1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
|
open primitivesLib primitivesArithTheory primitivesTheory listTheory ilistTheory hashmap_TypesTheory hashmap_FunsTheory
val _ = new_theory "hashmap_Properties"
val pairwise_rel_def = Define ‘
pairwise_rel p [] = T ∧
pairwise_rel p (x :: ls) = (EVERY (p x) ls ∧ pairwise_rel p ls)
’
(* TODO: move *)
Theorem EVERY_quant_equiv:
∀p ls. EVERY p ls ⇔ ∀i. 0 ≤ i ⇒ i < len ls ⇒ p (index i ls)
Proof
strip_tac >> Induct_on ‘ls’
>-(rw [EVERY_DEF] >> int_tac) >>
rw [EVERY_DEF, index_eq] >>
equiv_tac
>-(
rw [] >>
Cases_on ‘i = 0’ >> fs [] >>
first_x_assum irule >>
int_tac) >>
rw []
>-(
first_x_assum (qspec_assume ‘0’) >> fs [] >>
first_x_assum irule >>
qspec_assume ‘ls’ len_pos >>
int_tac) >>
first_x_assum (qspec_assume ‘i + 1’) >>
fs [] >>
sg ‘i + 1 ≠ 0 ∧ i + 1 - 1 = i’ >- int_tac >> fs [] >>
first_x_assum irule >> int_tac
QED
(* TODO: move *)
Theorem pairwise_rel_quant_equiv:
∀p ls. pairwise_rel p ls ⇔
(∀i j. 0 ≤ i ⇒ i < j ⇒ j < len ls ⇒ p (index i ls) (index j ls))
Proof
strip_tac >> Induct_on ‘ls’
>-(rw [pairwise_rel_def] >> int_tac) >>
rw [pairwise_rel_def] >>
equiv_tac
>-(
(* ==> *)
rw [] >>
sg ‘0 < j’ >- int_tac >>
Cases_on ‘i = 0’
>-(
simp [index_eq] >>
qspecl_assume [‘p h’, ‘ls’] (iffLR EVERY_quant_equiv) >>
first_x_assum irule >> fs [] >> int_tac
) >>
rw [index_eq] >>
first_x_assum irule >> int_tac
) >>
(* <== *)
rw []
>-(
rw [EVERY_quant_equiv] >>
first_x_assum (qspecl_assume [‘0’, ‘i + 1’]) >>
sg ‘0 < i + 1 ∧ i + 1 - 1 = i’ >- int_tac >>
fs [index_eq] >>
first_x_assum irule >> int_tac
) >>
sg ‘pairwise_rel p ls’
>-(
rw [pairwise_rel_def] >>
first_x_assum (qspecl_assume [‘i' + 1’, ‘j' + 1’]) >>
sg ‘0 < i' + 1 ∧ 0 < j' + 1’ >- int_tac >>
fs [index_eq, int_add_minus_same_eq] >>
first_x_assum irule >> int_tac
) >>
fs []
QED
(* TODO: the context tends to quickly saturate. In particular:
- sg_prove_premise_tac leaves the proven assumption in the context, while it shouldn't
- maybe massage shouldn't leave the introduced inequalities in the context: it is very noisy.
For instance, int_tac could introduce those inequalities.
*)
Type key_t = “:usize”
val distinct_keys_def = Define ‘
distinct_keys (ls : (key_t # 't) list) =
pairwise_rel (\x y. FST x ≠ FST y) ls
’
(* Conversion from “:list_t” to “:list” *)
Definition list_t_v_def:
(list_t_v (ListNil : 't list_t) : (key_t # 't) list = []) /\
(list_t_v (ListCons k v tl) = (k, v) :: list_t_v tl)
End
val _ = export_rewrites ["list_t_v_def"]
(* Invariants *)
(* TODO: add to srw_ss *)
Definition lookup_def:
lookup key [] = NONE /\
lookup key ((k, v) :: ls) =
if k = key then SOME v else lookup key ls
End
val _ = export_rewrites ["lookup_def"]
Definition slot_t_lookup_def:
slot_t_lookup key ls = lookup key (list_t_v ls)
End
val _ = export_rewrites ["slot_t_lookup_def"]
Definition remove_def:
remove key [] = [] ∧
remove key ((k, v) :: ls) =
if k = key then ls else (k, v) :: remove key ls
End
val _ = export_rewrites ["remove_def"]
Definition slot_t_remove_def:
slot_t_remove key ls = remove key (list_t_v ls)
End
val _ = export_rewrites ["slot_t_remove_def"]
Definition hash_mod_key_def:
hash_mod_key k (l : int) : int =
case hash_key_fwd k of
| Return k => usize_to_int k % l
| _ => ARB
End
val _ = export_rewrites ["hashmap_Funs.hash_key_fwd_def", "hash_mod_key_def"]
val _ = export_rewrites ["primitives.mem_replace_fwd_def", "primitives.mem_replace_back_def"]
Definition slot_s_inv_hash_def:
slot_s_inv_hash (l : int) (i : int) (ls : (key_t # 'b) list) : bool =
∀ k v. MEM (k, v) ls ⇒ hash_mod_key k l = i
End
val _ = export_rewrites ["slot_s_inv_hash_def"]
Definition slot_s_inv_def:
slot_s_inv (l : int) (i : int) (ls : (key_t # 'b) list) : bool = (
distinct_keys ls ∧
slot_s_inv_hash l i ls
)
End
val _ = export_rewrites ["slot_s_inv_def"]
(* TODO: try with this invariant:
Definition slot_s_inv_def:a
slot_s_inv (i : int) (ls : (key_t # 'b) list) : bool =
(∀ k. lookup k ls ≠ NONE ⇒ lookup k (remove k ls) = NONE) ∧
(∀ k v. MEM (k, v) ls ⇒
∃ hk. hash_key_fwd k = Return hk ⇒
usize_to_int hk = i)
)
End
*)
Definition slot_t_inv_def:
slot_t_inv (l : int) (i : int) (s : 't list_t) = slot_s_inv l i (list_t_v s)
End
(* Representation function of the hash map as a list of slots *)
Definition hash_map_t_v_def:
hash_map_t_v (hm : 't hash_map_t) : (key_t # 't) list list =
MAP list_t_v (vec_to_list hm.hash_map_slots)
End
(* Representation function of the hash map as an associative list *)
Definition hash_map_t_al_v_def:
hash_map_t_al_v (hm : 't hash_map_t) : (key_t # 't) list = FLAT (hash_map_t_v hm)
End
Definition slots_s_inv_def:
slots_s_inv (s : 'a list_t list) =
∀ (i : int). 0 ≤ i ⇒ i < len s ⇒ slot_t_inv (len s) i (index i s)
End
val _ = export_rewrites ["slots_s_inv_def"]
Definition slots_t_inv_def:
slots_t_inv (s : 'a list_t vec) = slots_s_inv (vec_to_list s)
End
Definition hash_map_t_base_inv_def:
hash_map_t_base_inv (hm : 't hash_map_t) =
let al = hash_map_t_al_v hm in
(* [num_entries] correctly tracks the number of entries in the table *)
usize_to_int hm.hash_map_num_entries = len al /\
(* Slots invariant *)
slots_t_inv hm.hash_map_slots ∧
(* The capacity must be > 0 (otherwise we can't resize, because when we
resize we multiply the capacity by two) *)
(* TODO: write it as 0 < ... *)
len (vec_to_list hm.hash_map_slots) > 0 ∧
(* Load computation *)
(let capacity = len (vec_to_list hm.hash_map_slots) in
let (dividend, divisor) = hm.hash_map_max_load_factor in
let dividend = usize_to_int dividend in
let divisor = usize_to_int divisor in
0 < dividend /\ dividend < divisor /\
capacity * dividend >= divisor /\
usize_to_int (hm.hash_map_max_load) = (capacity * dividend) / divisor
)
End
(* The invariant that we reveal to the user.
The conditions about the hash map load factor are a overkill, but we
want to see how the non-linear arithmetic proofs go.
*)
Definition hash_map_t_inv_def:
hash_map_t_inv (hm : 't hash_map_t) : bool = (
(* Base invariant *)
hash_map_t_base_inv hm /\
(* The hash map is either: not overloaded, or we can't resize it *)
(let (dividend, divisor) = hm.hash_map_max_load_factor in
(usize_to_int hm.hash_map_num_entries <= usize_to_int hm.hash_map_max_load) ∨
(len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int dividend > usize_max)
)
)
End
(* The specification functions that we reveal in the top-level theorems *)
Definition len_s_def:
len_s hm = len (hash_map_t_al_v hm)
End
Definition slots_t_lookup_def:
slots_t_lookup (s : 't list_t list) (k : key_t) : 't option =
let i = hash_mod_key k (len s) in
let slot = index i s in
slot_t_lookup k slot
End
Definition lookup_s_def:
lookup_s (hm : 't hash_map_t) (k : key_t) : 't option =
slots_t_lookup (vec_to_list hm.hash_map_slots) k
End
Definition hash_map_same_params_def:
hash_map_same_params hm hm1 = (
hm1.hash_map_max_load_factor = hm.hash_map_max_load_factor ∧
hm1.hash_map_max_load = hm.hash_map_max_load ∧
len (vec_to_list hm1.hash_map_slots) = len (vec_to_list hm.hash_map_slots)
)
End
Theorem hash_map_same_params_refl:
∀ hm. hash_map_same_params hm hm
Proof
fs [hash_map_same_params_def]
QED
val _ = export_rewrites ["hash_map_same_params_refl"]
(*============================================================================*
*============================================================================*
* Proofs
*============================================================================*
*============================================================================*)
(*============================================================================*
* New
*============================================================================*)
Theorem hash_map_allocate_slots_loop_fwd_spec:
∀ slots n.
EVERY (\x. x = ListNil) (vec_to_list slots) ⇒
len (vec_to_list slots) + usize_to_int n ≤ usize_max ⇒
∃ nslots. hash_map_allocate_slots_loop_fwd slots n = Return nslots ∧
len (vec_to_list nslots) = len (vec_to_list slots) + usize_to_int n ∧
EVERY (\x. x = ListNil) (vec_to_list nslots)
Proof
(* TODO: induction principle for usize, etc. *)
Induct_on ‘usize_to_int n’ >> rw [] >> massage >- int_tac >>
pure_once_rewrite_tac [hash_map_allocate_slots_loop_fwd_def] >>
fs [usize_gt_def] >> massage >> fs [] >>
(* TODO: would be good to simply use progress here *)
case_tac
>-(
sg ‘len (vec_to_list slots) ≤ usize_max’ >- int_tac >>
(* TODO: massage needs to know that len is >= 0 *)
qspec_assume ‘vec_to_list slots’ len_pos >>
progress >- (
fs [vec_len_def] >>
massage >>
int_tac) >>
progress >>
gvs [] >>
(* TODO: progress doesn't work here *)
last_x_assum (qspec_assume ‘a'’) >>
massage >> gvs [] >>
sg ‘v = usize_to_int n - 1’ >- int_tac >> fs [] >>
(* *)
progress >>
fs [vec_len_def] >>
int_tac
) >>
fs [] >>
int_tac
QED
val _ = save_spec_thm "hash_map_allocate_slots_loop_fwd_spec"
Theorem hash_map_allocate_slots_fwd_spec:
∀ n.
usize_to_int n ≤ usize_max ⇒
∃ slots. hash_map_allocate_slots_fwd vec_new n = Return slots ∧
slots_t_inv slots ∧
len (vec_to_list slots) = usize_to_int n ∧
EVERY (\x. x = ListNil) (vec_to_list slots)
Proof
rw [] >>
pure_once_rewrite_tac [hash_map_allocate_slots_fwd_def] >>
progress >> gvs [slots_t_inv_def] >>
rw [slot_t_inv_def]
>- fs [EVERY_quant_equiv, distinct_keys_def, pairwise_rel_def] >>
fs [EVERY_quant_equiv] >>
qpat_assum ‘∀i. _’ sg_dep_rewrite_all_tac >> gvs []
QED
val _ = save_spec_thm "hash_map_allocate_slots_fwd_spec"
(* Auxiliary lemma *)
Theorem FLAT_ListNil_is_nil:
EVERY (λx. x = ListNil) ls ⇒ FLAT (MAP list_t_v ls) = []
Proof
Induct_on ‘ls’ >> fs []
QED
Theorem hash_map_new_with_capacity_fwd_spec:
∀ capacity max_load_dividend max_load_divisor.
0 < usize_to_int max_load_dividend ⇒
usize_to_int max_load_dividend < usize_to_int max_load_divisor ⇒
0 < usize_to_int capacity ⇒
usize_to_int capacity * usize_to_int max_load_dividend >= usize_to_int max_load_divisor ⇒
usize_to_int capacity * usize_to_int max_load_dividend <= usize_max ⇒
∃ hm. hash_map_new_with_capacity_fwd capacity max_load_dividend max_load_divisor = Return hm ∧
hash_map_t_inv hm ∧
len_s hm = 0 ∧
∀ k. lookup_s hm k = NONE ∧
len (vec_to_list hm.hash_map_slots) = usize_to_int capacity ∧
hm.hash_map_max_load_factor = (max_load_dividend,max_load_divisor)
Proof
rw [] >> fs [hash_map_new_with_capacity_fwd_def] >>
progress >>
progress >>
progress >>
gvs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
rw []
>-(massage >> sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs [])
>-(int_tac)
>-(massage >> metis_tac [])
>-(fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
sg_dep_rewrite_goal_tac FLAT_ListNil_is_nil >> fs []) >>
fs [lookup_s_def, slots_t_lookup_def] >>
fs [EVERY_quant_equiv] >>
(* TODO: sg_dep_rewrite_goal_tac does weird things here *)
first_x_assum (qspec_assume ‘hash_mod_key k (usize_to_int capacity)’) >>
first_x_assum sg_premise_tac
>- (
fs [] >>
massage >>
irule pos_mod_pos_is_pos >> fs []) >>
first_x_assum sg_premise_tac
>-(
fs [] >>
massage >>
irule pos_mod_pos_lt >> fs []
) >>
fs []
QED
val _ = save_spec_thm "hash_map_new_with_capacity_fwd_spec"
Theorem hash_map_new_fwd_spec:
∃ hm. hash_map_new_fwd = Return hm ∧
hash_map_t_inv hm ∧
∀ k. lookup_s hm k = NONE ∧
len_s hm = 0
Proof
pure_rewrite_tac [hash_map_new_fwd_def] >>
progress >> massage >> fs [] >>
assume_tac usize_bounds >> fs [u16_max_def] >>
int_tac
QED
val _ = save_spec_thm "hash_map_new_fwd_spec"
(*============================================================================*
* Clear
*============================================================================*)
(* [clear]: the loop doesn't fail and simply clears the slots starting at index i *)
Theorem hash_map_clear_loop_fwd_back_spec_aux:
∀ n slots i.
(* Small trick to make the induction work well *)
n = len (vec_to_list slots) - usize_to_int i ⇒
∃ slots1. hash_map_clear_loop_fwd_back slots i = Return slots1 ∧
len (vec_to_list slots1) = len (vec_to_list slots) ∧
(* The slots before i are left unchanged *)
(∀ j. 0 ≤ j ⇒ j < usize_to_int i ⇒
j < len (vec_to_list slots) ⇒
index j (vec_to_list slots1) = index j (vec_to_list slots)) ∧
(* The slots after i are set to ListNil *)
(∀ j. usize_to_int i ≤ j ⇒ j < len (vec_to_list slots) ⇒
index j (vec_to_list slots1) = ListNil)
Proof
(* TODO: induction principle for usize, etc. *)
Induct_on ‘n’ >> rw [] >>
pure_once_rewrite_tac [hash_map_clear_loop_fwd_back_def] >>
fs [usize_lt_def, vec_len_def] >>
(* TODO: automate that *)
qspec_assume ‘slots’ vec_len_spec >> massage
>-(case_tac >> rw [] >> int_tac)
>-(rw [] >> int_tac) >>
case_tac
>-(
(* usize_to_int i < len (vec_to_list slots) *)
progress >>
progress >> massage >- int_tac >>
qspecl_assume [‘slots’, ‘i’, ‘ListNil’] vec_update_eq >> fs [] >>
progress >> rw []
>-(
(* Use the induction hypothesis *)
last_x_assum (qspec_assume ‘j’) >> gvs [] >>
sg ‘j < usize_to_int i + 1’ >- int_tac >> gvs [] >>
(* Use the vec_update eq *)
last_x_assum (qspec_assume ‘int_to_usize j’) >> gvs [vec_len_def] >> massage >>
gvs [] >>
sg ‘j ≠ usize_to_int i’ >- int_tac >>
fs [vec_index_def] >>
massage) >>
Cases_on ‘usize_to_int i = j’ >> fs [vec_index_def] >>
first_x_assum (qspec_assume ‘j’) >> gvs [] >>
sg ‘usize_to_int i + 1 ≤ j’ >- int_tac >> gvs [])
>>
rw [] >>
int_tac
QED
Theorem hash_map_clear_loop_fwd_back_spec:
∀ slots.
∃ slots1. hash_map_clear_loop_fwd_back slots (int_to_usize 0) = Return slots1 ∧
len (vec_to_list slots1) = len (vec_to_list slots) ∧
(* All the slots are set to ListNil *)
(∀ j. 0 ≤ j ⇒ j < len (vec_to_list slots) ⇒
index j (vec_to_list slots1) = ListNil) ∧
(* The map is empty *)
(FLAT (MAP list_t_v (vec_to_list slots1)) = [])
Proof
rw [] >>
qspecl_assume [‘len (vec_to_list slots) − 0’, ‘slots’, ‘int_to_usize 0’]
hash_map_clear_loop_fwd_back_spec_aux >>
massage >> fs [] >>
irule FLAT_ListNil_is_nil >>
fs [EVERY_quant_equiv]
QED
val _ = save_spec_thm "hash_map_clear_loop_fwd_back_spec"
Theorem hash_map_clear_fwd_back_spec:
∀ hm.
hash_map_t_inv hm ⇒
∃ hm1. hash_map_clear_fwd_back hm = Return hm1 ∧
hash_map_t_inv hm1 ∧
len_s hm1 = 0 ∧
(∀ k. lookup_s hm1 k = NONE)
Proof
rw [hash_map_clear_fwd_back_def] >>
progress >>
fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def, lookup_s_def] >>
fs [slots_t_lookup_def] >> rw []
>-((* Prove that the invariant is preserved *)
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
massage >> fs [] >>
conj_tac
>-(
fs [slots_t_inv_def] >>
rw [slot_t_inv_def, distinct_keys_def, pairwise_rel_def]) >>
Cases_on ‘hm.hash_map_max_load_factor’ >> gvs [] >>
disj1_tac >>
irule pos_div_pos_is_pos >>
int_tac) >>
fs [] >>
(* TODO: would like to do: qpat_assum ‘∀j. _’ sg_dep_rewrite_goal_tac >> *)
first_x_assum (qspec_assume ‘usize_to_int k % len (vec_to_list hm.hash_map_slots)’) >>
fs [] >>
(* TODO: automate that *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >>
qspecl_assume [‘usize_to_int k’, ‘len (vec_to_list hm.hash_map_slots)’] integerTheory.INT_MOD_BOUNDS >>
sg ‘len (vec_to_list hm.hash_map_slots) ≠ 0’
>-(fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
fs [] >>
sg ‘~(len (vec_to_list hm.hash_map_slots) < 0)’ >- int_tac >>
fs []
QED
val _ = save_spec_thm "hash_map_clear_fwd_back_spec"
(*============================================================================*
* Len
*============================================================================*)
Theorem hash_map_len_spec:
∀ hm.
hash_map_t_base_inv hm ⇒
∃ x. hash_map_len_fwd hm = Return x ∧
usize_to_int x = len_s hm
Proof
rw [hash_map_len_fwd_def, hash_map_t_inv_def, hash_map_t_base_inv_def, len_s_def]
QED
val _ = save_spec_thm "hash_map_len_spec"
(*============================================================================*
* Insert
*============================================================================*)
Theorem hash_map_insert_in_list_loop_fwd_spec:
!ls key value.
∃ b. hash_map_insert_in_list_loop_fwd key value ls = Return b ∧
(b ⇔ slot_t_lookup key ls = NONE)
Proof
Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_insert_in_list_loop_fwd_def] >>
fs [] >>
rw []
QED
val _ = save_spec_thm "hash_map_insert_in_list_loop_fwd_spec"
Theorem hash_map_insert_in_list_fwd_spec:
!ls key value.
∃ b. hash_map_insert_in_list_fwd key value ls = Return b ∧
(b ⇔ slot_t_lookup key ls = NONE)
Proof
rw [hash_map_insert_in_list_fwd_def] >> progress >> fs []
QED
val _ = save_spec_thm "hash_map_insert_in_list_fwd_spec"
(* Lemma about ‘hash_map_insert_in_list_loop_back’, without the invariant *)
Theorem hash_map_insert_in_list_loop_back_spec_aux:
!ls key value.
∃ ls1. hash_map_insert_in_list_loop_back key value ls = Return ls1 ∧
(* We updated the binding for key *)
slot_t_lookup key ls1 = SOME value /\
(* The other bindings are left unchanged *)
(!k. k <> key ==> slot_t_lookup k ls = slot_t_lookup k ls1) ∧
(* We preserve part of the key invariant *)
(∀ l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ==> slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls1)) ∧
(* Reasoning about the length *)
(case slot_t_lookup key ls of
| NONE => len (list_t_v ls1) = len (list_t_v ls) + 1
| SOME _ => len (list_t_v ls1) = len (list_t_v ls))
Proof
Induct_on ‘ls’ >> rw [] >~ [‘ListNil’] >>
pure_once_rewrite_tac [hash_map_insert_in_list_loop_back_def]
>- (rw []) >>
fs [] >- metis_tac [] >>
progress >> fs [] >> rw []
>- (metis_tac [])
>- (metis_tac []) >>
case_tac >> fs [] >> int_tac
QED
(* Auxiliary lemma - TODO: move *)
Theorem hash_map_insert_in_list_loop_back_EVERY_distinct_keys:
∀k v k1 ls0 ls1.
k1 ≠ k ⇒
EVERY (λy. k1 ≠ FST y) (list_t_v ls0) ⇒
pairwise_rel (λx y. FST x ≠ FST y) (list_t_v ls0) ⇒
hash_map_insert_in_list_loop_back k v ls0 = Return ls1 ⇒
EVERY (λy. k1 ≠ FST y) (list_t_v ls1)
Proof
Induct_on ‘ls0’ >> rw [pairwise_rel_def] >~ [‘ListNil’] >>
gvs [pairwise_rel_def, EVERY_DEF]
>-(gvs [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def, EVERY_DEF]) >>
pat_undisch_tac ‘hash_map_insert_in_list_loop_back _ _ _ = _’ >>
simp [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def] >>
Cases_on ‘u = k’ >> rw [] >> gvs [pairwise_rel_def, EVERY_DEF] >>
Cases_on ‘hash_map_insert_in_list_loop_back k v ls0’ >>
gvs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >>
metis_tac []
QED
Theorem hash_map_insert_in_list_loop_back_distinct_keys:
∀ k v ls0 ls1.
distinct_keys (list_t_v ls0) ⇒
hash_map_insert_in_list_loop_back k v ls0 = Return ls1 ⇒
distinct_keys (list_t_v ls1)
Proof
Induct_on ‘ls0’ >> rw [distinct_keys_def] >~ [‘ListNil’]
>-(
fs [hash_map_insert_in_list_loop_back_def] >>
gvs [pairwise_rel_def, EVERY_DEF]) >>
last_x_assum (qspecl_assume [‘k’, ‘v’]) >>
pat_undisch_tac ‘hash_map_insert_in_list_loop_back _ _ _ = _’ >>
simp [MK_BOUNDED hash_map_insert_in_list_loop_back_def 1, bind_def] >>
Cases_on ‘u = k’ >> rw [] >> gvs [pairwise_rel_def, EVERY_DEF] >>
Cases_on ‘hash_map_insert_in_list_loop_back k v ls0’ >>
gvs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >>
metis_tac [hash_map_insert_in_list_loop_back_EVERY_distinct_keys]
QED
Definition insert_in_slot_t_rel_def:
insert_in_slot_t_rel l key value slot slot1 = (
(* We preserve the invariant *)
slot_t_inv l (hash_mod_key key l) slot1 ∧
(* We updated the binding for key *)
slot_t_lookup key slot1 = SOME value /\
(* The other bindings are left unchanged *)
(!k. k <> key ==> slot_t_lookup k slot = slot_t_lookup k slot1) ∧
(* Reasoning about the length *)
(case slot_t_lookup key slot of
| NONE => len (list_t_v slot1) = len (list_t_v slot) + 1
| SOME _ => len (list_t_v slot1) = len (list_t_v slot)))
End
(* Lemma about ‘hash_map_insert_in_list_loop_back’, with the invariant *)
Theorem hash_map_insert_in_list_loop_back_spec:
!i ls key value.
distinct_keys (list_t_v ls) ⇒
∃ ls1. hash_map_insert_in_list_loop_back key value ls = Return ls1 ∧
(∀l. slot_s_inv_hash l (hash_mod_key key l) (list_t_v ls) ⇒
insert_in_slot_t_rel l key value ls ls1)
Proof
rw [slot_t_inv_def] >>
qspecl_assume [‘ls’, ‘key’, ‘value’] hash_map_insert_in_list_loop_back_spec_aux >>
fs [] >>
qspecl_assume [‘key’, ‘value’, ‘ls’, ‘ls1’] hash_map_insert_in_list_loop_back_distinct_keys >>
gvs [insert_in_slot_t_rel_def, slot_t_inv_def] >> metis_tac []
QED
val _ = save_spec_thm "hash_map_insert_in_list_loop_back_spec"
(* TODO: move and use more *)
Theorem hash_map_t_base_inv_len_slots:
∀ hm. hash_map_t_base_inv hm ⇒ 0 < len (vec_to_list hm.hash_map_slots)
Proof
rw [hash_map_t_base_inv_def, vec_len_def] >> int_tac
QED
(* TODO: automatic rewriting? *)
Theorem hash_map_insert_no_resize_fwd_back_branches_eq:
(if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE then
do
i0 <- usize_add hm.hash_map_num_entries (int_to_usize 1);
l0 <-
hash_map_insert_in_list_back key value
(vec_index hm.hash_map_slots a);
v <- vec_index_mut_back hm.hash_map_slots a l0;
Return
(hm with <|hash_map_num_entries := i0; hash_map_slots := v|>)
od
else
do
l0 <-
hash_map_insert_in_list_back key value
(vec_index hm.hash_map_slots a);
v <- vec_index_mut_back hm.hash_map_slots a l0;
Return (hm with hash_map_slots := v)
od) =
(do
i0 <- if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE then
usize_add hm.hash_map_num_entries (int_to_usize 1)
else
Return hm.hash_map_num_entries;
l0 <-
hash_map_insert_in_list_back key value
(vec_index hm.hash_map_slots a);
v <- vec_index_mut_back hm.hash_map_slots a l0;
Return
(hm with <|hash_map_num_entries := i0; hash_map_slots := v|>)
od)
Proof
case_tac >>
fs [bind_def] >>
case_tac >>
case_tac >>
Cases_on ‘hm’ >> fs [] >>
(* Remark: we initially used directly hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_slots_fupd_def
and hashmap_TypesTheory.recordtype_hash_map_t_seldef_hash_map_num_entries_fupd_def,
but it fails in the Nix derivation *)
fs (TypeBase.updates_of “:'a hash_map_t”)
QED
val hash_map_insert_no_resize_fwd_back_branches_eq = SIMP_RULE (srw_ss ()) [] hash_map_insert_no_resize_fwd_back_branches_eq
Theorem hash_map_cond_incr_thm:
∀ hm key a.
hash_map_t_base_inv hm ⇒
(slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE ⇒ len_s hm < usize_max) ⇒
∃ n. (if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE
then usize_add hm.hash_map_num_entries (int_to_usize 1)
else Return hm.hash_map_num_entries) = Return n ∧
(if slot_t_lookup key (vec_index hm.hash_map_slots a) = NONE
then usize_to_int n = usize_to_int hm.hash_map_num_entries + 1
else n = hm.hash_map_num_entries)
Proof
rw [] >>
progress >>
massage >>
fs [len_s_def, hash_map_t_base_inv_def] >>
(* TODO: improve massage to not only look at variables *)
qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >>
int_tac
QED
Theorem hash_map_insert_no_resize_fwd_back_spec_aux:
!hm key value.
(* Using the base invariant, because the full invariant is preserved only
if we resize *)
hash_map_t_base_inv hm ⇒
(lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒
∃ hm1 slot1. hash_map_insert_no_resize_fwd_back hm key value = Return hm1 ∧
len (vec_to_list hm1.hash_map_slots) = len (vec_to_list hm.hash_map_slots) ∧
let l = len (vec_to_list hm.hash_map_slots) in
let i = hash_mod_key key (len (vec_to_list hm.hash_map_slots)) in
let slot = index i (vec_to_list hm.hash_map_slots) in
insert_in_slot_t_rel l key value slot slot1 ∧
vec_to_list hm1.hash_map_slots = update (vec_to_list hm.hash_map_slots) i slot1 ∧
hm1.hash_map_max_load_factor = hm.hash_map_max_load_factor ∧
hm1.hash_map_max_load = hm.hash_map_max_load ∧
(* Reasoning about the length *)
(case lookup_s hm key of
| NONE => usize_to_int hm1.hash_map_num_entries = usize_to_int hm.hash_map_num_entries + 1
| SOME _ => hm1.hash_map_num_entries = hm.hash_map_num_entries) ∧
hash_map_same_params hm hm1
Proof
rw [hash_map_insert_no_resize_fwd_back_def] >>
fs [hash_key_fwd_def] >>
(* TODO: automate this *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >>
(* TODO: improve massage to not only look at variables *)
qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >>
imp_res_tac hash_map_t_base_inv_len_slots >>
(* TODO: update usize_rem_spec? *)
qspecl_assume [‘usize_to_int key’, ‘len (vec_to_list hm.hash_map_slots)’] pos_rem_pos_ineqs >>
progress >>
progress >- ( (* TODO: why not done automatically? *) massage >> fs []) >>
progress >> gvs [] >>
(* Taking care of the disjunction *)
fs [hash_map_insert_no_resize_fwd_back_branches_eq] >>
qspecl_assume [‘hm’, ‘key’, ‘a’] hash_map_cond_incr_thm >> gvs [] >>
pop_assum sg_premise_tac
>- (fs [lookup_s_def, slots_t_lookup_def, vec_index_def, int_rem_def]) >>
fs [] >>
(* TODO: lemma? *)
sg ‘let l = len (vec_to_list hm.hash_map_slots) in
slot_t_inv l (usize_to_int key % l) (index (usize_to_int key % l) (vec_to_list hm.hash_map_slots))’
>-(fs [hash_map_t_base_inv_def, slots_t_inv_def] >>
last_x_assum (qspec_assume ‘usize_to_int a’) >>
gvs [vec_index_def, int_rem_def, slot_t_inv_def] >>
metis_tac []) >>
fs [] >>
sg ‘usize_to_int a = usize_to_int key % len (vec_to_list hm.hash_map_slots)’
>-(fs [int_rem_def]) >>
sg ‘int_rem (usize_to_int key) (len (vec_to_list hm.hash_map_slots)) = usize_to_int key % len (vec_to_list hm.hash_map_slots)’
>-(fs [int_rem_def]) >>
fs [] >>
sg ‘distinct_keys (list_t_v (vec_index hm.hash_map_slots a))’
>-(fs [slot_t_inv_def, vec_index_def]) >>
fs [hash_map_insert_in_list_back_def] >>
progress >>
progress >- ((* TODO: *) massage >> fs []) >>
(* vec_update *)
qspecl_assume [‘hm.hash_map_slots’, ‘a’, ‘a'’] vec_update_eq >> gvs [] >>
(* Prove the post-condition *)
qexists ‘a'’ >>
rw [hash_map_same_params_def]
>-(gvs [insert_in_slot_t_rel_def, vec_index_def, vec_update_def, slot_t_inv_def] >>
metis_tac []) >>
gvs [lookup_s_def, slots_t_lookup_def, vec_index_def] >>
case_tac >> fs []
QED
(* TODO: move *)
Theorem len_FLAT_MAP_update:
∀ x ls i.
0 ≤ i ⇒ i < len ls ⇒
len (FLAT (MAP list_t_v (update ls i x))) =
len (FLAT (MAP list_t_v ls)) + len (list_t_v x) - len (list_t_v (index i ls))
Proof
strip_tac >>
Induct_on ‘ls’
>-(rw [] >> int_tac) >>
rw [] >>
fs [index_def, update_def] >>
Cases_on ‘i = 0’ >> fs []
>- int_tac >>
sg ‘0 < i’ >- int_tac >> fs [] >>
first_x_assum (qspec_assume ‘i - 1’) >>
fs [] >>
(* TODO: automate *)
sg ‘0 ≤ i - 1 ∧ i - 1 < len ls’ >- int_tac >> fs [] >>
int_tac
QED
Theorem hash_map_insert_no_resize_fwd_back_spec:
!hm key value.
(* Using the base invariant, because the full invariant is preserved only
if we resize *)
hash_map_t_base_inv hm ⇒
(lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒
∃ hm1. hash_map_insert_no_resize_fwd_back hm key value = Return hm1 ∧
(* We preserve the invariant *)
hash_map_t_base_inv hm1 ∧
(* We updated the binding for key *)
lookup_s hm1 key = SOME value /\
(* The other bindings are left unchanged *)
(!k. k <> key ==> lookup_s hm k = lookup_s hm1 k) ∧
(* Reasoning about the length *)
(case lookup_s hm key of
| NONE => len_s hm1 = len_s hm + 1
| SOME _ => len_s hm1 = len_s hm) ∧
hash_map_same_params hm hm1
Proof
rw [] >>
qspecl_assume [‘hm’, ‘key’, ‘value’] hash_map_insert_no_resize_fwd_back_spec_aux >> gvs [] >>
(* TODO: automate this *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >>
(* TODO: improve massage to not only look at variables *)
qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >>
imp_res_tac hash_map_t_base_inv_len_slots >>
(* TODO: update usize_rem_spec? *)
qspecl_assume [‘usize_to_int key’, ‘len (vec_to_list hm.hash_map_slots)’] pos_mod_pos_ineqs >>
massage >> gvs [] >>
(* We need the invariant of hm1 to prove some of the postconditions *)
sg ‘hash_map_t_base_inv hm1’
>-(
fs [hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
rw []
>-(
sg_dep_rewrite_goal_tac len_FLAT_MAP_update
>-(fs []) >>
fs [insert_in_slot_t_rel_def] >>
fs [] >>
Cases_on ‘lookup_s hm key’ >>
fs [lookup_s_def, slots_t_lookup_def] >>
int_tac) >>
fs [slots_t_inv_def] >>
rw [] >>
(* Proof of the slot property: has the slot been updated∃ *)
Cases_on ‘i = hash_mod_key key (len (vec_to_list hm.hash_map_slots))’ >> fs []
>-(
sg_dep_rewrite_goal_tac index_update_diff
>-(fs []) >>
fs [insert_in_slot_t_rel_def]) >>
sg_dep_rewrite_goal_tac index_update_same
>-(fs []) >>
fs []) >>
(* Prove the rest of the postcondition *)
rw []
>-((* The binding for key is updated *)
fs [lookup_s_def, slots_t_lookup_def] >>
sg_dep_rewrite_goal_tac index_update_diff
>-(fs []) >>
fs [insert_in_slot_t_rel_def])
>-((* The other bindings are unchanged *)
fs [lookup_s_def, slots_t_lookup_def] >>
Cases_on ‘hash_mod_key k (len (vec_to_list hm.hash_map_slots)) = hash_mod_key key (len (vec_to_list hm.hash_map_slots))’ >> gvs []
>-(
sg_dep_rewrite_goal_tac index_update_diff
>-(fs []) >>
fs [insert_in_slot_t_rel_def]) >>
sg_dep_rewrite_goal_tac index_update_same
>-(fs [] >> irule pos_mod_pos_lt >> massage >> fs []) >>
fs [insert_in_slot_t_rel_def]) >>
(* Length *)
Cases_on ‘lookup_s hm key’ >>
gvs [insert_in_slot_t_rel_def, hash_map_t_inv_def, hash_map_t_base_inv_def, len_s_def]
QED
val _ = save_spec_thm "hash_map_insert_no_resize_fwd_back_spec"
(* TODO: move *)
Theorem distinct_keys_MEM_not_eq:
∀ ls k1 x1 k2 x2.
distinct_keys ((k1, x1) :: ls) ⇒
MEM (k2, x2) ls ⇒
k2 ≠ k1
Proof
Induct_on ‘ls’ >> rw [] >>
fs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >>
metis_tac []
QED
Theorem distinct_keys_lookup_NONE:
∀ ls k x.
distinct_keys ((k, x) :: ls) ⇒
lookup k ls = NONE
Proof
Induct_on ‘ls’ >> rw [] >>
fs [distinct_keys_def, pairwise_rel_def, EVERY_DEF] >>
Cases_on ‘h’ >> fs []
QED
Theorem hash_map_move_elements_from_list_fwd_back_spec:
∀ hm ls.
let l = len (list_t_v ls) in
hash_map_t_base_inv hm ⇒
len_s hm + l ≤ usize_max ⇒
∃ hm1. hash_map_move_elements_from_list_fwd_back hm ls = Return hm1 ∧
hash_map_t_base_inv hm1 ∧
((∀ k v. MEM (k, v) (list_t_v ls) ⇒ lookup_s hm k = NONE) ⇒
distinct_keys (list_t_v ls) ⇒
((∀ k. slot_t_lookup k ls = NONE ⇒ lookup_s hm1 k = lookup_s hm k) ∧
(∀ k. slot_t_lookup k ls ≠ NONE ⇒ lookup_s hm1 k = slot_t_lookup k ls) ∧
len_s hm1 = len_s hm + l)) ∧
hash_map_same_params hm hm1
Proof
pure_rewrite_tac [hash_map_move_elements_from_list_fwd_back_def] >>
Induct_on ‘ls’ >~ [‘ListNil’] >>
pure_once_rewrite_tac [hash_map_move_elements_from_list_loop_fwd_back_def] >> rw [] >>
(* TODO: improve massage to not only look at variables *)
qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >>
(* TODO: automate *)
qspec_assume ‘list_t_v ls’ len_pos >>
(* Recursive case *)
progress >>
progress
>-(Cases_on ‘lookup_s hm u’ >> fs [len_s_def, hash_map_t_base_inv_def] >> int_tac) >>
(* Prove the postcondition *)
(* Drop the induction hypothesis *)
last_x_assum ignore_tac >>
gvs [] >>
sg ‘hash_map_same_params hm a'’ >- fs [hash_map_same_params_def] >> fs [] >>
(* TODO: we need an intro_tac *)
strip_tac >>
strip_tac >>
fs [hash_map_same_params_def] >>
(* *)
sg ‘distinct_keys (list_t_v ls)’
>-(fs [distinct_keys_def, pairwise_rel_def, EVERY_DEF]) >>
fs [] >>
(* For some reason, if we introduce an assumption with [sg], the rewriting
doesn't work (and I couldn't find any typing issue) *)
qpat_assum ‘(∀ k v . _) ⇒ _’ assume_tac >>
first_assum sg_premise_tac
>-(
rw [] >>
sg ‘k ≠ u’ >-(irule distinct_keys_MEM_not_eq >> metis_tac []) >>
last_x_assum (qspec_assume ‘k’) >>
gvs [] >>
first_x_assum (qspecl_assume [‘k’, ‘v’]) >>
gvs []) >>
gvs[] >>
(* *)
rw []
>-(
first_x_assum (qspec_assume ‘k’) >>
first_x_assum (qspec_assume ‘k’) >>
fs [] >>
sg ‘lookup k (list_t_v ls) = NONE’ >-(irule distinct_keys_lookup_NONE >> metis_tac []) >>
gvs []) >>
(* The length *)
fs [] >>
int_tac
QED
val _ = save_spec_thm "hash_map_move_elements_from_list_fwd_back_spec"
(* TODO: induction theorem for vectors *)
Theorem len_index_FLAT_MAP_list_t_v:
∀ slots i.
0 ≤ i ⇒ i < len slots ⇒
len (list_t_v (index i slots)) ≤ len (FLAT (MAP list_t_v (drop i slots)))
Proof
Induct_on ‘slots’ >> rw [vec_index_def, drop_def, index_def, len_pos, update_def, drop_eq] >> try_tac int_tac >> fs [] >>
last_x_assum (qspec_assume ‘i - 1’) >>
sg ‘0 ≤ i − 1 ∧ i − 1 < len slots’ >- int_tac >> fs []
QED
Theorem len_vec_FLAT_drop_update:
∀ slots i.
0 ≤ i ⇒ i < len slots ⇒
len (FLAT (MAP list_t_v (drop i slots))) =
len (list_t_v (index i slots)) +
len (FLAT (MAP list_t_v (drop (i + 1) (update slots i ListNil))))
Proof
Induct_on ‘slots’ >> fs [drop_def, update_def, len_pos, index_def] >> rw [] >> try_tac int_tac >> fs [drop_eq, len_append] >>
last_x_assum (qspec_assume ‘i - 1’) >>
sg ‘0 ≤ i − 1 ∧ i − 1 < len slots ∧ ~(i + 1 < 0) ∧ ~(i + 1 = 0)’ >- int_tac >> fs [] >> sg ‘i + 1 - 1 = i’ >- int_tac >> fs [drop_def]
QED
Theorem MEM_EVERY_not:
∀ k v ls.
MEM (k, v) ls ⇒
EVERY (\x. k ≠ FST x) ls ⇒
F
Proof
Induct_on ‘ls’ >> rw [EVERY_DEF] >> fs [] >>
Cases_on ‘h’ >> fs [] >>
metis_tac []
QED
Theorem MEM_distinct_keys_lookup:
∀k v ls.
MEM (k, v) ls ⇒
distinct_keys ls ⇒
lookup k ls = SOME v
Proof
Induct_on ‘ls’ >> fs [distinct_keys_def, pairwise_rel_def] >>
rw [] >> fs [] >>
Cases_on ‘h’ >> fs [] >> rw [] >>
(* Absurd *)
exfalso >>
metis_tac [MEM_EVERY_not]
QED
Theorem lookup_distinct_keys_MEM:
∀k v ls.
lookup k ls = SOME v ⇒
distinct_keys ls ⇒
MEM (k, v) ls
Proof
Induct_on ‘ls’ >> fs [distinct_keys_def, pairwise_rel_def] >>
rw [] >> fs [] >>
Cases_on ‘h’ >> fs [] >> rw [] >>
Cases_on ‘q = k’ >> fs []
QED
Theorem key_MEM_j_lookup_i_is_NONE:
∀ i j slots k v.
usize_to_int i < j ⇒ j < len (vec_to_list slots) ⇒
(∀j. usize_to_int i ≤ j ⇒
j < len (vec_to_list slots) ⇒
slot_t_inv (len (vec_to_list slots)) j (index j (vec_to_list slots))) ⇒
MEM (k,v) (list_t_v (index j (vec_to_list slots))) ⇒
slot_t_lookup k (index (usize_to_int i) (vec_to_list slots)) = NONE
Proof
rw [] >>
fs [slot_t_inv_def] >>
(* *)
first_assum (qspec_assume ‘j’) >> fs [] >>
pop_assum sg_premise_tac >- int_tac >> fs [] >>
first_x_assum imp_res_tac >>
fs [] >>
(* Prove by contradiction *)
first_assum (qspec_assume ‘usize_to_int i’) >> fs [] >>
pop_assum sg_premise_tac >- int_tac >> fs [] >>
Cases_on ‘slot_t_lookup k (index (usize_to_int i) (vec_to_list slots))’ >> fs [] >>
sg ‘MEM (k,v) (list_t_v (index (usize_to_int i) (vec_to_list slots)))’
>- (
fs [] >>
metis_tac [lookup_distinct_keys_MEM]
) >>
qpat_x_assum ‘∀k. _’ imp_res_tac >>
fs []
QED
(* TODO: the names introduced by progress are random, which is confusing.
It also makes the proofs less stable.
Update the progress tactic to use the names given by the let-bindings. *)
Theorem hash_map_move_elements_loop_fwd_back_spec_aux:
∀ hm slots i n.
let slots_l = len (FLAT (MAP list_t_v (drop (usize_to_int i) (vec_to_list slots)))) in
(* Small trick for the induction *)
n = len (vec_to_list slots) - usize_to_int i ⇒
hash_map_t_base_inv hm ⇒
len_s hm + slots_l ≤ usize_max ⇒
(∀ j.
let l = len (vec_to_list slots) in
usize_to_int i ≤ j ⇒ j < l ⇒
let slot = index j (vec_to_list slots) in
slot_t_inv l j slot ∧
(∀ k v. MEM (k, v) (list_t_v slot) ⇒ lookup_s hm k = NONE)) ⇒
∃ hm1 slots1. hash_map_move_elements_loop_fwd_back hm slots i = Return (hm1, slots1) ∧
hash_map_t_base_inv hm1 ∧
len_s hm1 = len_s hm + slots_l ∧
(∀ k. lookup_s hm1 k =
case lookup_s hm k of
| SOME v => SOME v
| NONE =>
let j = hash_mod_key k (len (vec_to_list slots)) in
if usize_to_int i ≤ j ∧ j < len (vec_to_list slots) then
let slot = index j (vec_to_list slots) in
lookup k (list_t_v slot)
else NONE
) ∧
hash_map_same_params hm hm1
Proof
Induct_on ‘n’ >> rw [] >> pure_once_rewrite_tac [hash_map_move_elements_loop_fwd_back_def] >> fs [] >>
(* TODO: automate *)
qspec_assume ‘slots’ vec_len_spec >>
(* TODO: progress on usize_lt *)
fs [usize_lt_def, vec_len_def] >>
massage
>-(
case_tac >- int_tac >> fs [] >>
sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [] >>
strip_tac >> Cases_on ‘lookup_s hm k’ >> fs [] >>
fs [] >>
(* Contradiction *)
rw [] >> int_tac
)
>-(
(* Same as above - TODO: this is a bit annoying, update the invariant principle (maybe base case is ≤ 0 ?) *)
sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [] >>
strip_tac >> Cases_on ‘lookup_s hm k’ >> fs [] >>
fs [] >>
(* Contradiction *)
rw [] >> int_tac) >>
(* Recursive case *)
case_tac >> fs [] >>
(* Eliminate the trivial case *)
try_tac (
sg_dep_rewrite_goal_tac drop_more_than_length >-(int_tac) >> fs [] >>
strip_tac >> Cases_on ‘lookup_s hm k’ >> fs [] >>
fs [] >>
(* Contradiction *)
rw [] >> int_tac) >>
progress >- (fs [vec_len_def] >> massage >> fs []) >>
progress >- (
fs [vec_index_def] >>
qspecl_assume [‘vec_to_list slots’, ‘usize_to_int i’] len_index_FLAT_MAP_list_t_v >>
gvs [] >> int_tac) >>
(* We just evaluated the call to “hash_map_move_elements_from_list_fwd_back”: prove the assumptions
in its postcondition *)
qpat_x_assum ‘_ ⇒ _’ sg_premise_tac
>-(
first_x_assum (qspec_assume ‘usize_to_int i’) >> gvs [vec_index_def] >>
rw []
>-(first_x_assum irule >> metis_tac []) >>
fs [slot_t_inv_def]) >>
gvs [] >>
(* Continue going forward *)
progress >>
progress >- (fs [vec_len_def] >> massage >> fs []) >>
progress >> fs [] >> qspecl_assume [‘slots’, ‘i’, ‘ListNil’] vec_update_eq >>
gvs [] >>
(* Drop the induction hypothesis *)
last_x_assum ignore_tac
(* TODO: when we update the theorem, progress lookups the stored (deprecated) rather than
the inductive hypothesis *)
(* The preconditions of the recursive call *)
>- (
qspecl_assume [‘vec_to_list slots’, ‘usize_to_int i’] len_vec_FLAT_drop_update >> gvs [] >>
gvs [vec_index_def] >>
int_tac)
>-(
fs [] >>
sg_dep_rewrite_goal_tac index_update_same
>-(fs [] >> int_tac) >>
fs [] >>
last_x_assum (qspec_assume ‘j’) >> gvs [] >>
first_assum sg_premise_tac >- int_tac >>
fs [])
>-(
(* Prove that index j (update slots i) = index j slots *)
first_x_assum (qspec_assume ‘int_to_usize j’) >> gvs [] >> massage >> gvs [] >>
fs [vec_len_def] >>
massage >> gvs [] >>
sg ‘j ≠ usize_to_int i’ >- int_tac >> gvs [vec_index_def, vec_update_def] >>
massage >>
(* Use the fact that slot_t_lookup k (index i ... slots) = NONE *)
first_x_assum (qspec_assume ‘k’) >>
first_assum sg_premise_tac
>- (
sg ‘usize_to_int i < j’ >- int_tac >> fs [] >>
sg ‘usize_to_int i ≤ j’ >- int_tac >> fs [] >>
(* TODO: we have to rewrite key_MEM_j_lookup_i_is_NONE before applying
metis_tac *)
assume_tac key_MEM_j_lookup_i_is_NONE >> fs [] >>
metis_tac []) >>
gvs [] >>
(* Use the fact that as the key is in the slots after i, it can't be in “hm” (yet) *)
last_x_assum (qspec_assume ‘j’) >> gvs [] >>
first_x_assum sg_premise_tac >- (int_tac) >> gvs [] >>
first_x_assum imp_res_tac >>
metis_tac []) >>
(* The conclusion of the theorem (the post-condition) *)
conj_tac
>-(
(* Reasoning about the length *)
qspecl_assume [‘vec_to_list slots’, ‘usize_to_int i’] len_vec_FLAT_drop_update >>
gvs [] >>
fs [GSYM integerTheory.INT_ADD_ASSOC, vec_index_def]) >>
(* Same params *)
fs [hash_map_same_params_def] >>
(* Lookup properties *)
strip_tac >> fs [] >>
sg ‘usize_to_int k % len (vec_to_list slots) < len (vec_to_list slots)’
>- (irule pos_mod_pos_lt >> massage >> fs [] >> int_tac) >> fs [] >>
Cases_on ‘usize_to_int i = usize_to_int k % len (vec_to_list slots)’ >> fs []
>- (
sg ‘~ (usize_to_int i + 1 ≤ usize_to_int k % len (vec_to_list slots))’ >- int_tac >> fs [] >>
sg ‘~ (usize_to_int k % len (vec_to_list slots) + 1 ≤ usize_to_int k % len (vec_to_list slots))’ >- int_tac >> fs [] >>
(* Is the key is slot i ? *)
(* TODO: use key_MEM_j_lookup_i_is_NONE? *)
Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> gvs [vec_index_def] >>
(* The key can't be in “hm” *)
last_x_assum (qspec_assume ‘usize_to_int i’) >>
pop_assum sg_premise_tac >> fs [] >>
pop_assum sg_premise_tac >> fs [] >>
pop_assum (qspecl_assume [‘k’, ‘x’]) >>
pop_assum sg_premise_tac
>-(irule lookup_distinct_keys_MEM >> gvs [slot_t_inv_def]) >> fs []) >>
(* Here: usize_to_int i ≠ usize_to_int k % len (vec_to_list slots) *)
Cases_on ‘usize_to_int i ≤ usize_to_int k % len (vec_to_list slots)’ >> fs []
>- (
(* We have: usize_to_int i < usize_to_int k % len (vec_to_list slots)
The key is not in slot i, and is added (eventually) with the recursive call on
the remaining the slots.
*)
sg ‘usize_to_int i < usize_to_int k % len (vec_to_list slots)’ >- int_tac >> fs [] >>
sg ‘usize_to_int i + 1 ≤ usize_to_int k % len (vec_to_list slots)’ >- int_tac >> fs [] >>
(* We just need to use the fact that “lookup_s a' k = lookup_s hm k” *)
sg ‘lookup_s a' k = lookup_s hm k’
>- (
first_x_assum irule >>
last_x_assum (qspec_assume ‘usize_to_int i’) >> gvs [] >>
(* Prove by contradiction - TODO: turn this into a lemma? *)
gvs [slot_t_inv_def] >>
Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> fs [vec_index_def] >> exfalso >>
fs [] >>
imp_res_tac lookup_distinct_keys_MEM >>
sg ‘usize_to_int k % len (vec_to_list slots) = usize_to_int i’ >- metis_tac [] >> fs []
) >>
fs [] >>
case_tac >>
fs [] >>
sg_dep_rewrite_goal_tac index_update_same >> fs []
) >>
(* Here: usize_to_int i > usize_to_int k % ... *)
sg ‘~(usize_to_int i + 1 ≤ usize_to_int k % len (vec_to_list slots))’ >- int_tac >> fs [] >>
sg ‘lookup_s a' k = lookup_s hm k’
>- (
first_x_assum irule >>
(* We have to prove that the key is not in slot i *)
last_x_assum (qspec_assume ‘usize_to_int i’) >>
pop_assum sg_premise_tac >> fs [] >>
pop_assum sg_premise_tac >> fs [] >>
gvs [slot_t_inv_def] >>
(* Prove by contradiction *)
Cases_on ‘slot_t_lookup k (vec_index slots i)’ >> fs [vec_index_def] >> exfalso >>
fs [] >>
imp_res_tac lookup_distinct_keys_MEM >>
sg ‘usize_to_int k % len (vec_to_list slots) = usize_to_int i’ >- metis_tac [] >> fs []
) >>
fs []
QED
Theorem hash_map_move_elements_fwd_back_spec:
∀ hm slots i.
let slots_l = len (FLAT (MAP list_t_v (drop (usize_to_int i) (vec_to_list slots)))) in
hash_map_t_base_inv hm ⇒
len_s hm + slots_l ≤ usize_max ⇒
(∀ j.
let l = len (vec_to_list slots) in
usize_to_int i ≤ j ⇒ j < l ⇒
let slot = index j (vec_to_list slots) in
slot_t_inv l j slot ∧
(∀ k v. MEM (k, v) (list_t_v slot) ⇒ lookup_s hm k = NONE)) ⇒
∃ hm1 slots1. hash_map_move_elements_fwd_back hm slots i = Return (hm1, slots1) ∧
hash_map_t_base_inv hm1 ∧
len_s hm1 = len_s hm + slots_l ∧
(∀ k. lookup_s hm1 k =
case lookup_s hm k of
| SOME v => SOME v
| NONE =>
let j = hash_mod_key k (len (vec_to_list slots)) in
if usize_to_int i ≤ j ∧ j < len (vec_to_list slots) then
let slot = index j (vec_to_list slots) in
lookup k (list_t_v slot)
else NONE
) ∧
hash_map_same_params hm hm1
Proof
rw [hash_map_move_elements_fwd_back_def] >>
qspecl_assume [‘hm’, ‘slots’, ‘i’] hash_map_move_elements_loop_fwd_back_spec_aux >> gvs [] >>
pop_assum sg_premise_tac >- metis_tac [] >>
metis_tac []
QED
val _ = save_spec_thm "hash_map_move_elements_fwd_back_spec"
(* We assume that usize = u32 - TODO: update the implementation of the hash map *)
val usize_u32_bounds = new_axiom ("usize_u32_bounds", “usize_max = u32_max”)
(* Predicate to characterize the state of the hash map just before we resize.
The "full" invariant is broken, as we call [try_resize]
only if the current number of entries is > the max load.
There are two situations:
- either we just reached the max load
- or we were already saturated and can't resize *)
Definition hash_map_just_before_resize_pred_def:
hash_map_just_before_resize_pred hm =
let (dividend, divisor) = hm.hash_map_max_load_factor in
(usize_to_int hm.hash_map_num_entries = usize_to_int hm.hash_map_max_load + 1 ∧
len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int dividend ≤ usize_max) \/
len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int dividend > usize_max
End
Theorem hash_map_try_resize_fwd_back_spec:
∀ hm.
(* The base invariant is satisfied *)
hash_map_t_base_inv hm ⇒
hash_map_just_before_resize_pred hm ⇒
∃ hm1. hash_map_try_resize_fwd_back hm = Return hm1 ∧
hash_map_t_inv hm1 ∧
len_s hm1 = len_s hm ∧
(∀ k. lookup_s hm1 k = lookup_s hm k)
Proof
rw [hash_map_try_resize_fwd_back_def] >>
(* “_ <-- mk_usize (u32_to_int core_num_u32_max_c)” *)
assume_tac usize_u32_bounds >>
fs [core_num_u32_max_c_def, core_num_u32_max_body_def, get_return_value_def, u32_max_def] >>
massage >> fs [mk_usize_def, u32_max_def] >>
(* / 2 *)
progress >>
Cases_on ‘hm.hash_map_max_load_factor’ >> fs [] >>
progress >- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >> gvs [] >>
(* usize_le *)
fs [usize_le_def, vec_len_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [vec_len_def] >>
massage >>
case_tac >>
(* Eliminate the case where we don't resize the hash_map *)
try_tac (
gvs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_just_before_resize_pred_def,
len_s_def, hash_map_t_al_v_def, hash_map_t_v_def, lookup_s_def] >>
(* Contradiction *)
exfalso >>
sg ‘len (vec_to_list hm.hash_map_slots) > 2147483647 / usize_to_int q’ >- int_tac >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q / 2 = len (vec_to_list hm.hash_map_slots) * usize_to_int q’
>- (
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q = (len (vec_to_list hm.hash_map_slots) * usize_to_int q) * 2’
>- (metis_tac [integerTheory.INT_MUL_COMM, integerTheory.INT_MUL_ASSOC]) >>
fs [] >>
irule integerTheory.INT_DIV_RMUL >> fs []) >>
gvs [] >>
sg ‘(len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q) / 2 ≤ usize_max / 2’
>-(irule pos_div_pos_le >> int_tac) >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q / 2 = len (vec_to_list hm.hash_map_slots) * usize_to_int q’
>- (
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q = (len (vec_to_list hm.hash_map_slots) * usize_to_int q) * 2’
>- (metis_tac [integerTheory.INT_MUL_COMM, integerTheory.INT_MUL_ASSOC]) >>
fs [] >>
irule integerTheory.INT_DIV_RMUL >> fs []) >>
gvs [] >>
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q / usize_to_int q ≤ usize_max / 2 / usize_to_int q’
>-(irule pos_div_pos_le >> int_tac) >>
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q / usize_to_int q = len (vec_to_list hm.hash_map_slots)’
>- (irule integerTheory.INT_DIV_RMUL >> int_tac) >>
gvs [] >>
fail_tac "") >>
(* Resize the hashmap *)
sg ‘0 < usize_to_int q’ >- fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 ≤ usize_max’
>-(
sg ‘len (vec_to_list hm.hash_map_slots) ≤ 2147483647’
>-(
qspecl_assume [‘2147483647’, ‘usize_to_int q’] pos_div_pos_le_init >> fs [] >>
gvs [] >> int_tac
) >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 ≤ 2147483647 * 2’
>- (irule mul_pos_right_le >> fs []) >>
fs [] >> int_tac
) >>
progress >> gvs [] >>
sg ‘0 < len (vec_to_list hm.hash_map_slots)’
>- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
(* TODO: automate *)
sg ‘0 < len (vec_to_list hm.hash_map_slots) * 2’
>- (irule int_arithTheory.positive_product_implication >> fs []) >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q ≥ usize_to_int r’
>- (
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q >= usize_to_int r’
>- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def]) >>
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q ≤
2 * (len (vec_to_list hm.hash_map_slots) * usize_to_int q)’
>- (irule pos_mul_left_pos_le >> fs []) >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q =
2 * (len (vec_to_list hm.hash_map_slots) * usize_to_int q)’
>- (metis_tac [integerTheory.INT_MUL_COMM, integerTheory.INT_MUL_ASSOC]) >>
int_tac
) >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q ≤ usize_max’
>- (
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q ≤ (2147483647 / usize_to_int q) * usize_to_int q’
>- (irule mul_pos_right_le >> fs []) >>
sg ‘2147483647 / usize_to_int q * usize_to_int q ≤ 2147483647’
>- (irule pos_div_pos_mul_le >> fs []) >>
int_tac
) >>
(* TODO: don't make progress transform conjunctions to implications *)
progress >> try_tac (fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> fail_tac "") >>
(* TODO: annoying that the rewriting tactics make the case disjunction over the “∨” *)
sg ‘hash_map_t_base_inv hm’ >- fs [hash_map_t_inv_def] >>
progress
>-(fs [hash_map_t_inv_def])
>-(fs [drop_eq, hash_map_t_base_inv_def, hash_map_t_v_def, hash_map_t_al_v_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_num_entries’ usize_to_int_bounds >> fs [] >>
int_tac)
>-(fs [hash_map_t_base_inv_def, slots_t_inv_def]) >>
pure_rewrite_tac [hash_map_t_inv_def] >>
fs [len_s_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def, drop_eq] >>
gvs [] >>
(* TODO: lookup post condition, parameters for the new_with_capacity *)
conj_tac
>-(
(* Length *)
gvs [hash_map_same_params_def, hash_map_just_before_resize_pred_def] >> try_tac int_tac >>
(* We are in the case where we managed to resize the hash map *)
disj1_tac >>
sg ‘0 < len (vec_to_list hm.hash_map_slots) * usize_to_int q / usize_to_int r’
>- (
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q / usize_to_int r ≥ usize_to_int r / usize_to_int r’
>- (irule pos_div_pos_ge >> int_tac) >>
sg ‘usize_to_int r / usize_to_int r = 1’
>- (irule integerTheory.INT_DIV_ID >> int_tac) >>
int_tac
) >>
sg ‘len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q = (len (vec_to_list hm.hash_map_slots) * usize_to_int q) * 2’
>- metis_tac [integerTheory.INT_MUL_COMM, integerTheory.INT_MUL_ASSOC] >>
fs [] >>
sg ‘len (vec_to_list hm.hash_map_slots) * usize_to_int q / usize_to_int r +
len (vec_to_list hm.hash_map_slots) * usize_to_int q / usize_to_int r ≤
(len (vec_to_list hm.hash_map_slots) * usize_to_int q) * 2 / usize_to_int r’
>- (irule pos_mul_2_div_pos_decompose >> int_tac) >>
int_tac) >>
rw [] >>
first_x_assum (qspec_assume ‘k’) >>
gvs [slots_t_lookup_def, lookup_s_def] >>
massage >>
sg ‘0 ≤ usize_to_int k % len (vec_to_list hm.hash_map_slots)’
>- (irule pos_mod_pos_is_pos >> fs [] >> int_tac) >> fs [] >>
sg ‘usize_to_int k % len (vec_to_list hm.hash_map_slots) < len (vec_to_list hm.hash_map_slots)’
>- (irule pos_mod_pos_lt >> fs [] >> int_tac) >> fs []
QED
val _ = save_spec_thm "hash_map_try_resize_fwd_back_spec"
Theorem hash_map_insert_fwd_back_spec:
∀ hm key value.
hash_map_t_inv hm ⇒
(* We can insert *)
(lookup_s hm key = NONE ⇒ len_s hm < usize_max) ⇒
∃ hm1. hash_map_insert_fwd_back hm key value = Return hm1 ∧
(* We preserve the invariant *)
hash_map_t_inv hm1 ∧
(* We updated the binding for key *)
lookup_s hm1 key = SOME value /\
(* The other bindings are left unchanged *)
(!k. k <> key ==> lookup_s hm k = lookup_s hm1 k) ∧
(* Reasoning about the length *)
(case lookup_s hm key of
| NONE => len_s hm1 = len_s hm + 1
| SOME _ => len_s hm1 = len_s hm)
Proof
rw [hash_map_insert_fwd_back_def] >>
progress
>- (fs [hash_map_t_inv_def]) >>
gvs [] >>
progress >>
Cases_on ‘~(usize_gt x a.hash_map_max_load)’ >> fs []
>-(
gvs [hash_map_t_inv_def, hash_map_same_params_def] >>
sg ‘len_s a = usize_to_int a.hash_map_num_entries’
>- (fs [hash_map_t_base_inv_def, len_s_def]) >>
fs [usize_gt_def] >>
sg ‘usize_to_int a.hash_map_num_entries ≤ usize_to_int hm.hash_map_max_load’ >- int_tac >>
fs [] >>
Cases_on ‘hm.hash_map_max_load_factor’ >> fs []
) >>
gvs [] >>
progress >>
fs [hash_map_just_before_resize_pred_def, usize_gt_def, hash_map_same_params_def] >>
(* The length is the same: two cases depending on whether the map was already saturated or not *)
fs [hash_map_t_inv_def] >> Cases_on ‘hm.hash_map_max_load_factor’ >> fs [] >>
(* Remaining case: the map was not saturated *)
(* Reasoning about the length in the cases the key was already present or not *)
Cases_on ‘lookup_s hm key’ >> gvs []
>-(
Cases_on ‘~(len (vec_to_list hm.hash_map_slots) * 2 * usize_to_int q ≤ usize_max)’ >> fs []
>- int_tac >>
(* Not already present: we incremented the length. The map is also not saturated *)
disj1_tac >>
sg ‘len_s hm ≤ usize_to_int hm.hash_map_max_load’
>- (gvs [hash_map_t_base_inv_def, len_s_def]) >>
fs [hash_map_t_base_inv_def, len_s_def] >>
int_tac
) >>
(* The length is the same and the map was not saturated but we resized: contradiction *)
exfalso >>
sg ‘len_s hm ≤ usize_to_int hm.hash_map_max_load’
>- (gvs [hash_map_t_base_inv_def, len_s_def]) >>
int_tac
QED
val _ = save_spec_thm "hash_map_insert_fwd_back_spec"
Theorem hash_map_contains_key_in_list_fwd_spec:
∀ key ls.
hash_map_contains_key_in_list_fwd key ls = Return (slot_t_lookup key ls ≠ NONE)
Proof
fs [hash_map_contains_key_in_list_fwd_def] >>
Induct_on ‘ls’ >>
pure_once_rewrite_tac [hash_map_contains_key_in_list_loop_fwd_def] >>
fs [] >>
(* There remains only the recursive case *)
rw []
QED
val _ = save_spec_thm "hash_map_contains_key_in_list_fwd_spec"
Theorem hash_map_contains_key_fwd_spec:
∀ hm key.
hash_map_t_inv hm ⇒
hash_map_contains_key_fwd hm key = Return (lookup_s hm key ≠ NONE)
Proof
fs [hash_map_contains_key_fwd_def] >>
fs [hash_key_fwd_def] >>
rw [] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >>
progress >> gvs []
>- (
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >>
massage >> int_tac) >>
progress >> massage >> gvs [int_rem_def]
>- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
progress >>
fs [lookup_s_def, vec_index_def, slots_t_lookup_def]
QED
val _ = save_spec_thm "hash_map_contains_key_fwd_spec"
Theorem hash_map_get_in_list_fwd_spec:
∀ ls key.
case hash_map_get_in_list_fwd key ls of
| Diverge => F
| Fail _ => slot_t_lookup key ls = NONE
| Return x => slot_t_lookup key ls = SOME x
Proof
fs [hash_map_get_in_list_fwd_def] >>
Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_get_in_list_loop_fwd_def] >>
fs [] >>
rw []
QED
val _ = save_spec_thm "hash_map_get_in_list_fwd_spec"
Theorem hash_map_get_fwd_spec:
∀ hm key.
hash_map_t_inv hm ⇒
case hash_map_get_fwd hm key of
| Diverge => F
| Fail _ => lookup_s hm key = NONE
| Return x => lookup_s hm key = SOME x
Proof
rw [hash_map_get_fwd_def] >>
fs [hash_key_fwd_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >>
progress >> gvs []
>- (
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >>
massage >> int_tac) >>
progress >> massage >> gvs [int_rem_def]
>- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
progress >>
gvs [lookup_s_def, vec_index_def, slots_t_lookup_def]
QED
val _ = save_spec_thm "hash_map_get_fwd_spec"
Theorem hash_map_get_mut_in_list_fwd_spec:
∀ ls key.
case hash_map_get_mut_in_list_fwd ls key of
| Diverge => F
| Fail _ => slot_t_lookup key ls = NONE
| Return x => slot_t_lookup key ls = SOME x
Proof
fs [hash_map_get_mut_in_list_fwd_def] >>
Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_get_mut_in_list_loop_fwd_def] >>
fs [] >>
rw []
QED
val _ = save_spec_thm "hash_map_get_mut_in_list_fwd_spec"
Theorem hash_map_get_mut_fwd_spec:
∀ hm key.
hash_map_t_inv hm ⇒
case hash_map_get_mut_fwd hm key of
| Diverge => F
| Fail _ => lookup_s hm key = NONE
| Return x => lookup_s hm key = SOME x
Proof
rw [hash_map_get_mut_fwd_def] >>
fs [hash_key_fwd_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >>
progress >> gvs []
>- (
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >>
massage >> int_tac) >>
progress >> massage >> gvs [int_rem_def]
>- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
progress >>
gvs [lookup_s_def, vec_index_def, slots_t_lookup_def]
QED
val _ = save_spec_thm "hash_map_get_mut_fwd_spec"
Theorem hash_map_get_mut_in_list_back_spec:
∀ ls key nx.
slot_t_lookup key ls ≠ NONE ⇒
∃ nls. hash_map_get_mut_in_list_back ls key nx = Return nls ∧
slot_t_lookup key nls = SOME nx ∧
(∀ k. k ≠ key ⇒ slot_t_lookup k nls = slot_t_lookup k ls)
Proof
fs [hash_map_get_mut_in_list_back_def] >>
Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_get_mut_in_list_loop_back_def] >>
fs [] >>
rw [] >>
fs [] >>
progress >>
fs []
QED
val _ = save_spec_thm "hash_map_get_mut_in_list_back_spec"
Theorem hash_map_get_mut_back_spec:
∀ hm key nx.
lookup_s hm key ≠ NONE ⇒
hash_map_t_inv hm ⇒
∃ hm1. hash_map_get_mut_back hm key nx = Return hm1 ∧
lookup_s hm1 key = SOME nx ∧
(∀ k. k ≠ key ⇒ lookup_s hm1 k = lookup_s hm k)
Proof
rw [hash_map_get_mut_back_def] >>
fs [hash_key_fwd_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >>
progress >> gvs []
>- (
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >>
massage >> int_tac) >>
progress >> massage >> gvs [int_rem_def]
(* TODO: we did this proof many times *)
>- (irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
progress >>
gvs [lookup_s_def, vec_index_def, slots_t_lookup_def] >>
progress
(* TODO: again the same proof *)
>- (massage >> irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
gvs [] >>
conj_tac
>-(
sg_dep_rewrite_goal_tac index_update_diff
>- (fs [] >> irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
fs []
) >>
rw [] >>
Cases_on ‘usize_to_int k % len (vec_to_list hm.hash_map_slots) = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >>
fs []
>- (
sg_dep_rewrite_goal_tac index_update_diff
>- (fs [] >> irule pos_mod_pos_lt >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
fs []
) >>
sg_dep_rewrite_goal_tac index_update_same
>- (
rw []
>- (irule pos_mod_pos_lt >> massage >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac)
>- (irule pos_mod_pos_lt >> massage >> fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac)
) >>
fs []
QED
val _ = save_spec_thm "hash_map_get_mut_back_spec"
Theorem hash_map_remove_from_list_fwd_spec:
∀ key l i ls.
hash_map_remove_from_list_fwd key ls = Return (slot_t_lookup key ls)
Proof
fs [hash_map_remove_from_list_fwd_def] >>
Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_remove_from_list_loop_fwd_def] >>
rw [] >>
metis_tac []
QED
val _ = save_spec_thm "hash_map_remove_from_list_fwd_spec"
Theorem lookup_SOME_not_empty:
∀ ls k. lookup k ls ≠ NONE ⇒ 0 < len ls
Proof
Induct_on ‘ls’ >> fs [] >> rw [] >>
qspec_assume ‘ls’ len_pos >>
int_tac
QED
Theorem slot_t_lookup_SOME_not_empty:
∀ ls i k.
0 ≤ i ⇒
i < len ls ⇒
slot_t_lookup k (index i ls) ≠ NONE ⇒
0 < len (FLAT (MAP list_t_v ls))
Proof
Induct_on ‘ls’ >> rw [] >> try_tac int_tac >>
gvs [index_eq] >>
Cases_on ‘i = 0’ >> fs []
>-(
qspec_assume ‘FLAT (MAP list_t_v ls)’ len_pos >>
imp_res_tac lookup_SOME_not_empty >> int_tac
) >>
qspec_assume ‘list_t_v h’ len_pos >>
last_x_assum (qspecl_assume [‘i - 1’, ‘k’]) >>
sg ‘0 ≤ i - 1 ∧ i - 1 < len ls ∧ i ≠ 0’ >- int_tac >>
gvs [] >>
int_tac
QED
Theorem lookup_s_SOME_not_empty:
∀ hm key.
hash_map_t_inv hm ⇒
lookup_s hm key ≠ NONE ⇒ 0 < len_s hm
Proof
rw [lookup_s_def, slots_t_lookup_def, len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
sg ‘0 < len (vec_to_list hm.hash_map_slots)’
>- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def] >> int_tac) >>
irule slot_t_lookup_SOME_not_empty >>
qexists ‘usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >>
qexists ‘key’ >>
rw []
>-(irule pos_mod_pos_is_pos >> massage >> int_tac) >>
irule pos_mod_pos_lt >> massage >> int_tac
QED
Theorem hash_map_remove_fwd_spec:
∀ hm key.
hash_map_t_inv hm ⇒
hash_map_remove_fwd hm key = Return (lookup_s hm key)
Proof
rw [hash_map_remove_fwd_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >> fs [] >>
sg ‘0 < usize_to_int (vec_len hm.hash_map_slots)’
>- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def, vec_len_def] >> massage >> int_tac) >>
fs [vec_len_def] >> massage >>
(* TODO: rewriting for: usize_to_int (int_to_usize (len (vec_to_list v))) = len (vec_to_list v) *)
progress >>
progress >> fs [int_rem_def, vec_len_def] >> massage
>- (irule pos_mod_pos_lt >> fs []) >>
progress >>
gvs [lookup_s_def, slots_t_lookup_def, vec_index_def] >>
case_tac >> fs [] >>
progress >>
(* Prove that we can decrement the number of entries *)
qspecl_assume [‘hm’, ‘key’] lookup_s_SOME_not_empty >>
gvs [lookup_s_def, slots_t_lookup_def, len_s_def, hash_map_t_inv_def, hash_map_t_base_inv_def] >>
int_tac
QED
val _ = save_spec_thm "hash_map_remove_fwd_spec"
Theorem every_distinct_remove_every_distinct:
∀ k0 k1 ls0.
EVERY (λy. k1 ≠ FST y) ls0 ⇒
EVERY (λy. k1 ≠ FST y) (remove k0 ls0)
Proof
Induct_on ‘ls0’ >> fs [] >> rw [] >>
Cases_on ‘h’ >> fs [] >>
case_tac >> fs []
QED
Theorem hash_map_remove_from_list_back_spec:
∀ key ls.
∃ ls1. hash_map_remove_from_list_back key ls = Return ls1 ∧
(∀ l i. slot_t_inv l i ls ⇒
slot_t_inv l i ls1 ∧
list_t_v ls1 = remove key (list_t_v ls) ∧
slot_t_lookup key ls1 = NONE ∧
(∀ k. k ≠ key ⇒ slot_t_lookup k ls1 = slot_t_lookup k ls) ∧
(case slot_t_lookup key ls of
| NONE => len (list_t_v ls1) = len (list_t_v ls)
| SOME _ => len (list_t_v ls1) = len (list_t_v ls) - 1))
Proof
fs [hash_map_remove_from_list_back_def] >>
Induct_on ‘ls’ >> pure_once_rewrite_tac [hash_map_remove_from_list_loop_back_def] >>
fs [slot_t_inv_def] >>
fs [distinct_keys_def, pairwise_rel_def] >>
rw []
>- (metis_tac [])
>- (
last_x_assum ignore_tac >>
pop_assum ignore_tac >>
pop_assum ignore_tac >>
Induct_on ‘ls’ >> fs []
) >>
progress >>
rw [] >> gvs [pairwise_rel_def]
>- metis_tac [every_distinct_remove_every_distinct]
>- metis_tac []
>- metis_tac []
>- metis_tac []
>- metis_tac [] >>
case_tac >> fs [] >- metis_tac [] >>
first_x_assum (qspecl_assume [‘l’, ‘i’]) >> gvs [] >>
pop_assum sg_premise_tac >- metis_tac [] >> fs []
QED
val _ = save_spec_thm "hash_map_remove_from_list_back_spec"
(* TODO: automate this *)
Theorem hash_map_remove_back_branch_eq:
∀ key hm a.
(case lookup key (list_t_v (vec_index hm.hash_map_slots a)) of
NONE =>
do
l0 <-
hash_map_remove_from_list_back key
(vec_index hm.hash_map_slots a);
v <- vec_index_mut_back hm.hash_map_slots a l0;
Return (hm with hash_map_slots := v)
od
| SOME x0 =>
do
i0 <- usize_sub hm.hash_map_num_entries (int_to_usize 1);
l0 <-
hash_map_remove_from_list_back key
(vec_index hm.hash_map_slots a);
v <- vec_index_mut_back hm.hash_map_slots a l0;
Return
(hm with <|hash_map_num_entries := i0; hash_map_slots := v|>)
od) =
(do
i0 <- (case lookup key (list_t_v (vec_index hm.hash_map_slots a)) of
| NONE => Return hm.hash_map_num_entries
| SOME _ => usize_sub hm.hash_map_num_entries (int_to_usize 1));
l0 <-
hash_map_remove_from_list_back key
(vec_index hm.hash_map_slots a);
v <- vec_index_mut_back hm.hash_map_slots a l0;
Return
(hm with <|hash_map_num_entries := i0; hash_map_slots := v|>)
od)
Proof
rw [bind_def] >>
rpt (case_tac >> fs []) >>
Cases_on ‘hm’ >> fs [] >>
fs (TypeBase.updates_of “:'a hash_map_t”)
QED
(* TODO: this doesn't work very well *)
Theorem lookup_cond_decr_entries_eq:
∀ hm key i.
hash_map_t_inv hm ⇒
usize_to_int i < len (vec_to_list hm.hash_map_slots) ⇒
∃ j.
(case lookup key (list_t_v (vec_index hm.hash_map_slots i)) of
NONE => Return hm.hash_map_num_entries
| SOME v => usize_sub hm.hash_map_num_entries (int_to_usize 1)) = Return j ∧
(lookup key (list_t_v (vec_index hm.hash_map_slots i)) = NONE ⇒ j = hm.hash_map_num_entries) ∧
(lookup key (list_t_v (vec_index hm.hash_map_slots i)) ≠ NONE ⇒
usize_to_int j + 1 = usize_to_int hm.hash_map_num_entries)
Proof
rw [] >>
case_tac >>
progress >>
qspecl_assume [‘vec_to_list hm.hash_map_slots’, ‘usize_to_int i’, ‘key’] slot_t_lookup_SOME_not_empty >>
gvs [vec_index_def] >>
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
int_tac
QED
(* TODO: when saving a spec theorem, check that all the variables which appear
in the pre/postconditions also appear in the application *)
Theorem hash_map_remove_back_spec:
∀ hm key.
hash_map_t_inv hm ⇒
∃ hm1. hash_map_remove_back hm key = Return hm1 ∧
hash_map_t_inv hm1 ∧
lookup_s hm1 key = NONE ∧
(∀ k. k ≠ key ⇒ lookup_s hm1 k = lookup_s hm k) ∧
(case lookup_s hm key of
| NONE => len_s hm1 = len_s hm
| SOME _ => len_s hm1 = len_s hm - 1)
Proof
rw [hash_map_remove_back_def] >>
(* TODO: automate *)
qspec_assume ‘hm.hash_map_slots’ vec_len_spec >>
fs [vec_len_def] >>
sg ‘0 < usize_to_int (vec_len hm.hash_map_slots)’
>-(fs [hash_map_t_inv_def, hash_map_t_base_inv_def, gt_eq_lt, vec_len_def] >> massage >> fs []) >>
(* TODO: we have to prove this several times - it would be good to remember the preconditions
we proved, sometimes *)
sg ‘usize_to_int key % len (vec_to_list hm.hash_map_slots) < usize_to_int (vec_len hm.hash_map_slots)’
>- (fs [vec_len_def] >> massage >> irule pos_mod_pos_lt >> int_tac) >>
(* TODO: add a rewriting rule *)
sg ‘usize_to_int (vec_len hm.hash_map_slots) = len (vec_to_list hm.hash_map_slots)’
>- (fs [vec_len_def] >> massage >> fs []) >>
fs [vec_len_def] >>
massage >>
progress >>
progress >> fs [int_rem_def, vec_len_def] >>
progress >>
gvs [] >>
fs [hash_map_remove_back_branch_eq] >>
qspecl_assume [‘hm’, ‘key’, ‘a’] lookup_cond_decr_entries_eq >>
gvs [] >>
progress >>
progress >> fs [vec_len_def] >>
(* Prove the post-condition *)
sg ‘let i = usize_to_int key % len (vec_to_list hm.hash_map_slots) in
slot_t_inv (len (vec_to_list hm.hash_map_slots)) i (index i (vec_to_list hm.hash_map_slots))’
>- (fs [hash_map_t_inv_def, hash_map_t_base_inv_def, slots_t_inv_def]) >> fs [] >>
gvs [vec_index_def] >>
qpat_assum ‘∀l. _’ imp_res_tac >>
rw []
>- (
fs [hash_map_t_inv_def, hash_map_t_base_inv_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
rw []
>- (
(* The num_entries has been correctly updated *)
sg_dep_rewrite_goal_tac len_FLAT_MAP_update >- int_tac >> fs [] >> pop_assum ignore_tac >> gvs [] >>
(* Case analysis on: ‘lookup key (index (key % len slots) slots)’ *)
pop_assum mp_tac >> case_tac >> fs [] >>
int_tac
)
>- (
fs [slots_t_inv_def] >> rw [] >>
(* TODO: this is annoying: we proved this many times *)
last_x_assum (qspec_assume ‘i’) >>
gvs [vec_index_def] >>
qpat_x_assum ‘∀l. _’ imp_res_tac >>
Cases_on ‘i = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >> fs []
>- (
sg_dep_rewrite_goal_tac index_update_diff
>- (fs [] >> int_tac) >> fs []
) >>
sg_dep_rewrite_goal_tac index_update_same
>- (fs [] >> int_tac) >> fs []
) >>
(* num_entries ≤ max_load *)
Cases_on ‘lookup key (list_t_v (index
(usize_to_int key % len (vec_to_list hm.hash_map_slots))
(vec_to_list hm.hash_map_slots)))’ >> gvs [] >>
(* Remains the case where we decrment num_entries - TODO: this is too much work, should be easier *)
gvs [usize_sub_def, mk_usize_def] >>
massage >>
sg ‘0 ≤ len_s hm - 1 ∧ len_s hm - 1 ≤ usize_max’
>- (fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >> int_tac) >>
fs [len_s_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
gvs [] >>
massage >>
Cases_on ‘hm.hash_map_max_load_factor’ >> gvs [] >>
disj1_tac >> int_tac)
>- (
fs [lookup_s_def, slots_t_lookup_def] >>
(* TODO: we did this too many times *)
sg_dep_rewrite_goal_tac index_update_diff
>- (fs [] >> int_tac) >> fs [] >>
metis_tac []
)
>- (
(* Lookup of k ≠ key *)
fs [lookup_s_def, slots_t_lookup_def] >>
Cases_on ‘usize_to_int k % len (vec_to_list hm.hash_map_slots) = usize_to_int key % len (vec_to_list hm.hash_map_slots)’ >> fs []
>- (
sg_dep_rewrite_goal_tac index_update_diff
>- (fs [] >> int_tac) >> fs [] >>
metis_tac []) >>
sg_dep_rewrite_goal_tac index_update_same
>- (rw [] >> try_tac int_tac >> irule pos_mod_pos_lt >> fs [] >> massage >> fs []) >> fs [] >>
case_tac >> fs [] >>
metis_tac []
) >>
(* The length is correctly updated *)
fs [lookup_s_def, len_s_def, slots_t_lookup_def, hash_map_t_al_v_def, hash_map_t_v_def] >>
case_tac >> gvs [] >>
sg_dep_rewrite_goal_tac len_FLAT_MAP_update >> fs [] >> int_tac
QED
val _ = save_spec_thm "hash_map_remove_back_spec"
val _ = export_theory ()
|