1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
open Identifiers
open Types
(** TODO: do we put the type variable/variable/region names everywhere
(to not have to perform lookups by using the ids?) *)
module VarId = IdGen ()
module BorrowId = IdGen ()
module SymbolicValueId = IdGen ()
module AbstractionId = IdGen ()
module RegionId = IdGen ()
type var = {
index : VarId.id; (** Unique variable identifier *)
name : string option;
var_ty : ety;
(** The variable type - erased type, because variables are not used
** in function signatures *)
}
[@@deriving show]
(** A variable *)
type big_int = Z.t
let big_int_of_yojson (json : Yojson.Safe.t) : (big_int, string) result =
match json with
| `Int i -> Ok (Z.of_int i)
| `Intlit is -> Ok (Z.of_string is)
| _ -> Error "not an integer or an integer literal"
let big_int_to_yojson (i : big_int) = `Intlit (Z.to_string i)
let pp_big_int (fmt : Format.formatter) (bi : big_int) : unit =
Format.pp_print_string fmt (Z.to_string bi)
let show_big_int (bi : big_int) : string = Z.to_string bi
type scalar_value = { value : big_int; int_ty : integer_type } [@@deriving show]
(** A scalar value
Note that we use unbounded integers everywhere.
We then harcode the boundaries for the different types.
*)
(** A constant value *)
type constant_value =
| Scalar of scalar_value
| Bool of bool
| Char of char
| String of string
[@@deriving show]
type symbolic_value = { sv_id : SymbolicValueId.id; sv_ty : rty }
[@@deriving show]
(** Symbolic value *)
type symbolic_proj_comp = {
svalue : symbolic_value; (** The symbolic value itself *)
rset_ended : RegionId.set_t;
(** The regions used in the symbolic value which have already ended *)
}
[@@deriving show]
(** A complementary projector over a symbolic value.
"Complementary" stands for the fact that it is a projector over all the
regions *but* the ones which are listed in the projector.
*)
(** An untyped value, used in the environments *)
type value =
| Concrete of constant_value (** Concrete (non-symbolic) value *)
| Adt of adt_value (** Enumerations and structures *)
| Tuple of typed_value FieldId.vector
(** Tuple - note that units are encoded as 0-tuples *)
| Bottom (** No value (uninitialized or moved value) *)
| Assumed of assumed_value (** Assumed types (Box, Vec, Cell...) *)
| Borrow of borrow_content (** A borrowed value *)
| Loan of loan_content (** A loaned value *)
| Symbolic of symbolic_proj_comp (** Unknown value *)
[@@deriving show]
and adt_value = {
def_id : TypeDefId.id;
variant_id : VariantId.id option;
regions : erased_region list;
types : ety list;
field_values : typed_value FieldId.vector;
}
[@@deriving show]
and borrow_content =
| SharedBorrow of BorrowId.id (** A shared value *)
| MutBorrow of BorrowId.id * typed_value (** A mutably borrowed value *)
| InactivatedMutBorrow of BorrowId.id
(** An inactivated mut borrow.
This is used to model two-phase borrows. When evaluating a two-phase
mutable borrow, we first introduce an inactivated borrow which behaves
like a shared borrow, until the moment we actually *use* the borrow:
at this point, we end all the other shared borrows (or inactivated borrows
- though there shouldn't be any other inactivated borrows if the program
is well typed) of this value and replace the inactivated borrow with a
mutable borrow.
*)
[@@deriving show]
and loan_content =
| SharedLoan of BorrowId.set_t * typed_value
| MutLoan of BorrowId.id
[@@deriving show]
and assumed_value = Box of typed_value [@@deriving show]
and typed_value = { value : value; ty : ety } [@@deriving show]
type abstract_shared_borrows =
| AsbSet of BorrowId.set_t
| AsbProjReborrows of symbolic_value * rty
| AsbUnion of abstract_shared_borrows * abstract_shared_borrows
(** TODO: explanations *)
[@@deriving show]
(** Abstraction values are used inside of abstractions to properly model
borrowing relations introduced by function calls.
When calling a function, we lose information about the borrow graph:
part of it is thus "abstracted" away.
*)
type avalue =
| AConcrete of constant_value
| AAdt of aadt_value
| ATuple of typed_avalue FieldId.vector
| ABottom
| ALoan of aloan_content
| ABorrow of aborrow_content
| AAssumed of aassumed_value
| AProj of aproj
[@@deriving show]
and aadt_value = {
adef_id : TypeDefId.id;
avariant_id : VariantId.id option;
aregions : erased_region list;
atypes : rty list;
afield_values : typed_avalue FieldId.vector;
}
[@@deriving show]
and aloan_content =
| AMutLoan of BorrowId.id * typed_avalue
| ASharedLoan of BorrowId.set_t * typed_value * typed_avalue
| AEndedMutLoan of { given_back : typed_value; child : typed_avalue }
| AEndedSharedLoan of typed_value * typed_avalue
| AIgnoredMutLoan of BorrowId.id * typed_avalue
| AIgnoredSharedLoan of abstract_shared_borrows
[@@deriving show]
(** Note that when a borrow content is ended, it is replaced by Bottom (while
we need to track ended loans more precisely, especially because of their
children values) *)
and aborrow_content =
| AMutBorrow of BorrowId.id * typed_avalue
| ASharedBorrow of BorrowId.id
| AIgnoredMutBorrow of typed_avalue
| AEndedIgnoredMutLoan of { given_back : typed_avalue; child : typed_avalue }
| AIgnoredSharedBorrow of abstract_shared_borrows
[@@deriving show]
and aassumed_value = ABox of typed_avalue [@@deriving show]
and aproj =
| AProjLoans of symbolic_value
| AProjBorrows of symbolic_value * rty
[@@deriving show]
and typed_avalue = { avalue : avalue; aty : rty } [@@deriving show]
type abs = {
abs_id : AbstractionId.id;
parents : AbstractionId.set_t; (** The parent abstractions *)
acc_regions : RegionId.set_t;
(** Union of the regions owned by the (transitive) parent abstractions and
by the current abstraction *)
regions : RegionId.set_t; (** Regions owned by this abstraction *)
avalues : typed_avalue list; (** The values in this abstraction *)
}
[@@deriving show]
(** Abstractions model the parts in the borrow graph where the borrowing relations
have been abstracted because of a function call.
In order to model the relations between the borrows, we use "abstraction values",
which are a special kind of value.
*)
|