1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS
-- [hashmap]: function definitions
import Base
import Hashmap.Types
open Primitives
namespace hashmap
/- [hashmap::hash_key]: forward function -/
def hash_key (k : Usize) : Result Usize :=
Result.ret k
/- [hashmap::HashMap::{0}::allocate_slots]: loop 0: forward function -/
divergent def HashMap.allocate_slots_loop
(T : Type) (slots : Vec (List T)) (n : Usize) : Result (Vec (List T)) :=
if n > (Usize.ofInt 0)
then
do
let slots0 ← Vec.push (List T) slots List.Nil
let n0 ← n - (Usize.ofInt 1)
HashMap.allocate_slots_loop T slots0 n0
else Result.ret slots
/- [hashmap::HashMap::{0}::allocate_slots]: forward function -/
def HashMap.allocate_slots
(T : Type) (slots : Vec (List T)) (n : Usize) : Result (Vec (List T)) :=
HashMap.allocate_slots_loop T slots n
/- [hashmap::HashMap::{0}::new_with_capacity]: forward function -/
def HashMap.new_with_capacity
(T : Type) (capacity : Usize) (max_load_dividend : Usize)
(max_load_divisor : Usize) :
Result (HashMap T)
:=
do
let v := Vec.new (List T)
let slots ← HashMap.allocate_slots T v capacity
let i ← capacity * max_load_dividend
let i0 ← i / max_load_divisor
Result.ret
{
num_entries := (Usize.ofInt 0),
max_load_factor := (max_load_dividend, max_load_divisor),
max_load := i0,
slots := slots
}
/- [hashmap::HashMap::{0}::new]: forward function -/
def HashMap.new (T : Type) : Result (HashMap T) :=
HashMap.new_with_capacity T (Usize.ofInt 32) (Usize.ofInt 4) (Usize.ofInt 5)
/- [hashmap::HashMap::{0}::clear]: loop 0: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
divergent def HashMap.clear_loop
(T : Type) (slots : Vec (List T)) (i : Usize) : Result (Vec (List T)) :=
let i0 := Vec.len (List T) slots
if i < i0
then
do
let i1 ← i + (Usize.ofInt 1)
let slots0 ← Vec.index_mut_back (List T) slots i List.Nil
HashMap.clear_loop T slots0 i1
else Result.ret slots
/- [hashmap::HashMap::{0}::clear]: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
def HashMap.clear (T : Type) (self : HashMap T) : Result (HashMap T) :=
do
let v ← HashMap.clear_loop T self.slots (Usize.ofInt 0)
Result.ret { self with num_entries := (Usize.ofInt 0), slots := v }
/- [hashmap::HashMap::{0}::len]: forward function -/
def HashMap.len (T : Type) (self : HashMap T) : Result Usize :=
Result.ret self.num_entries
/- [hashmap::HashMap::{0}::insert_in_list]: loop 0: forward function -/
divergent def HashMap.insert_in_list_loop
(T : Type) (key : Usize) (value : T) (ls : List T) : Result Bool :=
match ls with
| List.Cons ckey cvalue tl =>
if ckey = key
then Result.ret false
else HashMap.insert_in_list_loop T key value tl
| List.Nil => Result.ret true
/- [hashmap::HashMap::{0}::insert_in_list]: forward function -/
def HashMap.insert_in_list
(T : Type) (key : Usize) (value : T) (ls : List T) : Result Bool :=
HashMap.insert_in_list_loop T key value ls
/- [hashmap::HashMap::{0}::insert_in_list]: loop 0: backward function 0 -/
divergent def HashMap.insert_in_list_loop_back
(T : Type) (key : Usize) (value : T) (ls : List T) : Result (List T) :=
match ls with
| List.Cons ckey cvalue tl =>
if ckey = key
then Result.ret (List.Cons ckey value tl)
else
do
let tl0 ← HashMap.insert_in_list_loop_back T key value tl
Result.ret (List.Cons ckey cvalue tl0)
| List.Nil => let l := List.Nil
Result.ret (List.Cons key value l)
/- [hashmap::HashMap::{0}::insert_in_list]: backward function 0 -/
def HashMap.insert_in_list_back
(T : Type) (key : Usize) (value : T) (ls : List T) : Result (List T) :=
HashMap.insert_in_list_loop_back T key value ls
/- [hashmap::HashMap::{0}::insert_no_resize]: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
def HashMap.insert_no_resize
(T : Type) (self : HashMap T) (key : Usize) (value : T) :
Result (HashMap T)
:=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_mut (List T) self.slots hash_mod
let inserted ← HashMap.insert_in_list T key value l
if inserted
then
do
let i0 ← self.num_entries + (Usize.ofInt 1)
let l0 ← HashMap.insert_in_list_back T key value l
let v ← Vec.index_mut_back (List T) self.slots hash_mod l0
Result.ret { self with num_entries := i0, slots := v }
else
do
let l0 ← HashMap.insert_in_list_back T key value l
let v ← Vec.index_mut_back (List T) self.slots hash_mod l0
Result.ret { self with slots := v }
/- [core::num::u32::{9}::MAX] -/
def core_num_u32_max_body : Result U32 := Result.ret (U32.ofInt 4294967295)
def core_num_u32_max_c : U32 := eval_global core_num_u32_max_body (by simp)
/- [hashmap::HashMap::{0}::move_elements_from_list]: loop 0: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
divergent def HashMap.move_elements_from_list_loop
(T : Type) (ntable : HashMap T) (ls : List T) : Result (HashMap T) :=
match ls with
| List.Cons k v tl =>
do
let ntable0 ← HashMap.insert_no_resize T ntable k v
HashMap.move_elements_from_list_loop T ntable0 tl
| List.Nil => Result.ret ntable
/- [hashmap::HashMap::{0}::move_elements_from_list]: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
def HashMap.move_elements_from_list
(T : Type) (ntable : HashMap T) (ls : List T) : Result (HashMap T) :=
HashMap.move_elements_from_list_loop T ntable ls
/- [hashmap::HashMap::{0}::move_elements]: loop 0: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
divergent def HashMap.move_elements_loop
(T : Type) (ntable : HashMap T) (slots : Vec (List T)) (i : Usize) :
Result ((HashMap T) × (Vec (List T)))
:=
let i0 := Vec.len (List T) slots
if i < i0
then
do
let l ← Vec.index_mut (List T) slots i
let ls := mem.replace (List T) l List.Nil
let ntable0 ← HashMap.move_elements_from_list T ntable ls
let i1 ← i + (Usize.ofInt 1)
let l0 := mem.replace_back (List T) l List.Nil
let slots0 ← Vec.index_mut_back (List T) slots i l0
HashMap.move_elements_loop T ntable0 slots0 i1
else Result.ret (ntable, slots)
/- [hashmap::HashMap::{0}::move_elements]: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
def HashMap.move_elements
(T : Type) (ntable : HashMap T) (slots : Vec (List T)) (i : Usize) :
Result ((HashMap T) × (Vec (List T)))
:=
HashMap.move_elements_loop T ntable slots i
/- [hashmap::HashMap::{0}::try_resize]: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
def HashMap.try_resize (T : Type) (self : HashMap T) : Result (HashMap T) :=
do
let max_usize ← Scalar.cast .Usize core_num_u32_max_c
let capacity := Vec.len (List T) self.slots
let n1 ← max_usize / (Usize.ofInt 2)
let (i, i0) := self.max_load_factor
let i1 ← n1 / i
if capacity <= i1
then
do
let i2 ← capacity * (Usize.ofInt 2)
let ntable ← HashMap.new_with_capacity T i2 i i0
let (ntable0, _) ←
HashMap.move_elements T ntable self.slots (Usize.ofInt 0)
Result.ret
{
ntable0
with
num_entries := self.num_entries, max_load_factor := (i, i0)
}
else Result.ret { self with max_load_factor := (i, i0) }
/- [hashmap::HashMap::{0}::insert]: merged forward/backward function
(there is a single backward function, and the forward function returns ()) -/
def HashMap.insert
(T : Type) (self : HashMap T) (key : Usize) (value : T) :
Result (HashMap T)
:=
do
let self0 ← HashMap.insert_no_resize T self key value
let i ← HashMap.len T self0
if i > self0.max_load
then HashMap.try_resize T self0
else Result.ret self0
/- [hashmap::HashMap::{0}::contains_key_in_list]: loop 0: forward function -/
divergent def HashMap.contains_key_in_list_loop
(T : Type) (key : Usize) (ls : List T) : Result Bool :=
match ls with
| List.Cons ckey t tl =>
if ckey = key
then Result.ret true
else HashMap.contains_key_in_list_loop T key tl
| List.Nil => Result.ret false
/- [hashmap::HashMap::{0}::contains_key_in_list]: forward function -/
def HashMap.contains_key_in_list
(T : Type) (key : Usize) (ls : List T) : Result Bool :=
HashMap.contains_key_in_list_loop T key ls
/- [hashmap::HashMap::{0}::contains_key]: forward function -/
def HashMap.contains_key
(T : Type) (self : HashMap T) (key : Usize) : Result Bool :=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_shared (List T) self.slots hash_mod
HashMap.contains_key_in_list T key l
/- [hashmap::HashMap::{0}::get_in_list]: loop 0: forward function -/
divergent def HashMap.get_in_list_loop
(T : Type) (key : Usize) (ls : List T) : Result T :=
match ls with
| List.Cons ckey cvalue tl =>
if ckey = key
then Result.ret cvalue
else HashMap.get_in_list_loop T key tl
| List.Nil => Result.fail Error.panic
/- [hashmap::HashMap::{0}::get_in_list]: forward function -/
def HashMap.get_in_list (T : Type) (key : Usize) (ls : List T) : Result T :=
HashMap.get_in_list_loop T key ls
/- [hashmap::HashMap::{0}::get]: forward function -/
def HashMap.get (T : Type) (self : HashMap T) (key : Usize) : Result T :=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_shared (List T) self.slots hash_mod
HashMap.get_in_list T key l
/- [hashmap::HashMap::{0}::get_mut_in_list]: loop 0: forward function -/
divergent def HashMap.get_mut_in_list_loop
(T : Type) (ls : List T) (key : Usize) : Result T :=
match ls with
| List.Cons ckey cvalue tl =>
if ckey = key
then Result.ret cvalue
else HashMap.get_mut_in_list_loop T tl key
| List.Nil => Result.fail Error.panic
/- [hashmap::HashMap::{0}::get_mut_in_list]: forward function -/
def HashMap.get_mut_in_list
(T : Type) (ls : List T) (key : Usize) : Result T :=
HashMap.get_mut_in_list_loop T ls key
/- [hashmap::HashMap::{0}::get_mut_in_list]: loop 0: backward function 0 -/
divergent def HashMap.get_mut_in_list_loop_back
(T : Type) (ls : List T) (key : Usize) (ret0 : T) : Result (List T) :=
match ls with
| List.Cons ckey cvalue tl =>
if ckey = key
then Result.ret (List.Cons ckey ret0 tl)
else
do
let tl0 ← HashMap.get_mut_in_list_loop_back T tl key ret0
Result.ret (List.Cons ckey cvalue tl0)
| List.Nil => Result.fail Error.panic
/- [hashmap::HashMap::{0}::get_mut_in_list]: backward function 0 -/
def HashMap.get_mut_in_list_back
(T : Type) (ls : List T) (key : Usize) (ret0 : T) : Result (List T) :=
HashMap.get_mut_in_list_loop_back T ls key ret0
/- [hashmap::HashMap::{0}::get_mut]: forward function -/
def HashMap.get_mut (T : Type) (self : HashMap T) (key : Usize) : Result T :=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_mut (List T) self.slots hash_mod
HashMap.get_mut_in_list T l key
/- [hashmap::HashMap::{0}::get_mut]: backward function 0 -/
def HashMap.get_mut_back
(T : Type) (self : HashMap T) (key : Usize) (ret0 : T) :
Result (HashMap T)
:=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_mut (List T) self.slots hash_mod
let l0 ← HashMap.get_mut_in_list_back T l key ret0
let v ← Vec.index_mut_back (List T) self.slots hash_mod l0
Result.ret { self with slots := v }
/- [hashmap::HashMap::{0}::remove_from_list]: loop 0: forward function -/
divergent def HashMap.remove_from_list_loop
(T : Type) (key : Usize) (ls : List T) : Result (Option T) :=
match ls with
| List.Cons ckey t tl =>
if ckey = key
then
let mv_ls := mem.replace (List T) (List.Cons ckey t tl) List.Nil
match mv_ls with
| List.Cons i cvalue tl0 => Result.ret (Option.some cvalue)
| List.Nil => Result.fail Error.panic
else HashMap.remove_from_list_loop T key tl
| List.Nil => Result.ret Option.none
/- [hashmap::HashMap::{0}::remove_from_list]: forward function -/
def HashMap.remove_from_list
(T : Type) (key : Usize) (ls : List T) : Result (Option T) :=
HashMap.remove_from_list_loop T key ls
/- [hashmap::HashMap::{0}::remove_from_list]: loop 0: backward function 1 -/
divergent def HashMap.remove_from_list_loop_back
(T : Type) (key : Usize) (ls : List T) : Result (List T) :=
match ls with
| List.Cons ckey t tl =>
if ckey = key
then
let mv_ls := mem.replace (List T) (List.Cons ckey t tl) List.Nil
match mv_ls with
| List.Cons i cvalue tl0 => Result.ret tl0
| List.Nil => Result.fail Error.panic
else
do
let tl0 ← HashMap.remove_from_list_loop_back T key tl
Result.ret (List.Cons ckey t tl0)
| List.Nil => Result.ret List.Nil
/- [hashmap::HashMap::{0}::remove_from_list]: backward function 1 -/
def HashMap.remove_from_list_back
(T : Type) (key : Usize) (ls : List T) : Result (List T) :=
HashMap.remove_from_list_loop_back T key ls
/- [hashmap::HashMap::{0}::remove]: forward function -/
def HashMap.remove
(T : Type) (self : HashMap T) (key : Usize) : Result (Option T) :=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_mut (List T) self.slots hash_mod
let x ← HashMap.remove_from_list T key l
match x with
| Option.none => Result.ret Option.none
| Option.some x0 =>
do
let _ ← self.num_entries - (Usize.ofInt 1)
Result.ret (Option.some x0)
/- [hashmap::HashMap::{0}::remove]: backward function 0 -/
def HashMap.remove_back
(T : Type) (self : HashMap T) (key : Usize) : Result (HashMap T) :=
do
let hash ← hash_key key
let i := Vec.len (List T) self.slots
let hash_mod ← hash % i
let l ← Vec.index_mut (List T) self.slots hash_mod
let x ← HashMap.remove_from_list T key l
match x with
| Option.none =>
do
let l0 ← HashMap.remove_from_list_back T key l
let v ← Vec.index_mut_back (List T) self.slots hash_mod l0
Result.ret { self with slots := v }
| Option.some x0 =>
do
let i0 ← self.num_entries - (Usize.ofInt 1)
let l0 ← HashMap.remove_from_list_back T key l
let v ← Vec.index_mut_back (List T) self.slots hash_mod l0
Result.ret { self with num_entries := i0, slots := v }
/- [hashmap::test1]: forward function -/
def test1 : Result Unit :=
do
let hm ← HashMap.new U64
let hm0 ← HashMap.insert U64 hm (Usize.ofInt 0) (U64.ofInt 42)
let hm1 ← HashMap.insert U64 hm0 (Usize.ofInt 128) (U64.ofInt 18)
let hm2 ← HashMap.insert U64 hm1 (Usize.ofInt 1024) (U64.ofInt 138)
let hm3 ← HashMap.insert U64 hm2 (Usize.ofInt 1056) (U64.ofInt 256)
let i ← HashMap.get U64 hm3 (Usize.ofInt 128)
if not (i = (U64.ofInt 18))
then Result.fail Error.panic
else
do
let hm4 ←
HashMap.get_mut_back U64 hm3 (Usize.ofInt 1024) (U64.ofInt 56)
let i0 ← HashMap.get U64 hm4 (Usize.ofInt 1024)
if not (i0 = (U64.ofInt 56))
then Result.fail Error.panic
else
do
let x ← HashMap.remove U64 hm4 (Usize.ofInt 1024)
match x with
| Option.none => Result.fail Error.panic
| Option.some x0 =>
if not (x0 = (U64.ofInt 56))
then Result.fail Error.panic
else
do
let hm5 ← HashMap.remove_back U64 hm4 (Usize.ofInt 1024)
let i1 ← HashMap.get U64 hm5 (Usize.ofInt 0)
if not (i1 = (U64.ofInt 42))
then Result.fail Error.panic
else
do
let i2 ← HashMap.get U64 hm5 (Usize.ofInt 128)
if not (i2 = (U64.ofInt 18))
then Result.fail Error.panic
else
do
let i3 ← HashMap.get U64 hm5 (Usize.ofInt 1056)
if not (i3 = (U64.ofInt 256))
then Result.fail Error.panic
else Result.ret ()
/- Unit test for [hashmap::test1] -/
#assert (test1 == .ret ())
end hashmap
|