summaryrefslogtreecommitdiff
path: root/src/Values.ml
blob: b9835ba13c2fa1078980bbfd0255db7789a5bbc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
open Identifiers
open Types

(** TODO: do we put the type variable/variable/region names everywhere
    (to not have to perform lookups by using the ids?)
    No: it is good not to duplicate and to use ids. This allows to split/
    make very explicit the role of variables/identifiers/binders/etc.
 *)

module VarId = IdGen ()

module BorrowId = IdGen ()

module SymbolicValueId = IdGen ()

module AbstractionId = IdGen ()

module RegionId = IdGen ()

(** A variable *)

type big_int = Z.t

let big_int_of_yojson (json : Yojson.Safe.t) : (big_int, string) result =
  match json with
  | `Int i -> Ok (Z.of_int i)
  | `Intlit is -> Ok (Z.of_string is)
  | _ -> Error "not an integer or an integer literal"

let big_int_to_yojson (i : big_int) = `Intlit (Z.to_string i)

let pp_big_int (fmt : Format.formatter) (bi : big_int) : unit =
  Format.pp_print_string fmt (Z.to_string bi)

let show_big_int (bi : big_int) : string = Z.to_string bi

type scalar_value = { value : big_int; int_ty : integer_type } [@@deriving show]
(** A scalar value

    Note that we use unbounded integers everywhere.
    We then harcode the boundaries for the different types.
 *)

(** A constant value *)
type constant_value =
  | Scalar of scalar_value
  | Bool of bool
  | Char of char
  | String of string
[@@deriving show]

type symbolic_value = { sv_id : SymbolicValueId.id; sv_ty : rty }
[@@deriving show]
(** Symbolic value *)

type symbolic_proj_comp = {
  svalue : symbolic_value;  (** The symbolic value itself *)
  rset_ended : RegionId.set_t;
      (** The regions used in the symbolic value which have already ended *)
}
[@@deriving show]
(** A complementary projector over a symbolic value.
    
    "Complementary" stands for the fact that it is a projector over all the
    regions *but* the ones which are listed in the projector.
 *)

(** Polymorphic visitor *)
class virtual ['self] iter_'r_ty_base =
  object (self : 'self)
    method visit_ty : 'env 'r. ('env -> 'r -> unit) -> 'env -> 'r ty -> unit =
      fun visit_'r env ty -> ()
  end

(** A generic, untyped value, used in the environments.

    Parameterized by:
    - 'ty: type
    - 'sv: symbolic value
    - 'bc: borrow content
    - 'lc: loan content

    Can be specialized for "regular" values or values in abstractions *)
type ('r, 'sv, 'bc, 'lc) g_value =
  | Concrete of (constant_value[@opaque])  (** Concrete (non-symbolic) value *)
  | Adt of ('r, 'sv, 'bc, 'lc) g_adt_value
      (** Enumerations, structures, tuples, assumed types. Note that units
          are encoded as 0-tuples  *)
  | Bottom  (** No value (uninitialized or moved value) *)
  | Borrow of 'bc  (** A borrowed value *)
  | Loan of 'lc  (** A loaned value *)
  | Symbolic of 'sv  (** Unknown value *)

and ('r, 'sv, 'bc, 'lc) g_adt_value = {
  variant_id : VariantId.id option; [@opaque]
  field_values : ('r, 'sv, 'bc, 'lc) g_typed_value list;
}

(** "Generic" ADT value (not "GADT" value) *)

and ('r, 'sv, 'bc, 'lc) g_typed_value = {
  value : ('r, 'sv, 'bc, 'lc) g_value;
  ty : 'r ty;
}
[@@deriving
  show,
    visitors
      {
        name = "iter_g_typed_value";
        variety = "iter";
        ancestors = [ "iter_'r_ty_base" ];
        polymorphic = true;
        concrete = true;
      }]

class virtual ['self] iter_typed_value_base =
  object (self : 'self)
    inherit [_] iter_g_typed_value

    method visit_erased_region : 'env. 'env -> erased_region -> unit =
      fun env _ -> ()

    method visit_symbolic_proj_comp : 'env. 'env -> symbolic_proj_comp -> unit =
      fun env _ -> ()
  end

type value =
  (erased_region, symbolic_proj_comp, borrow_content, loan_content) g_value
(** "Regular" value *)

and adt_value =
  (erased_region, symbolic_proj_comp, borrow_content, loan_content) g_adt_value

and typed_value =
  ( erased_region,
    symbolic_proj_comp,
    borrow_content,
    loan_content )
  g_typed_value
[@@deriving
  show,
    visitors
      {
        name = "iter_typed_value";
        variety = "iter";
        ancestors = [ "iter_typed_value_base" ];
        polymorphic = true;
        nude = true (* Don't inherit [VisitorsRuntime.iter] *);
      }]
(** "Regular" typed value (we map variables to typed values) *)

and borrow_content =
  | SharedBorrow of (BorrowId.id[@opaque])  (** A shared value *)
  | MutBorrow of (BorrowId.id[@opaque]) * typed_value
      (** A mutably borrowed value *)
  | InactivatedMutBorrow of (BorrowId.id[@opaque])
      (** An inactivated mut borrow.

          This is used to model two-phase borrows. When evaluating a two-phase
          mutable borrow, we first introduce an inactivated borrow which behaves
          like a shared borrow, until the moment we actually *use* the borrow:
          at this point, we end all the other shared borrows (or inactivated borrows
          - though there shouldn't be any other inactivated borrows if the program
          is well typed) of this value and replace the inactivated borrow with a
          mutable borrow.
       *)

and loan_content =
  | SharedLoan of (BorrowId.set_t[@opaque]) * typed_value
  | MutLoan of (BorrowId.id[@opaque])
[@@deriving show]

type abstract_shared_borrows =
  | AsbSet of BorrowId.set_t
  | AsbProjReborrows of symbolic_value * rty
  | AsbUnion of abstract_shared_borrows * abstract_shared_borrows
      (** TODO: explanations *)
[@@deriving show]

type aproj =
  | AProjLoans of symbolic_value
  | AProjBorrows of symbolic_value * rty
[@@deriving show]

type avalue =
  (RegionVarId.id region, aproj, aborrow_content, aloan_content) g_value
(** Abstraction values are used inside of abstractions to properly model
    borrowing relations introduced by function calls.

    When calling a function, we lose information about the borrow graph:
    part of it is thus "abstracted" away.
*)

and aadt_value =
  (RegionVarId.id region, aproj, aborrow_content, aloan_content) g_adt_value

and typed_avalue =
  (RegionVarId.id region, aproj, aborrow_content, aloan_content) g_typed_value
[@@deriving show]

and aloan_content =
  | AMutLoan of BorrowId.id * typed_avalue
  | ASharedLoan of BorrowId.set_t * typed_value * typed_avalue
  | AEndedMutLoan of { given_back : typed_value; child : typed_avalue }
  | AEndedSharedLoan of typed_value * typed_avalue
  | AIgnoredMutLoan of BorrowId.id * typed_avalue
  | AIgnoredSharedLoan of abstract_shared_borrows
[@@deriving show]

(** Note that when a borrow content is ended, it is replaced by Bottom (while
    we need to track ended loans more precisely, especially because of their
    children values) *)
and aborrow_content =
  | AMutBorrow of BorrowId.id * typed_avalue
  | ASharedBorrow of BorrowId.id
  | AIgnoredMutBorrow of typed_avalue
  | AEndedIgnoredMutLoan of { given_back : typed_avalue; child : typed_avalue }
  | AIgnoredSharedBorrow of abstract_shared_borrows
[@@deriving show]

type abs = {
  abs_id : AbstractionId.id;
  parents : AbstractionId.set_t;  (** The parent abstractions *)
  acc_regions : RegionId.set_t;
      (** Union of the regions owned by the (transitive) parent abstractions and
          by the current abstraction *)
  regions : RegionId.set_t;  (** Regions owned by this abstraction *)
  avalues : typed_avalue list;  (** The values in this abstraction *)
}
[@@deriving show]
(** Abstractions model the parts in the borrow graph where the borrowing relations
    have been abstracted because of a function call.
    
    In order to model the relations between the borrows, we use "abstraction values",
    which are a special kind of value.
*)