1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
open Identifiers
open Types
(** TODO: do we put the type variable/variable/region names everywhere
(to not have to perform lookups by using the ids?)
No: it is good not to duplicate and to use ids. This allows to split/
make very explicit the role of variables/identifiers/binders/etc.
*)
module VarId = IdGen ()
module BorrowId = IdGen ()
module SymbolicValueId = IdGen ()
module AbstractionId = IdGen ()
module RegionId = IdGen ()
(** A variable *)
type big_int = Z.t
let big_int_of_yojson (json : Yojson.Safe.t) : (big_int, string) result =
match json with
| `Int i -> Ok (Z.of_int i)
| `Intlit is -> Ok (Z.of_string is)
| _ -> Error "not an integer or an integer literal"
let big_int_to_yojson (i : big_int) = `Intlit (Z.to_string i)
let pp_big_int (fmt : Format.formatter) (bi : big_int) : unit =
Format.pp_print_string fmt (Z.to_string bi)
let show_big_int (bi : big_int) : string = Z.to_string bi
type scalar_value = { value : big_int; int_ty : integer_type } [@@deriving show]
(** A scalar value
Note that we use unbounded integers everywhere.
We then harcode the boundaries for the different types.
*)
(** A constant value *)
type constant_value =
| Scalar of scalar_value
| Bool of bool
| Char of char
| String of string
[@@deriving show]
type symbolic_value = { sv_id : SymbolicValueId.id; sv_ty : rty }
[@@deriving show]
(** Symbolic value *)
type symbolic_proj_comp = {
svalue : symbolic_value; (** The symbolic value itself *)
rset_ended : RegionId.set_t;
(** The regions used in the symbolic value which have already ended *)
}
[@@deriving show]
(** A complementary projector over a symbolic value.
"Complementary" stands for the fact that it is a projector over all the
regions *but* the ones which are listed in the projector.
*)
(** Ancestor for iter visitor for [typed_value] *)
class ['self] iter_typed_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_constant_value : 'env -> constant_value -> unit = fun _ _ -> ()
method visit_erased_region : 'env -> erased_region -> unit = fun _ _ -> ()
method visit_symbolic_proj_comp : 'env -> symbolic_proj_comp -> unit =
fun _ _ -> ()
method visit_ety : 'env -> ety -> unit = fun _ _ -> ()
end
(** Ancestor for map visitor for [typed_value] *)
class ['self] map_typed_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.map
method visit_constant_value : 'env -> constant_value -> constant_value =
fun _ cv -> cv
method visit_erased_region : 'env -> erased_region -> erased_region =
fun _ r -> r
method visit_symbolic_proj_comp
: 'env -> symbolic_proj_comp -> symbolic_proj_comp =
fun _ sv -> sv
method visit_ety : 'env -> ety -> ety = fun _ ty -> ty
end
(** An untyped value, used in the environments *)
type value =
| Concrete of constant_value (** Concrete (non-symbolic) value *)
| Adt of adt_value (** Enumerations and structures *)
| Bottom (** No value (uninitialized or moved value) *)
| Borrow of borrow_content (** A borrowed value *)
| Loan of loan_content (** A loaned value *)
| Symbolic of symbolic_proj_comp (** Unknown (symbolic) value *)
and adt_value = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_value list;
}
and borrow_content =
| SharedBorrow of (BorrowId.id[@opaque]) (** A shared value *)
| MutBorrow of (BorrowId.id[@opaque]) * typed_value
(** A mutably borrowed value *)
| InactivatedMutBorrow of (BorrowId.id[@opaque])
(** An inactivated mut borrow.
This is used to model two-phase borrows. When evaluating a two-phase
mutable borrow, we first introduce an inactivated borrow which behaves
like a shared borrow, until the moment we actually *use* the borrow:
at this point, we end all the other shared borrows (or inactivated borrows
- though there shouldn't be any other inactivated borrows if the program
is well typed) of this value and replace the inactivated borrow with a
mutable borrow.
*)
and loan_content =
| SharedLoan of (BorrowId.set_t[@opaque]) * typed_value
| MutLoan of (BorrowId.id[@opaque])
and typed_value = { value : value; ty : ety }
[@@deriving
show,
visitors
{
name = "iter_typed_value";
variety = "iter";
ancestors = [ "iter_typed_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_typed_value";
variety = "map";
ancestors = [ "map_typed_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
(** "Regular" typed value (we map variables to typed values) *)
type abstract_shared_borrows =
| AsbSet of BorrowId.set_t
| AsbProjReborrows of symbolic_value * rty
| AsbUnion of abstract_shared_borrows * abstract_shared_borrows
(** TODO: explanations *)
[@@deriving show]
type aproj =
| AProjLoans of symbolic_value
| AProjBorrows of symbolic_value * rty
[@@deriving show]
type region = RegionVarId.id Types.region [@@deriving show]
(** Ancestor for iter visitor for [typed_avalue] *)
class ['self] iter_typed_avalue_base =
object (self : 'self)
inherit [_] iter_typed_value
method visit_region : 'env -> region -> unit = fun _ _ -> ()
method visit_aproj : 'env -> aproj -> unit = fun _ _ -> ()
method visit_abstract_shared_borrows
: 'env -> abstract_shared_borrows -> unit =
fun _ _ -> ()
method visit_rty : 'env -> rty -> unit = fun _ _ -> ()
end
(** Ancestor for MAP visitor for [typed_avalue] *)
class ['self] map_typed_avalue_base =
object (self : 'self)
inherit [_] map_typed_value
method visit_region : 'env -> region -> region = fun _ r -> r
method visit_aproj : 'env -> aproj -> aproj = fun _ p -> p
method visit_abstract_shared_borrows
: 'env -> abstract_shared_borrows -> abstract_shared_borrows =
fun _ asb -> asb
method visit_rty : 'env -> rty -> rty = fun _ ty -> ty
end
type avalue =
| AConcrete of constant_value
| AAdt of aadt_value
| ABottom
| ALoan of aloan_content
| ABorrow of aborrow_content
| ASymbolic of aproj
(** Abstraction values are used inside of abstractions to properly model
borrowing relations introduced by function calls.
When calling a function, we lose information about the borrow graph:
part of it is thus "abstracted" away.
*)
(* TODO: rename to adt_avalue? *)
and aadt_value = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_avalue list;
}
and aloan_content =
| AMutLoan of (BorrowId.id[@opaque]) * typed_avalue
| ASharedLoan of (BorrowId.set_t[@opaque]) * typed_value * typed_avalue
| AEndedMutLoan of { given_back : typed_value; child : typed_avalue }
| AEndedSharedLoan of typed_value * typed_avalue
| AIgnoredMutLoan of (BorrowId.id[@opaque]) * typed_avalue
| AEndedIgnoredMutLoan of { given_back : typed_avalue; child : typed_avalue }
| AIgnoredSharedLoan of abstract_shared_borrows
(** Note that when a borrow content is ended, it is replaced by Bottom (while
we need to track ended loans more precisely, especially because of their
children values) *)
and aborrow_content =
| AMutBorrow of (BorrowId.id[@opaque]) * typed_avalue
| ASharedBorrow of (BorrowId.id[@opaque])
| AIgnoredMutBorrow of typed_avalue
| AIgnoredSharedBorrow of abstract_shared_borrows
(* TODO: we may want to merge this with typed_value - would prevent some issues
when accessing fields... *)
and typed_avalue = { value : avalue; ty : rty }
[@@deriving
show,
visitors
{
name = "iter_typed_avalue";
variety = "iter";
ancestors = [ "iter_typed_avalue_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_typed_avalue";
variety = "map";
ancestors = [ "map_typed_avalue_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
type abs = {
abs_id : AbstractionId.id;
parents : AbstractionId.set_t; (** The parent abstractions *)
acc_regions : RegionId.set_t;
(** Union of the regions owned by the (transitive) parent abstractions and
by the current abstraction *)
regions : RegionId.set_t; (** Regions owned by this abstraction *)
avalues : typed_avalue list; (** The values in this abstraction *)
}
[@@deriving show]
(** Abstractions model the parts in the borrow graph where the borrowing relations
have been abstracted because of a function call.
In order to model the relations between the borrows, we use "abstraction values",
which are a special kind of value.
*)
|