blob: 287ad5f5e817112e154d0f124de405436c8b489d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
signature constantsTheory =
sig
type thm = Thm.thm
(* Definitions *)
val add_fwd_def : thm
val get_z1_fwd_def : thm
val get_z1_z1_body_def : thm
val get_z1_z1_c_def : thm
val get_z2_fwd_def : thm
val incr_fwd_def : thm
val mk_pair0_fwd_def : thm
val mk_pair1_fwd_def : thm
val p0_body_def : thm
val p0_c_def : thm
val p1_body_def : thm
val p1_c_def : thm
val p2_body_def : thm
val p2_c_def : thm
val p3_body_def : thm
val p3_c_def : thm
val pair_t_TY_DEF : thm
val pair_t_case_def : thm
val pair_t_pair_x : thm
val pair_t_pair_x_fupd : thm
val pair_t_pair_y : thm
val pair_t_pair_y_fupd : thm
val pair_t_size_def : thm
val q1_body_def : thm
val q1_c_def : thm
val q2_body_def : thm
val q2_c_def : thm
val q3_body_def : thm
val q3_c_def : thm
val s1_body_def : thm
val s1_c_def : thm
val s2_body_def : thm
val s2_c_def : thm
val s3_body_def : thm
val s3_c_def : thm
val s4_body_def : thm
val s4_c_def : thm
val unwrap_y_fwd_def : thm
val wrap_new_fwd_def : thm
val wrap_t_TY_DEF : thm
val wrap_t_case_def : thm
val wrap_t_size_def : thm
val wrap_t_wrap_val : thm
val wrap_t_wrap_val_fupd : thm
val x0_body_def : thm
val x0_c_def : thm
val x1_body_def : thm
val x1_c_def : thm
val x2_body_def : thm
val x2_c_def : thm
val x3_body_def : thm
val x3_c_def : thm
val y_body_def : thm
val y_c_def : thm
val yval_body_def : thm
val yval_c_def : thm
(* Theorems *)
val EXISTS_pair_t : thm
val EXISTS_wrap_t : thm
val FORALL_pair_t : thm
val FORALL_wrap_t : thm
val datatype_pair_t : thm
val datatype_wrap_t : thm
val pair_t_11 : thm
val pair_t_Axiom : thm
val pair_t_accessors : thm
val pair_t_accfupds : thm
val pair_t_case_cong : thm
val pair_t_case_eq : thm
val pair_t_component_equality : thm
val pair_t_fn_updates : thm
val pair_t_fupdcanon : thm
val pair_t_fupdcanon_comp : thm
val pair_t_fupdfupds : thm
val pair_t_fupdfupds_comp : thm
val pair_t_induction : thm
val pair_t_literal_11 : thm
val pair_t_literal_nchotomy : thm
val pair_t_nchotomy : thm
val pair_t_updates_eq_literal : thm
val wrap_t_11 : thm
val wrap_t_Axiom : thm
val wrap_t_accessors : thm
val wrap_t_accfupds : thm
val wrap_t_case_cong : thm
val wrap_t_case_eq : thm
val wrap_t_component_equality : thm
val wrap_t_fn_updates : thm
val wrap_t_fupdfupds : thm
val wrap_t_fupdfupds_comp : thm
val wrap_t_induction : thm
val wrap_t_literal_11 : thm
val wrap_t_literal_nchotomy : thm
val wrap_t_nchotomy : thm
val wrap_t_updates_eq_literal : thm
val constants_grammars : type_grammar.grammar * term_grammar.grammar
(*
[divDef] Parent theory of "constants"
[add_fwd_def] Definition
⊢ ∀a b. add_fwd a b = i32_add a b
[get_z1_fwd_def] Definition
⊢ get_z1_fwd = Return get_z1_z1_c
[get_z1_z1_body_def] Definition
⊢ get_z1_z1_body = Return (int_to_i32 3)
[get_z1_z1_c_def] Definition
⊢ get_z1_z1_c = get_return_value get_z1_z1_body
[get_z2_fwd_def] Definition
⊢ get_z2_fwd =
do i <- get_z1_fwd; i0 <- add_fwd i q3_c; add_fwd q1_c i0 od
[incr_fwd_def] Definition
⊢ ∀n. incr_fwd n = u32_add n (int_to_u32 1)
[mk_pair0_fwd_def] Definition
⊢ ∀x y. mk_pair0_fwd x y = Return (x,y)
[mk_pair1_fwd_def] Definition
⊢ ∀x y. mk_pair1_fwd x y = Return <|pair_x := x; pair_y := y|>
[p0_body_def] Definition
⊢ p0_body = mk_pair0_fwd (int_to_u32 0) (int_to_u32 1)
[p0_c_def] Definition
⊢ p0_c = get_return_value p0_body
[p1_body_def] Definition
⊢ p1_body = mk_pair1_fwd (int_to_u32 0) (int_to_u32 1)
[p1_c_def] Definition
⊢ p1_c = get_return_value p1_body
[p2_body_def] Definition
⊢ p2_body = Return (int_to_u32 0,int_to_u32 1)
[p2_c_def] Definition
⊢ p2_c = get_return_value p2_body
[p3_body_def] Definition
⊢ p3_body = Return <|pair_x := int_to_u32 0; pair_y := int_to_u32 1|>
[p3_c_def] Definition
⊢ p3_c = get_return_value p3_body
[pair_t_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0'.
∀ $var$('pair_t').
(∀a0'.
(∃a0 a1.
a0' =
(λa0 a1.
ind_type$CONSTR 0 (a0,a1)
(λn. ind_type$BOTTOM)) a0 a1) ⇒
$var$('pair_t') a0') ⇒
$var$('pair_t') a0') rep
[pair_t_case_def] Definition
⊢ ∀a0 a1 f. pair_t_CASE (pair_t a0 a1) f = f a0 a1
[pair_t_pair_x] Definition
⊢ ∀t t0. (pair_t t t0).pair_x = t
[pair_t_pair_x_fupd] Definition
⊢ ∀f t t0. pair_t t t0 with pair_x updated_by f = pair_t (f t) t0
[pair_t_pair_y] Definition
⊢ ∀t t0. (pair_t t t0).pair_y = t0
[pair_t_pair_y_fupd] Definition
⊢ ∀f t t0. pair_t t t0 with pair_y updated_by f = pair_t t (f t0)
[pair_t_size_def] Definition
⊢ ∀f f1 a0 a1. pair_t_size f f1 (pair_t a0 a1) = 1 + (f a0 + f1 a1)
[q1_body_def] Definition
⊢ q1_body = Return (int_to_i32 5)
[q1_c_def] Definition
⊢ q1_c = get_return_value q1_body
[q2_body_def] Definition
⊢ q2_body = Return q1_c
[q2_c_def] Definition
⊢ q2_c = get_return_value q2_body
[q3_body_def] Definition
⊢ q3_body = add_fwd q2_c (int_to_i32 3)
[q3_c_def] Definition
⊢ q3_c = get_return_value q3_body
[s1_body_def] Definition
⊢ s1_body = Return (int_to_u32 6)
[s1_c_def] Definition
⊢ s1_c = get_return_value s1_body
[s2_body_def] Definition
⊢ s2_body = incr_fwd s1_c
[s2_c_def] Definition
⊢ s2_c = get_return_value s2_body
[s3_body_def] Definition
⊢ s3_body = Return p3_c
[s3_c_def] Definition
⊢ s3_c = get_return_value s3_body
[s4_body_def] Definition
⊢ s4_body = mk_pair1_fwd (int_to_u32 7) (int_to_u32 8)
[s4_c_def] Definition
⊢ s4_c = get_return_value s4_body
[unwrap_y_fwd_def] Definition
⊢ unwrap_y_fwd = Return y_c.wrap_val
[wrap_new_fwd_def] Definition
⊢ ∀val. wrap_new_fwd val = Return <|wrap_val := val|>
[wrap_t_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0.
∀ $var$('wrap_t').
(∀a0.
(∃a. a0 =
(λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM))
a) ⇒
$var$('wrap_t') a0) ⇒
$var$('wrap_t') a0) rep
[wrap_t_case_def] Definition
⊢ ∀a f. wrap_t_CASE (wrap_t a) f = f a
[wrap_t_size_def] Definition
⊢ ∀f a. wrap_t_size f (wrap_t a) = 1 + f a
[wrap_t_wrap_val] Definition
⊢ ∀t. (wrap_t t).wrap_val = t
[wrap_t_wrap_val_fupd] Definition
⊢ ∀f t. wrap_t t with wrap_val updated_by f = wrap_t (f t)
[x0_body_def] Definition
⊢ x0_body = Return (int_to_u32 0)
[x0_c_def] Definition
⊢ x0_c = get_return_value x0_body
[x1_body_def] Definition
⊢ x1_body = Return core_u32_max
[x1_c_def] Definition
⊢ x1_c = get_return_value x1_body
[x2_body_def] Definition
⊢ x2_body = Return (int_to_u32 3)
[x2_c_def] Definition
⊢ x2_c = get_return_value x2_body
[x3_body_def] Definition
⊢ x3_body = incr_fwd (int_to_u32 32)
[x3_c_def] Definition
⊢ x3_c = get_return_value x3_body
[y_body_def] Definition
⊢ y_body = wrap_new_fwd (int_to_i32 2)
[y_c_def] Definition
⊢ y_c = get_return_value y_body
[yval_body_def] Definition
⊢ yval_body = unwrap_y_fwd
[yval_c_def] Definition
⊢ yval_c = get_return_value yval_body
[EXISTS_pair_t] Theorem
⊢ ∀P. (∃p. P p) ⇔ ∃t0 t. P <|pair_x := t0; pair_y := t|>
[EXISTS_wrap_t] Theorem
⊢ ∀P. (∃w. P w) ⇔ ∃u. P <|wrap_val := u|>
[FORALL_pair_t] Theorem
⊢ ∀P. (∀p. P p) ⇔ ∀t0 t. P <|pair_x := t0; pair_y := t|>
[FORALL_wrap_t] Theorem
⊢ ∀P. (∀w. P w) ⇔ ∀u. P <|wrap_val := u|>
[datatype_pair_t] Theorem
⊢ DATATYPE (record pair_t pair_x pair_y)
[datatype_wrap_t] Theorem
⊢ DATATYPE (record wrap_t wrap_val)
[pair_t_11] Theorem
⊢ ∀a0 a1 a0' a1'. pair_t a0 a1 = pair_t a0' a1' ⇔ a0 = a0' ∧ a1 = a1'
[pair_t_Axiom] Theorem
⊢ ∀f. ∃fn. ∀a0 a1. fn (pair_t a0 a1) = f a0 a1
[pair_t_accessors] Theorem
⊢ (∀t t0. (pair_t t t0).pair_x = t) ∧
∀t t0. (pair_t t t0).pair_y = t0
[pair_t_accfupds] Theorem
⊢ (∀p f. (p with pair_y updated_by f).pair_x = p.pair_x) ∧
(∀p f. (p with pair_x updated_by f).pair_y = p.pair_y) ∧
(∀p f. (p with pair_x updated_by f).pair_x = f p.pair_x) ∧
∀p f. (p with pair_y updated_by f).pair_y = f p.pair_y
[pair_t_case_cong] Theorem
⊢ ∀M M' f.
M = M' ∧ (∀a0 a1. M' = pair_t a0 a1 ⇒ f a0 a1 = f' a0 a1) ⇒
pair_t_CASE M f = pair_t_CASE M' f'
[pair_t_case_eq] Theorem
⊢ pair_t_CASE x f = v ⇔ ∃t t0. x = pair_t t t0 ∧ f t t0 = v
[pair_t_component_equality] Theorem
⊢ ∀p1 p2. p1 = p2 ⇔ p1.pair_x = p2.pair_x ∧ p1.pair_y = p2.pair_y
[pair_t_fn_updates] Theorem
⊢ (∀f t t0. pair_t t t0 with pair_x updated_by f = pair_t (f t) t0) ∧
∀f t t0. pair_t t t0 with pair_y updated_by f = pair_t t (f t0)
[pair_t_fupdcanon] Theorem
⊢ ∀p g f.
p with <|pair_y updated_by f; pair_x updated_by g|> =
p with <|pair_x updated_by g; pair_y updated_by f|>
[pair_t_fupdcanon_comp] Theorem
⊢ (∀g f.
pair_y_fupd f ∘ pair_x_fupd g = pair_x_fupd g ∘ pair_y_fupd f) ∧
∀h g f.
pair_y_fupd f ∘ pair_x_fupd g ∘ h =
pair_x_fupd g ∘ pair_y_fupd f ∘ h
[pair_t_fupdfupds] Theorem
⊢ (∀p g f.
p with <|pair_x updated_by f; pair_x updated_by g|> =
p with pair_x updated_by f ∘ g) ∧
∀p g f.
p with <|pair_y updated_by f; pair_y updated_by g|> =
p with pair_y updated_by f ∘ g
[pair_t_fupdfupds_comp] Theorem
⊢ ((∀g f. pair_x_fupd f ∘ pair_x_fupd g = pair_x_fupd (f ∘ g)) ∧
∀h g f.
pair_x_fupd f ∘ pair_x_fupd g ∘ h = pair_x_fupd (f ∘ g) ∘ h) ∧
(∀g f. pair_y_fupd f ∘ pair_y_fupd g = pair_y_fupd (f ∘ g)) ∧
∀h g f. pair_y_fupd f ∘ pair_y_fupd g ∘ h = pair_y_fupd (f ∘ g) ∘ h
[pair_t_induction] Theorem
⊢ ∀P. (∀t t0. P (pair_t t t0)) ⇒ ∀p. P p
[pair_t_literal_11] Theorem
⊢ ∀t01 t1 t02 t2.
<|pair_x := t01; pair_y := t1|> = <|pair_x := t02; pair_y := t2|> ⇔
t01 = t02 ∧ t1 = t2
[pair_t_literal_nchotomy] Theorem
⊢ ∀p. ∃t0 t. p = <|pair_x := t0; pair_y := t|>
[pair_t_nchotomy] Theorem
⊢ ∀pp. ∃t t0. pp = pair_t t t0
[pair_t_updates_eq_literal] Theorem
⊢ ∀p t0 t.
p with <|pair_x := t0; pair_y := t|> =
<|pair_x := t0; pair_y := t|>
[wrap_t_11] Theorem
⊢ ∀a a'. wrap_t a = wrap_t a' ⇔ a = a'
[wrap_t_Axiom] Theorem
⊢ ∀f. ∃fn. ∀a. fn (wrap_t a) = f a
[wrap_t_accessors] Theorem
⊢ ∀t. (wrap_t t).wrap_val = t
[wrap_t_accfupds] Theorem
⊢ ∀w f. (w with wrap_val updated_by f).wrap_val = f w.wrap_val
[wrap_t_case_cong] Theorem
⊢ ∀M M' f.
M = M' ∧ (∀a. M' = wrap_t a ⇒ f a = f' a) ⇒
wrap_t_CASE M f = wrap_t_CASE M' f'
[wrap_t_case_eq] Theorem
⊢ wrap_t_CASE x f = v ⇔ ∃t. x = wrap_t t ∧ f t = v
[wrap_t_component_equality] Theorem
⊢ ∀w1 w2. w1 = w2 ⇔ w1.wrap_val = w2.wrap_val
[wrap_t_fn_updates] Theorem
⊢ ∀f t. wrap_t t with wrap_val updated_by f = wrap_t (f t)
[wrap_t_fupdfupds] Theorem
⊢ ∀w g f.
w with <|wrap_val updated_by f; wrap_val updated_by g|> =
w with wrap_val updated_by f ∘ g
[wrap_t_fupdfupds_comp] Theorem
⊢ (∀g f. wrap_val_fupd f ∘ wrap_val_fupd g = wrap_val_fupd (f ∘ g)) ∧
∀h g f.
wrap_val_fupd f ∘ wrap_val_fupd g ∘ h = wrap_val_fupd (f ∘ g) ∘ h
[wrap_t_induction] Theorem
⊢ ∀P. (∀t. P (wrap_t t)) ⇒ ∀w. P w
[wrap_t_literal_11] Theorem
⊢ ∀u1 u2. <|wrap_val := u1|> = <|wrap_val := u2|> ⇔ u1 = u2
[wrap_t_literal_nchotomy] Theorem
⊢ ∀w. ∃u. w = <|wrap_val := u|>
[wrap_t_nchotomy] Theorem
⊢ ∀ww. ∃t. ww = wrap_t t
[wrap_t_updates_eq_literal] Theorem
⊢ ∀w u. w with wrap_val := u = <|wrap_val := u|>
*)
end
|