key = none := by
      intro key' v hLookup
      if h: key' = key then
        by_contra
        rename _ => hNtable1NotNone
        cases h: ntable1.lookup key' <;> simp [h] at hNtable1NotNone
        have := hTable1LookupImp _ _ h
        simp_all
      else
        have := hLookup12 key' h
        have := hDisjoint2 key' v
        simp_all
    have : ntable1.al_v.len + slot1.v.len  Usize.max := by simp_all; scalar_tac
    have : slot_t_inv l i slot1 := by
      simp [slot_t_inv] at hSlotInv
      simp [slot_t_inv, hSlotInv]
    -- TODO: progress leads to: slot_t_inv i i slot1
    -- progress as ⟨ ntable2 ⟩

    have   ntable2, hEq, hInv2, hLookup21, hLookup22, hLookup23, hLen1  :=
      move_elements_from_list_spec ntable1 slot1 (by assumption) (by assumption)
          hTable1LookupImp hSlot1LookupImp (by assumption)
    simp [hEq]; clear hEq
    -- The conclusion
    -- TODO: use aesop here
    split_conjs
    . simp [*]
    . intro key' v hLookup
      have := hLookup21 key' v
      if h: key = key' then
        have := hLookup22 key' v
        have := hLookup23 key' v
        have := hDisjoint1 key' v
        have := hDisjoint2 key' v
        have := hTable1LookupImp key' v
        have := hSlot1LookupImp key' v
        simp_all [Slots.lookup]
      else have := hLookup12 key'; simp_all
    . intro key' v hLookup1
      if h: key' = key then
        simp_all
      else
        have := hLookup12 key' h
        have := hLookup22 key' v
        simp_all
    . intro key' v hLookup1
      if h: key' = key then
        have := hLookup22 key' v
        simp_all
      else
        have := hLookup23 key' v
        simp_all
    . scalar_tac

private theorem slots_forall_nil_imp_lookup_none (slots : Slots T) (hLen : slots.val.len  0)
  (hEmpty :  j, 0  j  j < slots.val.len  slots.val.index j = AList.Nil) :
   key, slots.lookup key = none := by
  intro key
  simp [Slots.lookup]
  have : 0  key.val % slots.val.len := by
    exact Int.emod_nonneg key.val hLen -- TODO: automate that
  have : key.val % slots.val.len < slots.val.len := by
    apply Int.emod_lt_of_pos
    scalar_tac
  have := hEmpty (key.val % slots.val.len) (by assumption) (by assumption)
  simp [*]

private theorem slots_index_len_le_flatten_len (slots : List (AList α)) (i : Int) (h : 0  i  i < slots.len) :
  (slots.index i).len  (List.map AList.v slots).flatten.len := by
  match slots with
  | [] =>
    simp at *
  | slot :: slots' =>
    simp at *
    if hi : i = 0 then
      simp_all; scalar_tac
    else
      have := slots_index_len_le_flatten_len slots' (i - 1) (by scalar_tac)
      simp [*]
      scalar_tac

/- If we successfully lookup a key from a slot, the hash of the key modulo the number of slots must
   be equal to the slot index.
   TODO: remove?
 -/
private theorem slots_inv_lookup_imp_eq (slots : Slots α) (hInv : slots_t_inv slots)
  (i : Int) (hi : 0  i  i < slots.val.len) (key : Usize) :
  (slots.val.index i).lookup key  none  i = key.val % slots.val.len := by
  suffices hSlot :  (slot : List (Usize × α)),
           slot_s_inv slots.val.len i slot 
           slot.lookup key  none 
           i = key.val % slots.val.len
  from by
    rw [slots_t_inv, slots_s_inv] at hInv
    replace hInv := hInv i hi.left hi.right
    simp [slot_t_inv] at hInv
    exact hSlot _ hInv
  intro slot
  induction slot <;> simp_all
  intros; simp_all
  split at * <;> simp_all

private theorem move_slots_updated_table_lookup_imp
  (ntable ntable1 ntable2 : HashMap α) (slots slots1 : Slots α) (slot : AList α)
  (hi : 0  i  i < slots.val.len)
  (hSlotsInv : slots_t_inv slots)
  (hSlotEq : slot = slots.val.index i)
  (hSlotsEq : slots1.val = slots.val.update i .Nil)
  (hTableLookup :  (key : Usize) (v : α), ntable1.lookup key = some v 
                    ntable.lookup key = some v  slot.lookup key = some v)
  (hTable1Lookup :  (key : Usize) (v : α), ntable2.lookup key = some v 
                    ntable1.lookup key = some v  Slots.lookup slots1 key = some v)
  :
   key v, ntable2.lookup key = some v  ntable.lookup key = some v  slots.lookup key = some v := by
  intro key v hLookup
  replace hTableLookup := hTableLookup key v
  replace hTable1Lookup := hTable1Lookup key v hLookup
  cases hTable1Lookup with
  | inl hTable1Lookup =>
    replace hTableLookup := hTableLookup hTable1Lookup
    cases hTableLookup <;> try simp [*]
    right
    have := slots_inv_lookup_imp_eq slots hSlotsInv i hi key (by simp_all)
    simp_all [Slots.lookup]
  | inr hTable1Lookup =>
    right
    -- The key can't be for the slot we replaced
    cases heq : key.val % slots.val.len == i <;> simp_all [Slots.lookup]

private theorem move_one_slot_lookup_equiv {α : Type} (ntable ntable1 ntable2 : HashMap α)
  (slot : AList α)
  (slots slots1 : Slots α)
  (i : Int) (h1 : i < slots.len)
  (hSlotEq : slot = slots.val.index i)
  (hSlots1Eq : slots1.val = slots.val.update i .Nil)
  (hLookup1 :  (key : Usize) (v : α), ntable.lookup key = some v  ntable1.lookup key = some v)
  (hLookup2 :  (key : Usize) (v : α), slot.lookup key = some v  ntable1.lookup key = some v)
  (hLookup3 :  (key : Usize) (v : α), ntable1.lookup key = some v  ntable2.lookup key = some v)
  (hLookup4 :  (key : Usize) (v : α), slots1.lookup key = some v  ntable2.lookup key = some v) :
  ( key v, slots.lookup key = some v  ntable2.lookup key = some v) 
  ( key v, ntable.lookup key = some v  ntable2.lookup key = some v) := by
  constructor <;> intro key v hLookup
  . if hi: key.val % slots.val.len = i then
      -- We lookup in slot
      have := hLookup2 key v
      simp_all [Slots.lookup]
      have := hLookup3 key v
      simp_all
    else
      -- We lookup in slots
      have := hLookup4 key v
      simp_all [Slots.lookup]
  . have := hLookup1 key v
    have := hLookup3 key v
    simp_all

private theorem slots_lookup_none_imp_slot_lookup_none
  (slots : Slots α) (hInv : slots_t_inv slots) (i : Int) (hi : 0  i  i < slots.val.len) :
   (key : Usize), slots.lookup key = none  (slots.val.index i).lookup key = none := by
  intro key hLookup
  if heq : i = key.val % slots.val.len then
    simp_all [Slots.lookup]
  else
    have := slots_inv_lookup_imp_eq slots hInv i (by scalar_tac) key
    by_contra
    simp_all

private theorem slot_lookup_not_none_imp_slots_lookup_not_none
  (slots : Slots α) (hInv : slots_t_inv slots) (i : Int) (hi : 0  i  i < slots.val.len) :
   (key : Usize), (slots.val.index i).lookup key  none  slots.lookup key  none := by
  intro key hLookup hNone
  have := slots_lookup_none_imp_slot_lookup_none slots hInv i hi key hNone
  apply hLookup this

private theorem slots_forall_nil_imp_al_v_nil (slots : Slots α)
  (hEmpty :  i, 0  i  i < slots.val.len  slots.val.index i = AList.Nil) :
  slots.al_v = [] := by
  suffices h :
     (slots : List (AList α)),
      ( (i : ), 0  i  i < slots.len  slots.index i = Nil) 
      (slots.map AList.v).flatten = [] from by
      replace h := h slots.val (by intro i h0 h1; exact hEmpty i h0 h1)
      simp_all
  clear slots hEmpty
  intro slots hEmpty
  induction slots <;> simp_all
  have hHead := hEmpty 0 (by simp) (by scalar_tac)
  simp at hHead
  simp [hHead]
  rename (_  _) => ih
  apply ih; intro i h0 h1
  replace hEmpty := hEmpty (i + 1) (by omega) (by omega)
  -- TODO: simp at hEmpty
  have : 0 < i + 1 := by omega
  simp_all

theorem move_elements_loop_spec
  {α : Type} (ntable : HashMap α) (slots : Slots α)
  (i : Usize)
  (hi : i  alloc.vec.Vec.len (AList α) slots)
  (hinv : ntable.inv)
  (hSlotsNonZero : slots.val.len  0)
  (hSlotsInv : slots_t_inv slots)
  (hEmpty :  j, 0  j  j < i.val  slots.val.index j = AList.Nil)
  (hDisjoint1 :  key v, ntable.lookup key = some v  slots.lookup key = none)
  (hDisjoint2 :  key v, slots.lookup key = some v  ntable.lookup key = none)
  (hLen : ntable.al_v.len + slots.al_v.len  Usize.max)
  :
   ntable1 slots1, ntable.move_elements_loop α slots i = ok (ntable1, slots1) 
  ntable1.inv 
  ntable1.al_v.len = ntable.al_v.len + slots.al_v.len 
  ( key v, ntable1.lookup key = some v  ntable.lookup key = some v  slots.lookup key = some v) 
  ( key v, slots.lookup key = some v  ntable1.lookup key = some v) 
  ( key v, ntable.lookup key = some v  ntable1.lookup key = some v) 
  ( (j : Int), 0  j  j < slots1.len  slots1.val.index j = AList.Nil)
  := by
  rw [move_elements_loop]
  simp
  if hi: i.val < slots.val.len then
    -- Continue the proof
    have hIneq : 0  i.val  i.val < slots.val.len := by scalar_tac
    simp [hi]
    progress as  slot, index_back, hSlotEq, hIndexBack 
    rw [hIndexBack]; clear hIndexBack
    have hInvSlot : slot_t_inv slots.val.len i.val slot := by
      simp [slots_t_inv] at hSlotsInv
      simp [*]
    have ntableLookupImpSlot :
       (key : Usize) (v : α), ntable.lookup key = some v  slot.lookup key = none := by
      intro key v hLookup
      by_contra
      have : i.val = key.val % slots.val.len := by
        apply slots_inv_lookup_imp_eq slots hSlotsInv i.val (by scalar_tac)
        simp_all
      cases h: slot.lookup key <;> simp_all
      have := hDisjoint2 _ _ h
      simp_all
    have slotLookupImpNtable :
       (key : Usize) (v : α), slot.lookup key = some v  ntable.lookup key = none := by
      intro key v hLookup
      by_contra
      cases h : ntable.lookup key <;> simp_all
      have := ntableLookupImpSlot _ _ h
      simp_all

    have : ntable.al_v.len + slot.v.len  Usize.max := by
      have := slots_index_len_le_flatten_len slots.val i.val (by scalar_tac)
      simp_all [Slots.al_v]; scalar_tac
    progress as  ntable1, _, hDisjointNtable1, hLookup11, hLookup12, hLen1  -- TODO: decompose post-condition by default
    progress as  i' .. 
    progress as  slots1, hSlots1Eq .. 
    have : i'  alloc.vec.Vec.len (AList α) slots1 := by simp_all [alloc.vec.Vec.len]; scalar_tac
    have : slots_t_inv slots1 := by
      simp [slots_t_inv] at *
      intro j h0 h1
      cases h: j == i.val <;> simp_all

    have ntable1LookupImpSlots1 :  (key : Usize) (v : α), ntable1.lookup key = some v  Slots.lookup slots1 key = none := by
      intro key v hLookup
      cases hDisjointNtable1 _ _ hLookup with
      | inl h =>
        have := ntableLookupImpSlot _ _ h
        have := hDisjoint1 _ _ h
        cases heq : i == key.val % slots.val.len <;> simp_all [Slots.lookup]
      | inr h =>
        --have h1 := hLookup12 _ _ h
        have heq : i = key.val % slots.val.len := by
          exact slots_inv_lookup_imp_eq slots hSlotsInv i.val hIneq key (by simp_all [Slots.lookup])
        simp_all [Slots.lookup]

    have :  (key : Usize) (v : α), Slots.lookup slots1 key = some v  ntable1.lookup key = none := by
      intro key v hLookup
      by_contra h
      cases h : ntable1.lookup key <;> simp_all
      have := ntable1LookupImpSlots1 _ _ h
      simp_all

    have :  (j : ), OfNat.ofNat 0  j  j < i'.val  slots1.val.index j = AList.Nil := by
      intro j h0 h1
      if h : j = i.val then
        simp_all
      else
        have := hEmpty j h0 (by scalar_tac)
        simp_all

    have : ntable1.al_v.len + (Slots.al_v slots1).len  Usize.max := by
      have : i.val < (List.map AList.v slots.val).len := by simp; scalar_tac
      simp_all [Slots.al_v, List.len_flatten_update_eq, List.map_update_eq]

    progress as  ntable2, slots2, _, _, hLookup2Rev, hLookup21, hLookup22, hIndexNil 

    simp [and_assoc]
    have :  (j : ), OfNat.ofNat 0  j  j < slots2.val.len  slots2.val.index j = AList.Nil := by
      intro j h0 h1
      apply hIndexNil j h0 h1
    have : ntable2.al_v.len = ntable.al_v.len + slots.al_v.len := by simp_all [Slots.al_v]
    have :  key v, ntable2.lookup key = some v 
           ntable.lookup key = some v  slots.lookup key = some v := by
      intro key v hLookup
      apply move_slots_updated_table_lookup_imp ntable ntable1 ntable2 slots slots1 slot hIneq <;>
      try assumption
    have hLookupPreserve :
      ( key v, slots.lookup key = some v  ntable2.lookup key = some v) 
      ( key v, ntable.lookup key = some v  ntable2.lookup key = some v) := by
      exact move_one_slot_lookup_equiv ntable ntable1 ntable2 slot slots slots1 i.val
        (by assumption) (by assumption) (by assumption)
        (by assumption) (by assumption) (by assumption) (by assumption)
    simp_all [alloc.vec.Vec.len, or_assoc]
    apply hLookupPreserve
  else
    simp [hi, and_assoc, *]
    simp_all
    have hi : i = alloc.vec.Vec.len (AList α) slots := by scalar_tac
    have hEmpty :  j, 0  j  j < slots.val.len  slots.val.index j = AList.Nil := by
      simp [hi] at hEmpty
      exact hEmpty
    have hNil : slots.al_v = [] := slots_forall_nil_imp_al_v_nil slots hEmpty
    have hLenNonZero : slots.val.len  0 := by simp [*]
    have hLookupEmpty := slots_forall_nil_imp_lookup_none slots hLenNonZero hEmpty
    simp [hNil, hLookupEmpty]
    apply hEmpty
termination_by (slots.val.len - i.val).toNat
decreasing_by scalar_decr_tac -- TODO: this is expensive

@[pspec]
theorem move_elements_spec
  {α : Type} (ntable : HashMap α) (slots : Slots α)
  (hinv : ntable.inv)
  (hslotsNempty : 0 < slots.val.len)
  (hSlotsInv : slots_t_inv slots)
  -- The initial table is empty
  (hEmpty :  key, ntable.lookup key = none)
  (hTableLen : ntable.al_v.len = 0)
  (hSlotsLen : slots.al_v.len  Usize.max)
  :
   ntable1 slots1, ntable.move_elements α slots = ok (ntable1, slots1) 
  ntable1.inv 
  ntable1.al_v.len = ntable.al_v.len + slots.al_v.len 
  ( key v, ntable1.lookup key = some v  slots.lookup key = some v)
  := by
  rw [move_elements]
  have  ntable1, slots1, hEq, _, _, ntable1Lookup, slotsLookup, _, _  :=
    move_elements_loop_spec ntable slots 0#usize (by scalar_tac) hinv
    (by scalar_tac)
    hSlotsInv
    (by intro j h0 h1; scalar_tac)
    (by simp [*])
    (by simp [*])
    (by scalar_tac)
  simp [hEq]; clear hEq
  split_conjs <;> try assumption
  intro key v
  have := ntable1Lookup key v
  have := slotsLookup key v
  constructor <;> simp_all

@[pspec]
theorem try_resize_spec {α : Type} (hm : HashMap α) (hInv : hm.inv):
   hm', hm.try_resize α = ok hm' 
  ( key, hm'.lookup key = hm.lookup key) 
  hm'.al_v.len = hm.al_v.len := by
  rw [try_resize]
  simp
  progress as  n1  -- TODO: simplify (Usize.ofInt (OfNat.ofNat 2) try_resize.proof_1).val
  have : hm.2.1.val  0 := by
    simp [inv, inv_load] at hInv
    -- TODO: why does hm.max_load_factor appears as hm.2??
    -- Can we deactivate field notations?
    omega
  progress as  n2 
  if hSmaller : hm.slots.val.len  n2.val then
    simp [hSmaller]
    have : (alloc.vec.Vec.len (AList α) hm.slots).val * 2  Usize.max := by
          simp [alloc.vec.Vec.len, inv, inv_load] at *
          -- TODO: this should be automated
          have hIneq1 : n1.val  Usize.max / 2 := by simp [*]
          simp [Int.le_ediv_iff_mul_le] at hIneq1
          -- TODO: this should be automated
          have hIneq2 : n2.val  n1.val / hm.2.1.val := by simp [*]
          rw [Int.le_ediv_iff_mul_le] at hIneq2 <;> try simp [*]
          have : n2.val * 1  n2.val * hm.max_load_factor.1.val := by
            apply Int.mul_le_mul <;> scalar_tac
          scalar_tac
    progress as  newLength 
    have : 0 < newLength.val := by
      simp_all [inv, inv_load]
    progress as  ntable1 ..  -- TODO: introduce nice notation to take care of preconditions
    . -- Pre 1
      simp_all [inv, inv_load]
      split_conjs at hInv
      --
      apply Int.mul_le_of_le_ediv at hSmaller <;> try simp [*]
      apply Int.mul_le_of_le_ediv at hSmaller <;> try simp
      --
      have : (hm.slots.val.len * hm.2.1.val) * 1  (hm.slots.val.len * hm.2.1.val) * 2 := by
        apply Int.mul_le_mul <;> (try simp [*]); scalar_tac
      --
      ring_nf at *
      simp [*]
      unfold max_load max_load_factor at *
      omega
    . -- Pre 2
      simp_all [inv, inv_load]
      unfold max_load_factor at * -- TODO: this is really annoying
      omega
    . -- End of the proof
      have : slots_t_inv hm.slots := by simp_all [inv] -- TODO
      have : (Slots.al_v hm.slots).len  Usize.max := by simp_all [inv, al_v, v, Slots.al_v]; scalar_tac
      progress as  ntable2, slots1, _, _, hLookup ..  -- TODO: assumption is not powerful enough
      simp_all [lookup, al_v, v, alloc.vec.Vec.len]
      intro key
      replace hLookup := hLookup key
      cases h1: (ntable2.slots.val.index (key.val % ntable2.slots.val.len)).v.lookup key <;>
      cases h2: (hm.slots.val.index (key.val % hm.slots.val.len)).v.lookup key <;>
      simp_all [Slots.lookup]
  else
    simp [hSmaller]
    tauto

@[pspec]
theorem insert_spec {α} (hm : HashMap α) (key : Usize) (value : α)
  (hInv : hm.inv)
  (hNotSat : hm.lookup key = none  hm.len_s < Usize.max) :
   hm1, insert α hm key value = ok hm1 
  --
  hm1.lookup key = value 
  ( key', key'  key  hm1.lookup key' = hm.lookup key') 
  --
  match hm.lookup key with
  | none => hm1.len_s = hm.len_s + 1
  | some _ => hm1.len_s = hm.len_s
  := by
  rw [insert]
  progress as  hm1 .. 
  simp [len]
  split
  . split
    . simp [*]
      intros; tauto
    . progress as  hm2 .. 
      simp [*]
      intros; tauto
  . simp [*]; tauto

@[pspec]
theorem get_in_list_spec {α} (key : Usize) (slot : AList α) (hLookup : slot.lookup key  none) :
   v, get_in_list α key slot = ok v  slot.lookup key = some v := by
  induction slot <;>
  rw [get_in_list, get_in_list_loop] <;>
  simp_all
  split <;> simp_all

@[pspec]
theorem get_spec {α} (hm : HashMap α) (key : Usize) (hInv : hm.inv) (hLookup : hm.lookup key  none) :
   v, get α hm key = ok v  hm.lookup key = some v := by
  rw [get]
  simp [hash_key, alloc.vec.Vec.len]
  have : 0 < hm.slots.val.len := by simp_all [inv]
  progress as  hash_mod ..  -- TODO: decompose post by default
  simp at *
  have : 0  hash_mod.val := by -- TODO: automate
    simp [*]
    apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
  have : hash_mod < hm.slots.val.len := by -- TODO: automate
    simp [*]
    apply Int.emod_lt_of_pos; scalar_tac
  progress as  slot 
  progress as  v ..  <;> simp_all [lookup]

@[pspec]
theorem get_mut_in_list_spec {α} (key : Usize) (slot : AList α)
  {l i : Int}
  (hInv : slot_t_inv l i slot)
  (hLookup : slot.lookup key  none) :
   v back, get_mut_in_list α slot key = ok (v, back) 
  slot.lookup key = some v 
   v',  slot', back v' = ok slot' 
    slot_t_inv l i slot' 
    slot'.lookup key = v' 
    ( key', key'  key  slot'.lookup key' = slot.lookup key') 
    -- We need this strong post-condition for the recursive case
    ( key', slot.v.allP (fun x => key'  x.1)  slot'.v.allP (fun x => key'  x.1))
   := by
  induction slot <;>
  rw [get_mut_in_list, get_mut_in_list_loop] <;>
  simp_all
  split
  . -- Non-recursive case
    simp_all [and_assoc, slot_t_inv]
  . -- Recursive case
    -- TODO: progress doesn't instantiate l correctly
    rename _  _  _ => ih
    rename AList α => tl
    replace ih := ih (by simp_all [slot_t_inv]) (by simp_all)
    -- progress also fails here
    -- TODO: progress? notation to have some feedback
    have  v, back, hEq, _, hBack  := ih; clear ih
    simp [hEq]; clear hEq
    simp [and_assoc, *]
    -- Proving the post-condition about back
    intro v
    progress as  slot', _, _, _, hForAll ⟩; clear hBack
    simp [and_assoc, *]
    constructor
    . simp_all [slot_t_inv, slot_s_inv, slot_s_inv_hash]
    . simp_all

@[pspec]
theorem get_mut_spec {α} (hm : HashMap α) (key : Usize) (hInv : hm.inv) (hLookup : hm.lookup key  none) :
   v back, get_mut α hm key = ok (v, back) 
  hm.lookup key = some v 
   v',  hm', back v' = ok hm' 
    hm'.lookup key = v' 
     key', key'  key  hm'.lookup key' = hm.lookup key'
   := by
  rw [get_mut]
  simp [hash_key, alloc.vec.Vec.len]
  have : 0 < hm.slots.val.len := by simp_all [inv]
  progress as  hash_mod ..  -- TODO: decompose post by default
  simp at *
  have : 0  hash_mod.val := by -- TODO: automate
    simp [*]
    apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
  have : hash_mod < hm.slots.val.len := by -- TODO: automate
    simp [*]
    apply Int.emod_lt_of_pos; scalar_tac
  progress as  slot, index_back .. 
  have : slot_t_inv hm.slots.val.len hash_mod slot := by
    simp_all [inv, slots_t_inv]
  have : slot.lookup key  none := by
    simp_all [lookup]
  progress as  v, back .. 
  simp [and_assoc, lookup, *]
  constructor
  . simp_all
  . -- Backward function
    intro v'
    progress as  slot' .. 
    progress as  slots' 
    simp_all
    -- Last postcondition
    intro key' hNotEq
    have : 0  key'.val % hm.slots.val.len := by -- TODO: automate
      apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
    have : key'.val % hm.slots.val.len < hm.slots.val.len := by -- TODO: automate
      apply Int.emod_lt_of_pos; scalar_tac
    -- We need to do a case disjunction
    cases h: (key.val % hm.slots.val.len == key'.val % hm.slots.val.len) <;>
    simp_all

@[pspec]
theorem remove_from_list_spec {α} (key : Usize) (slot : AList α) {l i} (hInv : slot_t_inv l i slot) :
   v slot', remove_from_list α key slot = ok (v, slot') 
  slot.lookup key = v 
  slot'.lookup key = none 
  ( key', key'  key  slot'.lookup key' = slot.lookup key') 
  match v with
  | none => slot'.v.len = slot.v.len
  | some _ => slot'.v.len = slot.v.len - 1 := by
  rw [remove_from_list, remove_from_list_loop]
  match hEq : slot with
  | .Nil =>
    simp [and_assoc]
  | .Cons k v0 tl =>
    simp
    if hKey : k = key then
      simp [hKey, and_assoc]
      simp_all [slot_t_inv, slot_s_inv]
      apply slot_allP_not_key_lookup
      simp [*]
    else
      simp [hKey]
      -- TODO: progress doesn't instantiate l properly
      have hInv' : slot_t_inv l i tl := by simp_all [slot_t_inv]
      have  v1, tl1, hRemove, _, _, hLookupTl1, _  := remove_from_list_spec key tl hInv'
      simp [and_assoc, *]; clear hRemove
      constructor
      . intro key' hNotEq1
        simp_all
      . cases v1 <;> simp_all

private theorem lookup_not_none_imp_len_s_pos (hm : HashMap α) (key : Usize) (hLookup : hm.lookup key  none)
  (hNotEmpty : 0 < hm.slots.val.len) :
  0 < hm.len_s := by
  have : 0  key.val % hm.slots.val.len := by -- TODO: automate
    apply Int.emod_nonneg; scalar_tac
  have : key.val % hm.slots.val.len < hm.slots.val.len := by -- TODO: automate
    apply Int.emod_lt_of_pos; scalar_tac
  have := List.len_index_le_len_flatten hm.v (key.val % hm.slots.val.len)
  have := List.lookup_not_none_imp_len_pos (hm.slots.val.index (key.val % hm.slots.val.len)).v key
  simp_all [lookup, len_s, al_v, v]
  scalar_tac

@[pspec]
theorem remove_spec {α} (hm : HashMap α) (key : Usize) (hInv : hm.inv) :
   v hm', remove α hm key = ok (v, hm') 
  hm.lookup key = v 
  hm'.lookup key = none 
  ( key', key'  key  hm'.lookup key' = hm.lookup key') 
  match v with
  | none => hm'.len_s = hm.len_s
  | some _ => hm'.len_s = hm.len_s - 1 := by
  rw [remove]
  simp [hash_key, alloc.vec.Vec.len]
  have : 0 < hm.slots.val.len := by simp_all [inv]
  progress as  hash_mod ..  -- TODO: decompose post by default
  simp at *
  have : 0  hash_mod.val := by -- TODO: automate
    simp [*]
    apply Int.emod_nonneg; simp [inv] at hInv; scalar_tac
  have : hash_mod < hm.slots.val.len := by -- TODO: automate
    simp [*]
    apply Int.emod_lt_of_pos; scalar_tac
  progress as  slot, index_back .. 
  have : slot_t_inv hm.slots.val.len hash_mod slot := by simp_all [inv, slots_t_inv]
  progress as  vOpt, slot' .. 
  match hOpt : vOpt with
  | none =>
    simp [*]
    progress as  slot'' 
    simp [and_assoc, lookup, *]
    simp_all [al_v, v]
    intro key' hNotEq
    -- We need to make a case disjunction
    cases h: (key.val % hm.slots.val.len) == (key'.val % hm.slots.val.len) <;>
    simp_all
  | some v =>
    simp [*]
    have : 0 < hm.num_entries.val := by
      have := lookup_not_none_imp_len_s_pos hm key (by simp_all [lookup]) (by simp_all [inv])
      simp_all [inv]
    progress as  newSize .. 
    progress as  slots1 .. 
    simp_all [and_assoc, lookup, al_v, HashMap.v]
    constructor
    . intro key' hNotEq
      cases h: (key.val % hm.slots.val.len) == (key'.val % hm.slots.val.len) <;>
      simp_all
    . scalar_tac

end HashMap

end hashmap