summaryrefslogtreecommitdiff
path: root/src/Values.ml
blob: bab7c9a1e20a3a69a63b49b67ef445efecfbd46b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
open Identifiers
open Types

module VarId = IdGen ()

module BorrowId = IdGen ()

module SymbolicValueId = IdGen ()

module AbstractionId = IdGen ()

module RegionId = IdGen ()

type var = {
  index : VarId.id;  (** Unique variable identifier *)
  name : string option;
  ty : ety;
      (** The variable type - erased type, because variables are not used
       ** in function signatures *)
}

(** A variable *)

type big_int = Z.t

let big_int_of_yojson (json : Yojson.Safe.t) : (big_int, string) result =
  match json with
  | `Int i -> Ok (Z.of_int i)
  | `Intlit is -> Ok (Z.of_string is)
  | _ -> Error "not an integer or an integer literal"

let big_int_to_yojson (i : big_int) = `Intlit (Z.to_string i)

(** A scalar value

    Note that we use unbounded integers everywhere.
    We then harcode the boundaries for the different types.
 *)
type scalar_value =
  | Isize of big_int
  | I8 of big_int
  | I16 of big_int
  | I32 of big_int
  | I64 of big_int
  | I128 of big_int
  | Usize of big_int
  | U8 of big_int
  | U16 of big_int
  | U32 of big_int
  | U64 of big_int
  | U128 of big_int

(** A constant value *)
type constant_value =
  | Scalar of scalar_value
  | Bool of bool
  | Char of char
  | String of string

type symbolic_value = { svalue_id : SymbolicValueId.id; rty : rty }
(** Symbolic value *)

type symbolic_proj_comp = {
  svalue : symbolic_value;  (** The symbolic value itself *)
  rset_ended : BorrowId.Set.t;
      (** The regions used in the symbolic value which have already ended *)
}
(** A complementary projector over a symbolic value.
    
    "Complementary" stands for the fact that it is a projector over all the
    regions *but* the ones which are listed in the projector.
 *)

(** An untyped value, used in the environments *)
type value =
  | Concrete of constant_value  (** Concrete (non-symbolic) value *)
  | Adt of adt_value  (** Enumerations and structures *)
  | Tuple of value FieldId.vector
      (** Tuple - note that units are encoded as 0-tuples *)
  | Bottom  (** No value (uninitialized or moved value) *)
  | Assumed of assumed_value  (** Assumed types (Box, Vec, Cell...) *)
  | Borrow of borrow_content  (** A borrowed value *)
  | Loan of loan_content  (** A loaned value *)
  | Symbolic of symbolic_proj_comp  (** Unknown value *)

and adt_value = {
  def_id : TypeDefId.id;
  variant_id : VariantId.id option;
  regions : erased_region list;
  types : ety list;
  field_values : value FieldId.vector;
}

and borrow_content =
  | SharedBorrow of BorrowId.id  (** A shared value *)
  | MutBorrow of BorrowId.id * value  (** A mutably borrowed value *)
  | InactivatedMutBorrow of BorrowId.id
      (** An inactivated mut borrow.

          This is used to model two-phase borrows. When evaluating a two-phase
          mutable borrow, we first introduce an inactivated borrow which behaves
          like a shared borrow, until the moment we actually *use* the borrow:
          at this point, we end all the other shared borrows (or inactivated borrows
          - though there shouldn't be any other inactivated borrows if the program
          is well typed) of this value and replace the inactivated borrow with a
          mutable borrow.
       *)

and loan_content =
  | SharedLoan of BorrowId.Set.t * value
  | MutLoan of BorrowId.id

and assumed_value = Box of value

type typed_value = { value : value; ty : ety }

type abstract_shared_borrow =
  | AsvSet of BorrowId.Set.t
  | AsvProjReborrows of symbolic_value * rty
  | AsvUntion of abstract_shared_borrow * abstract_shared_borrow
      (** TODO: explanations *)

(** Abstraction values are used inside of abstractions to properly model
    borrowing relations introduced by function calls.

    When calling a function, we lose information about the borrow graph:
    part of it is thus "abstracted" away.
*)
type avalue =
  | AConcrete of constant_value
  | AAdt of aadt_value
  | ATuple of avalue FieldId.vector
  | ABottom
  | AAssumed of aassumed_value
  | AMutBorrow of BorrowId.id * avalue
  | ASharedBorrow of BorrowId.id
  | AMutLoan of BorrowId.id * avalue
  | ASharedLoan of BorrowId.Set.t * value * avalue
  | AEndedMutLoan of value * avalue (* TODO: given_back, child *)
  | AEndedSharedLoan of value * avalue
  | AIgnoredMutLoan of BorrowId.id * avalue
  | AIgnoredMutBorrow of avalue
  | AEndedIgnoredMutLoan of avalue * avalue (* TODO: given back, child *)
  | AIgnoredSharedBorrow of abstract_shared_borrow
  | AIgnoredSharedLoan of abstract_shared_borrow
  | AProjLoans of symbolic_value
  | AProjBorrows of symbolic_value * rty

and aadt_value = {
  adef_id : TypeDefId.id;
  avariant_id : VariantId.id option;
  aregions : erased_region list;
  atypes : rty list;
  afield_values : avalue FieldId.vector;
}

and aassumed_value = ABox of avalue

type abs = {
  parents : AbstractionId.Set.t;  (** The parent abstraction *)
  acc_regions : RegionId.Set.t;
      (** Union of the regions owned by the (transitive) parent abstractions and
          by the current abstraction *)
  regions : RegionId.Set.t;  (** Regions owned by this abstraction *)
  values : avalue list;  (** The values in this abstraction *)
}
(** Abstractions model the parts in the borrow graph where the borrowing relations
    have been abstracted because of a function call.
    
    In order to model the relations between the borrows, we use "abstraction values",
    which are a special kind of value.
*)