blob: 0d6372c14fe3d36b97232772ad693c92686d0231 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
(** Properties about the hashmap written on disk *)
module Hashmap.Properties
open Primitives
open Hashmap.Funs
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
/// Below, we focus on the functions to read from disk/write to disk to showcase
/// how such reasoning which mixes opaque functions together with a state-error
/// monad can be performed.
(*** Hypotheses *)
/// [state_v] gives us the hash map currently stored on disk
assume
val state_v : state -> hashMap_t u64
/// [serialize] updates the hash map stored on disk
assume
val serialize_lem (hm : hashMap_t u64) (st : state) : Lemma (
match hashmap_utils_serialize hm st with
| Fail _ -> True
| Ok (st', ()) -> state_v st' == hm)
[SMTPat (hashmap_utils_serialize hm st)]
/// [deserialize] gives us the hash map stored on disk, without updating it
assume
val deserialize_lem (st : state) : Lemma (
match hashmap_utils_deserialize st with
| Fail _ -> True
| Ok (st', hm) -> hm == state_v st /\ st' == st)
[SMTPat (hashmap_utils_deserialize st)]
(*** Lemmas *)
/// The obvious lemma about [insert_on_disk]: the updated hash map stored on disk
/// is exactly the hash map produced from inserting the binding ([key], [value])
/// in the hash map previously stored on disk.
val insert_on_disk_lem (key : usize) (value : u64) (st : state) : Lemma (
match insert_on_disk key value st with
| Fail _ -> True
| Ok (st', ()) ->
let hm = state_v st in
match hashMap_insert u64 hm key value with
| Fail _ -> False
| Ok hm' -> hm' == state_v st')
let insert_on_disk_lem key value st = ()
|