1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
open Identifiers
open Types
(* TODO: I often write "abstract" (value, borrow content, etc.) while I should
* write "abstraction" (because those values are not abstract, they simply are
* inside abstractions) *)
module VarId = IdGen ()
module BorrowId = IdGen ()
module SymbolicValueId = IdGen ()
module AbstractionId = IdGen ()
(** A variable *)
type big_int = Z.t
let big_int_of_yojson (json : Yojson.Safe.t) : (big_int, string) result =
match json with
| `Int i -> Ok (Z.of_int i)
| `Intlit is -> Ok (Z.of_string is)
| _ -> Error "not an integer or an integer literal"
let big_int_to_yojson (i : big_int) = `Intlit (Z.to_string i)
let pp_big_int (fmt : Format.formatter) (bi : big_int) : unit =
Format.pp_print_string fmt (Z.to_string bi)
let show_big_int (bi : big_int) : string = Z.to_string bi
type scalar_value = { value : big_int; int_ty : integer_type } [@@deriving show]
(** A scalar value
Note that we use unbounded integers everywhere.
We then harcode the boundaries for the different types.
*)
(** A constant value *)
type constant_value =
| Scalar of scalar_value
| Bool of bool
| Char of char
| String of string
[@@deriving show]
type symbolic_value = { sv_id : SymbolicValueId.id; sv_ty : rty }
[@@deriving show]
(** Symbolic value *)
type symbolic_proj_comp = {
svalue : symbolic_value; (** The symbolic value itself *)
rset_ended : RegionId.set_t;
(** The regions used in the symbolic value which have already ended *)
}
[@@deriving show]
(** A complementary projector over a symbolic value.
"Complementary" stands for the fact that it is a projector over all the
regions *but* the ones which are listed in the projector.
*)
(** Ancestor for iter visitor for [typed_value] *)
class ['self] iter_typed_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_constant_value : 'env -> constant_value -> unit = fun _ _ -> ()
method visit_erased_region : 'env -> erased_region -> unit = fun _ _ -> ()
method visit_symbolic_proj_comp : 'env -> symbolic_proj_comp -> unit =
fun _ _ -> ()
method visit_ety : 'env -> ety -> unit = fun _ _ -> ()
end
(** Ancestor for map visitor for [typed_value] *)
class ['self] map_typed_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.map
method visit_constant_value : 'env -> constant_value -> constant_value =
fun _ cv -> cv
method visit_erased_region : 'env -> erased_region -> erased_region =
fun _ r -> r
method visit_symbolic_proj_comp
: 'env -> symbolic_proj_comp -> symbolic_proj_comp =
fun _ sv -> sv
method visit_ety : 'env -> ety -> ety = fun _ ty -> ty
end
(** An untyped value, used in the environments *)
type value =
| Concrete of constant_value (** Concrete (non-symbolic) value *)
| Adt of adt_value (** Enumerations and structures *)
| Bottom (** No value (uninitialized or moved value) *)
| Borrow of borrow_content (** A borrowed value *)
| Loan of loan_content (** A loaned value *)
| Symbolic of symbolic_proj_comp (** Unknown (symbolic) value *)
and adt_value = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_value list;
}
and borrow_content =
| SharedBorrow of (BorrowId.id[@opaque]) (** A shared value *)
| MutBorrow of (BorrowId.id[@opaque]) * typed_value
(** A mutably borrowed value. *)
| InactivatedMutBorrow of (BorrowId.id[@opaque])
(** An inactivated mut borrow.
This is used to model [two-phase borrows](https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html).
When evaluating a two-phase mutable borrow, we first introduce an inactivated
borrow which behaves like a shared borrow, until the moment we actually *use*
the borrow: at this point, we end all the other shared borrows (or inactivated
borrows - though there shouldn't be any other inactivated borrows if the program
is well typed) of this value and replace the inactivated borrow with a
mutable borrow.
A simple use case of two-phase borrows:
```
let mut v = Vec::new();
v.push(v.len());
```
This gets desugared to (something similar to) the following MIR:
```
v = Vec::new();
v1 = &mut v;
v2 = &v; // We need this borrow, but v has already been mutably borrowed!
l = Vec::len(move v2);
Vec::push(move v1, move l); // In practice, v1 gets activated only here
```
*)
and loan_content =
| SharedLoan of (BorrowId.set_t[@opaque]) * typed_value
| MutLoan of (BorrowId.id[@opaque])
(** TODO: we might want to add a set of borrow ids (useful for inactivated
borrows, and extremely useful when giving shared values to abstractions).
*)
and typed_value = { value : value; ty : ety }
[@@deriving
show,
visitors
{
name = "iter_typed_value";
variety = "iter";
ancestors = [ "iter_typed_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_typed_value";
variety = "map";
ancestors = [ "map_typed_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
(** "Regular" typed value (we map variables to typed values) *)
(** When giving shared borrows to functions (i.e., inserting shared borrows inside
abstractions) we need to reborrow the shared values. When doing so, we lookup
the shared values and apply some special projections to the shared value
(until we can't go further, i.e., we find symbolic values which may get
expanded upon reading them later), which don't generate avalues but
sets of borrow ids and symbolic values.
Note that as shared values can't get modified it is ok to forget the
structure of the values we projected, and only keep the set of borrows
(and symbolic values).
TODO: we may actually need to remember the structure, in order to know
which borrows are inside which other borrows...
*)
type abstract_shared_borrow =
| AsbBorrow of (BorrowId.id[@opaque])
| AsbProjReborrows of (symbolic_value[@opaque]) * (rty[@opaque])
[@@deriving show]
type abstract_shared_borrows = abstract_shared_borrow list
(** A set of abstract shared borrows *)
type aproj =
| AProjLoans of symbolic_value
| AProjBorrows of symbolic_value * rty
[@@deriving show]
type region = RegionVarId.id Types.region [@@deriving show]
(** Ancestor for iter visitor for [typed_avalue] *)
class ['self] iter_typed_avalue_base =
object (self : 'self)
inherit [_] iter_typed_value
method visit_region : 'env -> region -> unit = fun _ _ -> ()
method visit_aproj : 'env -> aproj -> unit = fun _ _ -> ()
method visit_rty : 'env -> rty -> unit = fun _ _ -> ()
end
(** Ancestor for MAP visitor for [typed_avalue] *)
class ['self] map_typed_avalue_base =
object (self : 'self)
inherit [_] map_typed_value
method visit_region : 'env -> region -> region = fun _ r -> r
method visit_aproj : 'env -> aproj -> aproj = fun _ p -> p
method visit_rty : 'env -> rty -> rty = fun _ ty -> ty
end
(** Abstraction values are used inside of abstractions to properly model
borrowing relations introduced by function calls.
When calling a function, we lose information about the borrow graph:
part of it is thus "abstracted" away.
*)
type avalue =
| AConcrete of constant_value
(** Note that this case is not used in the projections to keep track of the
borrow graph (because there are no borrows in "concrete" values!) but
to correctly instantiate the backward functions (we may give back some
values at different moments: we need to remember what those values were
precisely). Also note that even though avalues and values are not the
same, once values are projected to avalues, those avalues still have
the structure of the original values (this is necessary, again, to
correctly instantiate the backward functions)
*)
| AAdt of adt_avalue
| ABottom
| ALoan of aloan_content
| ABorrow of aborrow_content
| ASymbolic of aproj
and adt_avalue = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_avalue list;
}
(** A loan content as stored in an abstraction.
Note that the children avalues are independent of the parent avalues.
For instance, the child avalue contained in an [AMutLoan] will likely
contain other, independent loans.
Keeping track of the hierarchy is not necessary to maintain the borrow graph
(which is the primary role of the abstractions), but it is necessary
to properly instantiate the backward functions when generating the pure
translation.
*)
and aloan_content =
| AMutLoan of (BorrowId.id[@opaque]) * typed_avalue
(** A mutable loan owned by an abstraction.
Example:
========
```
fn f<'a>(...) -> &'a mut &'a mut u32;
let px = f(...);
```
We get (after some symbolic exansion):
```
abs0 {
a_mut_loan l0 (a_mut_loan l1)
}
px -> mut_borrow l0 (mut_borrow @s1)
```
*)
| ASharedLoan of (BorrowId.set_t[@opaque]) * typed_value * typed_avalue
(** A shared loan owned by an abstraction.
Example:
========
```
fn f<'a>(...) -> &'a u32;
let px = f(...);
```
We get:
```
abs0 { a_shared_loan {l0} @s0 ⊥ }
px -> shared_loan l0
```
*)
| AEndedMutLoan of { given_back : typed_avalue; child : typed_avalue }
(** An ended mutable loan in an abstraction.
We need it because abstractions must keep track of the values
we gave back to them, so that we can correctly instantiate
backward functions.
Example:
========
```
abs0 { a_mut_loan l0 ⊥ }
x -> mut_borrow l0 (U32 3)
```
After ending `l0`:
```
abs0 { a_ended_mut_loan { given_back = U32 3; child = ⊥; }
x -> ⊥
```
TODO: in the formalization, given_back was initially a typed value
(not an avalue). It seems more consistent to use a value, especially
because then the invariants about the borrows are simpler (otherwise,
there may be borrow ids duplicated in the context, which is very
annoying).
I think the original idea was that using values would make it
simple to instantiate the backward function (because projecting
deconstructs a bit the values with which we feed the function).
*)
| AEndedSharedLoan of typed_value * typed_avalue
(** Similar to [AEndedMutLoan] but in this case there are no avalues to
give back. Actually, we could probably forget the shared value
altogether (and just keep the child avalue).
*)
| AIgnoredMutLoan of (BorrowId.id[@opaque]) * typed_avalue
(** An ignored mutable loan.
We need to keep track of ignored mutable loans, because we may have
to apply projections on the values given back to those loans (say
you have a borrow of type `&'a mut &'b mut`, in the abstraction 'b,
the outer loan is ignored, however you need to keep track of it so
that when ending the borrow corresponding to 'a you can correctly
project on the inner value).
Example:
========
```
fn f<'a,'b>(...) -> &'a mut &'b mut u32;
let x = f(...);
> abs'a { a_mut_loan l0 (a_ignored_mut_loan l1 ⊥) }
> abs'b { a_ignored_mut_loan l0 (a_mut_loan l1 ⊥) }
> x -> mut_borrow l0 (mut_borrow l1 @s1)
```
*)
| AEndedIgnoredMutLoan of { given_back : typed_avalue; child : typed_avalue }
(** Similar to [AEndedMutLoan], for ignored loans *)
| AIgnoredSharedLoan of typed_avalue
(** An ignored shared loan.
Example:
========
```
fn f<'a,'b>(...) -> &'a &'b u32;
let x = f(...);
> abs'a { a_shared_loan {l0} (shared_borrow l1) (a_ignored_shared_loan ⊥) }
> abs'b { a_ignored_shared_loan (a_shared_loan {l1} @s1 ⊥) }
> x -> shared_borrow l0
```
*)
(** Note that when a borrow content is ended, it is replaced by ⊥ (while
we need to track ended loans more precisely, especially because of their
children values).
Note that contrary to [aloan_content], here the children avalues are
note independent of the parent avalues. For instance, a value
`AMutBorrow (_, AMutBorrow (_, ...)` (ignoring the types) really is
to be seen like a `mut_borrow ... (mut_borrow ...)`.
TODO: be more precise about the ignored borrows (keep track of the borrow
ids)?
*)
and aborrow_content =
| AMutBorrow of (BorrowId.id[@opaque]) * typed_avalue
(** A mutable borrow owned by an abstraction.
Is used when an abstraction "consumes" borrows, when giving borrows
as arguments to a function.
Example:
========
```
fn f<'a>(px : &'a mut u32);
> x -> mut_loan l0
> px -> mut_borrow l0 (U32 0)
f(move px);
> x -> mut_loan l0
> px -> ⊥
> abs0 { a_mut_borrow l0 (U32 0) }
```
*)
| ASharedBorrow of (BorrowId.id[@opaque])
(** A shared borrow owned by an abstraction.
Example:
========
```
fn f<'a>(px : &'a u32);
> x -> shared_loan {l0} (U32 0)
> px -> shared_borrow l0
f(move px);
> x -> shared_loan {l0} (U32 0)
> px -> ⊥
> abs0 { a_shared_bororw l0 }
```
*)
| AIgnoredMutBorrow of typed_avalue
(** An ignored mutable borrow.
This is mostly useful for typing concerns: when a borrow doesn't
belong to an abstraction, it would be weird to ignore it altogether.
Example:
========
```
fn f<'a,'b>(ppx : &'a mut &'b mut u32);
> x -> mut_loan l0
> px -> mut_loan l1
> ppx -> mut_borrow l1 (mut_borrow l0 (U32 0))
f(move ppx);
> x -> mut_loan l0
> px -> mut_loan l1
> ppx -> ⊥
> abs'a { a_mut_borrow l1 (a_ignored_mut_borrow (U32 0)) } // TODO: duplication
> abs'b { a_ignored_mut_borrow (a_mut_borrow l0 (U32 0)) }
```
TODO: this is annoying, we are duplicating information. Maybe we
could introduce an "Ignored" value? We have to pay attention to
two things:
- introducing ⊥ when ignoring a value is not always possible, because
we check whether the borrowed value contains ⊥ when giving back a
borrowed value (if it is the case we give back ⊥, otherwise we
introduce a symbolic value). This is necessary when ending nested
borrows with the same lifetime: when ending the inner borrow we
actually give back a value, however when ending the outer borrow
we need to give back ⊥.
TODO: actually we don't do that anymore, we check if the borrowed
avalue contains ended regions (which is cleaner and more robust).
- we may need to remember the precise values given to the
abstraction so that we can properly call the backward functions
when generating the pure translation.
*)
| AProjSharedBorrow of (abstract_shared_borrows[@opaque])
(** A projected shared borrow.
When giving shared borrows as arguments to function calls, we
introduce new borrows to keep track of the fact that the function
might reborrow values inside. Note that as shared values are immutable,
we don't really need to remember the structure of the shared values.
Example:
========
Below, when calling `f`, we need to introduce one shared borrow per
borrow in the argument.
```
fn f<'a,'b>(pppx : &'a &'b &'c mut u32);
> x -> mut_loan l0
> px -> shared_loan {l1} (mut_borrow l0 (U32 0))
> ppx -> shared_loan {l2} (shared_borrow l1)
> pppx -> shared_borrow l2
f(move pppx);
> x -> mut_loan l0
> px -> shared_loan {l1, l3, l4} (mut_borrow l0 (U32 0))
> ppx -> shared_loan {l2} (shared_borrow l1)
> pppx -> ⊥
> abs'a { a_proj_shared_borrow {l2} }
> abs'b { a_proj_shared_borrow {l3} } // l3 reborrows l1
> abs'c { a_proj_shared_borrow {l4} } // l4 reborrows l0
```
*)
(* TODO: we may want to merge this with typed_value - would prevent some issues
when accessing fields... *)
and typed_avalue = { value : avalue; ty : rty }
[@@deriving
show,
visitors
{
name = "iter_typed_avalue";
variety = "iter";
ancestors = [ "iter_typed_avalue_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_typed_avalue";
variety = "map";
ancestors = [ "map_typed_avalue_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
type abs = {
abs_id : (AbstractionId.id[@opaque]);
parents : (AbstractionId.set_t[@opaque]); (** The parent abstractions *)
acc_regions : (RegionId.set_t[@opaque]);
(** Union of the regions owned by the (transitive) parent abstractions and
by the current abstraction *)
regions : (RegionId.set_t[@opaque]); (** Regions owned by this abstraction *)
avalues : typed_avalue list; (** The values in this abstraction *)
}
[@@deriving
show,
visitors
{
name = "iter_abs";
variety = "iter";
ancestors = [ "iter_typed_avalue" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_abs";
variety = "map";
ancestors = [ "map_typed_avalue" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
(** Abstractions model the parts in the borrow graph where the borrowing relations
have been abstracted because of a function call.
In order to model the relations between the borrows, we use "abstraction values",
which are a special kind of value.
*)
|