summaryrefslogtreecommitdiff
path: root/src/Translate.ml
blob: 63b6027e2ab11cc2643bd11d8e95039f3f4973d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
open InterpreterStatements
open Interpreter
module L = Logging
module T = Types
module A = CfimAst
module M = Modules
module SA = SymbolicAst
module Micro = PureMicroPasses
open TranslateCore

(** The local logger *)
let log = TranslateCore.log

type symbolic_fun_translation = V.symbolic_value list * SA.expression
(** The result of running the symbolic interpreter on a function:
    - the list of symbolic values used for the input values
    - the generated symbolic AST
 *)

(** Execute the symbolic interpreter on a function to generate a list of symbolic ASTs,
    for the forward function and the backward functions.
 *)
let translate_function_to_symbolics (config : C.partial_config)
    (trans_ctx : trans_ctx) (fdef : A.fun_def) :
    symbolic_fun_translation * symbolic_fun_translation list =
  (* Debug *)
  log#ldebug
    (lazy
      ("translate_function_to_symbolics: " ^ Print.name_to_string fdef.A.name));

  let { type_context; fun_context } = trans_ctx in

  (* Evaluate *)
  let synthesize = true in
  let evaluate gid =
    let inputs, symb =
      evaluate_function_symbolic config synthesize type_context fun_context fdef
        gid
    in
    (inputs, Option.get symb)
  in
  (* Execute the forward function *)
  let forward = evaluate None in
  (* Execute the backward functions *)
  let backwards =
    T.RegionGroupId.mapi
      (fun gid _ -> evaluate (Some gid))
      fdef.signature.regions_hierarchy
  in

  (* Return *)
  (forward, backwards)

(** Translate a function, by generating its forward and backward translations.

    [fun_sigs]: maps the forward/backward functions to their signatures. In case
    of backward functions, we also provide names for the outputs.
    TODO: maybe we should introduce a record for this.
 *)
let translate_function_to_pure (config : C.partial_config)
    (trans_ctx : trans_ctx)
    (fun_sigs :
      SymbolicToPure.fun_sig_named_outputs SymbolicToPure.RegularFunIdMap.t)
    (fdef : A.fun_def) : pure_fun_translation =
  (* Debug *)
  log#ldebug
    (lazy ("translate_function_to_pure: " ^ Print.name_to_string fdef.A.name));

  let { type_context; fun_context } = trans_ctx in
  let def_id = fdef.def_id in

  (* Compute the symbolic ASTs *)
  let symbolic_forward, symbolic_backwards =
    translate_function_to_symbolics config trans_ctx fdef
  in

  (* Convert the symbolic ASTs to pure ASTs: *)

  (* Initialize the context *)
  let module RegularFunIdMap = SymbolicToPure.RegularFunIdMap in
  let forward_sig = RegularFunIdMap.find (A.Local def_id, None) fun_sigs in
  let forward_ret_ty =
    match forward_sig.sg.outputs with
    | [ ty ] -> ty
    | _ -> failwith "Unreachable"
  in
  let sv_to_var = V.SymbolicValueId.Map.empty in
  let var_counter = Pure.VarId.generator_zero in
  let calls = V.FunCallId.Map.empty in
  let abstractions = V.AbstractionId.Map.empty in
  let type_context =
    {
      SymbolicToPure.types_infos = type_context.type_infos;
      cfim_type_defs = type_context.type_defs;
    }
  in
  let fun_context =
    { SymbolicToPure.cfim_fun_defs = fun_context.fun_defs; fun_sigs }
  in
  let ctx =
    {
      SymbolicToPure.bid = None;
      (* Dummy for now *)
      ret_ty = forward_ret_ty;
      (* Will need to be updated for the backward functions *)
      sv_to_var;
      var_counter;
      type_context;
      fun_context;
      fun_def = fdef;
      forward_inputs = [];
      (* Empty for now *)
      backward_inputs = T.RegionGroupId.Map.empty;
      (* Empty for now *)
      backward_outputs = T.RegionGroupId.Map.empty;
      (* Empty for now *)
      calls;
      abstractions;
    }
  in

  (* We need to initialize the input/output variables *)
  let forward_input_vars = CfimAstUtils.fun_def_get_input_vars fdef in
  let forward_input_varnames =
    List.map (fun (v : A.var) -> v.name) forward_input_vars
  in
  let num_forward_inputs = fdef.arg_count in
  let add_forward_inputs input_svs ctx =
    let input_svs = List.combine forward_input_varnames input_svs in
    let ctx, forward_inputs =
      SymbolicToPure.fresh_named_vars_for_symbolic_values input_svs ctx
    in
    { ctx with forward_inputs }
  in

  (* Translate the forward function *)
  let pure_forward =
    SymbolicToPure.translate_fun_def
      (add_forward_inputs (fst symbolic_forward) ctx)
      (snd symbolic_forward)
  in

  (* Translate the backward functions *)
  let translate_backward (rg : T.region_var_group) : Pure.fun_def =
    (* For the backward inputs/outputs initialization: we use the fact that
     * there are no nested borrows for now, and so that the region groups
     * can't have parents *)
    assert (rg.parents = []);
    let back_id = rg.id in
    let input_svs, symbolic = T.RegionGroupId.nth symbolic_backwards back_id in
    let ctx = add_forward_inputs input_svs ctx in
    (* TODO: the computation of the backward inputs is a bit awckward... *)
    let backward_sg =
      RegularFunIdMap.find (A.Local def_id, Some back_id) fun_sigs
    in
    let _, backward_inputs =
      Collections.List.split_at backward_sg.sg.inputs num_forward_inputs
    in
    (* As we forbid nested borrows, the additional inputs for the backward
     * functions come from the borrows in the return value of the rust function:
     * we thus use the name "ret" for those inputs *)
    let backward_inputs =
      List.map (fun ty -> (Some "ret", ty)) backward_inputs
    in
    let ctx, backward_inputs = SymbolicToPure.fresh_vars backward_inputs ctx in
    (* The outputs for the backward functions, however, come from borrows
     * present in the input values of the rust function: for those we reuse
     * the names of the  input values. *)
    let backward_outputs =
      List.combine backward_sg.output_names backward_sg.sg.outputs
    in
    let ctx, backward_outputs =
      SymbolicToPure.fresh_vars backward_outputs ctx
    in
    let backward_output_tys =
      List.map (fun (v : Pure.var) -> v.ty) backward_outputs
    in
    let backward_ret_ty = SymbolicToPure.mk_tuple_ty backward_output_tys in
    let backward_inputs =
      T.RegionGroupId.Map.singleton back_id backward_inputs
    in
    let backward_outputs =
      T.RegionGroupId.Map.singleton back_id backward_outputs
    in

    (* Put everything in the context *)
    let ctx =
      {
        ctx with
        bid = Some back_id;
        ret_ty = backward_ret_ty;
        backward_inputs;
        backward_outputs;
      }
    in

    (* Translate *)
    SymbolicToPure.translate_fun_def ctx symbolic
  in
  let pure_backwards =
    List.map translate_backward fdef.signature.regions_hierarchy
  in

  (* Return *)
  (pure_forward, pure_backwards)

let translate_module_to_pure (config : C.partial_config) (m : M.cfim_module) :
    Pure.type_def list * pure_fun_translation list =
  (* Debug *)
  log#ldebug (lazy "translate_module_to_pure");

  (* Compute the type and function contexts *)
  let type_context, fun_context = compute_type_fun_contexts m in
  let trans_ctx = { type_context; fun_context } in

  (* Translate all the type definitions *)
  let type_defs = SymbolicToPure.translate_type_defs m.types in

  (* Translate all the function *signatures* *)
  let assumed_sigs =
    List.map
      (fun (id, sg) ->
        (A.Assumed id, List.map (fun _ -> None) (sg : A.fun_sig).inputs, sg))
      Assumed.assumed_sigs
  in
  let local_sigs =
    List.map
      (fun (fdef : A.fun_def) ->
        ( A.Local fdef.def_id,
          List.map
            (fun (v : A.var) -> v.name)
            (CfimAstUtils.fun_def_get_input_vars fdef),
          fdef.signature ))
      m.functions
  in
  let sigs = List.append assumed_sigs local_sigs in
  let fun_sigs =
    SymbolicToPure.translate_fun_signatures type_context.type_infos sigs
  in

  (* Translate all the functions *)
  let pure_translations =
    List.map (translate_function_to_pure config trans_ctx fun_sigs) m.functions
  in

  (* Apply the micro-passes *)
  let pure_translations =
    List.map
      (Micro.apply_passes_to_pure_fun_translation trans_ctx)
      pure_translations
  in

  (* Return *)
  (type_defs, pure_translations)