summaryrefslogtreecommitdiff
path: root/tests/hol4/paper/paperTheory.sig
blob: 2da80da108317f066dd5e6292add4826257bd2e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
signature paperTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val call_choose_fwd_def : thm
    val choose_back_def : thm
    val choose_fwd_def : thm
    val list_nth_mut_back_def : thm
    val list_nth_mut_fwd_def : thm
    val list_t_TY_DEF : thm
    val list_t_case_def : thm
    val list_t_size_def : thm
    val ref_incr_fwd_back_def : thm
    val sum_fwd_def : thm
    val test_choose_fwd_def : thm
    val test_incr_fwd_def : thm
    val test_nth_fwd_def : thm
  
  (*  Theorems  *)
    val datatype_list_t : thm
    val list_t_11 : thm
    val list_t_Axiom : thm
    val list_t_case_cong : thm
    val list_t_case_eq : thm
    val list_t_distinct : thm
    val list_t_induction : thm
    val list_t_nchotomy : thm
  
  val paper_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [divDef] Parent theory of "paper"
   
   [call_choose_fwd_def]  Definition
      
      ⊢ ∀p. call_choose_fwd p =
            (let
               (px,py) = p
             in
               do
                 pz <- choose_fwd T px py;
                 pz0 <- u32_add pz (int_to_u32 1);
                 (px0,_) <- choose_back T px py pz0;
                 Return px0
               od)
   
   [choose_back_def]  Definition
      
      ⊢ ∀b x y ret.
          choose_back b x y ret =
          if b then Return (ret,y) else Return (x,ret)
   
   [choose_fwd_def]  Definition
      
      ⊢ ∀b x y. choose_fwd b x y = if b then Return x else Return y
   
   [list_nth_mut_back_def]  Definition
      
      ⊢ ∀l i ret.
          list_nth_mut_back l i ret =
          case l of
            ListCons x tl =>
              if i = int_to_u32 0 then Return (ListCons ret tl)
              else
                do
                  i0 <- u32_sub i (int_to_u32 1);
                  tl0 <- list_nth_mut_back tl i0 ret;
                  Return (ListCons x tl0)
                od
          | ListNil => Fail Failure
   
   [list_nth_mut_fwd_def]  Definition
      
      ⊢ ∀l i.
          list_nth_mut_fwd l i =
          case l of
            ListCons x tl =>
              if i = int_to_u32 0 then Return x
              else
                do
                  i0 <- u32_sub i (int_to_u32 1);
                  list_nth_mut_fwd tl i0
                od
          | ListNil => Fail Failure
   
   [list_t_TY_DEF]  Definition
      
      ⊢ ∃rep.
          TYPE_DEFINITION
            (λa0'.
                 ∀ $var$('list_t').
                   (∀a0'.
                      (∃a0 a1.
                         a0' =
                         (λa0 a1.
                              ind_type$CONSTR 0 a0
                                (ind_type$FCONS a1 (λn. ind_type$BOTTOM)))
                           a0 a1 ∧ $var$('list_t') a1) ∨
                      a0' =
                      ind_type$CONSTR (SUC 0) ARB (λn. ind_type$BOTTOM) ⇒
                      $var$('list_t') a0') ⇒
                   $var$('list_t') a0') rep
   
   [list_t_case_def]  Definition
      
      ⊢ (∀a0 a1 f v. list_t_CASE (ListCons a0 a1) f v = f a0 a1) ∧
        ∀f v. list_t_CASE ListNil f v = v
   
   [list_t_size_def]  Definition
      
      ⊢ (∀f a0 a1.
           list_t_size f (ListCons a0 a1) = 1 + (f a0 + list_t_size f a1)) ∧
        ∀f. list_t_size f ListNil = 0
   
   [ref_incr_fwd_back_def]  Definition
      
      ⊢ ∀x. ref_incr_fwd_back x = i32_add x (int_to_i32 1)
   
   [sum_fwd_def]  Definition
      
      ⊢ ∀l. sum_fwd l =
            case l of
              ListCons x tl => do i <- sum_fwd tl; i32_add x i od
            | ListNil => Return (int_to_i32 0)
   
   [test_choose_fwd_def]  Definition
      
      ⊢ test_choose_fwd =
        do
          z <- choose_fwd T (int_to_i32 0) (int_to_i32 0);
          z0 <- i32_add z (int_to_i32 1);
          if z0 ≠ int_to_i32 1 then Fail Failure
          else
            do
              (x,y) <- choose_back T (int_to_i32 0) (int_to_i32 0) z0;
              if x ≠ int_to_i32 1 then Fail Failure
              else if y ≠ int_to_i32 0 then Fail Failure
              else Return ()
            od
        od
   
   [test_incr_fwd_def]  Definition
      
      ⊢ test_incr_fwd =
        do
          x <- ref_incr_fwd_back (int_to_i32 0);
          if x ≠ int_to_i32 1 then Fail Failure else Return ()
        od
   
   [test_nth_fwd_def]  Definition
      
      ⊢ test_nth_fwd =
        (let
           l = ListNil;
           l0 = ListCons (int_to_i32 3) l;
           l1 = ListCons (int_to_i32 2) l0
         in
           do
             x <-
               list_nth_mut_fwd (ListCons (int_to_i32 1) l1) (int_to_u32 2);
             x0 <- i32_add x (int_to_i32 1);
             l2 <-
               list_nth_mut_back (ListCons (int_to_i32 1) l1)
                 (int_to_u32 2) x0;
             i <- sum_fwd l2;
             if i ≠ int_to_i32 7 then Fail Failure else Return ()
           od)
   
   [datatype_list_t]  Theorem
      
      ⊢ DATATYPE (list_t ListCons ListNil)
   
   [list_t_11]  Theorem
      
      ⊢ ∀a0 a1 a0' a1'.
          ListCons a0 a1 = ListCons a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
   
   [list_t_Axiom]  Theorem
      
      ⊢ ∀f0 f1. ∃fn.
          (∀a0 a1. fn (ListCons a0 a1) = f0 a0 a1 (fn a1)) ∧
          fn ListNil = f1
   
   [list_t_case_cong]  Theorem
      
      ⊢ ∀M M' f v.
          M = M' ∧ (∀a0 a1. M' = ListCons a0 a1 ⇒ f a0 a1 = f' a0 a1) ∧
          (M' = ListNil ⇒ v = v') ⇒
          list_t_CASE M f v = list_t_CASE M' f' v'
   
   [list_t_case_eq]  Theorem
      
      ⊢ list_t_CASE x f v = v' ⇔
        (∃t l. x = ListCons t l ∧ f t l = v') ∨ x = ListNil ∧ v = v'
   
   [list_t_distinct]  Theorem
      
      ⊢ ∀a1 a0. ListCons a0 a1 ≠ ListNil
   
   [list_t_induction]  Theorem
      
      ⊢ ∀P. (∀l. P l ⇒ ∀t. P (ListCons t l)) ∧ P ListNil ⇒ ∀l. P l
   
   [list_t_nchotomy]  Theorem
      
      ⊢ ∀ll. (∃t l. ll = ListCons t l) ∨ ll = ListNil
   
   
*)
end