1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
open InterpreterStatements
open Interpreter
module L = Logging
module T = Types
module A = CfimAst
module M = Modules
module SA = SymbolicAst
module Micro = PureMicroPasses
open PureUtils
open TranslateCore
(** The local logger *)
let log = TranslateCore.log
type symbolic_fun_translation = V.symbolic_value list * SA.expression
(** The result of running the symbolic interpreter on a function:
- the list of symbolic values used for the input values
- the generated symbolic AST
*)
(** Execute the symbolic interpreter on a function to generate a list of symbolic ASTs,
for the forward function and the backward functions.
*)
let translate_function_to_symbolics (config : C.partial_config)
(trans_ctx : trans_ctx) (fdef : A.fun_def) :
symbolic_fun_translation * symbolic_fun_translation list =
(* Debug *)
log#ldebug
(lazy
("translate_function_to_symbolics: " ^ Print.name_to_string fdef.A.name));
let { type_context; fun_context } = trans_ctx in
(* Evaluate *)
let synthesize = true in
let evaluate gid =
let inputs, symb =
evaluate_function_symbolic config synthesize type_context fun_context fdef
gid
in
(inputs, Option.get symb)
in
(* Execute the forward function *)
let forward = evaluate None in
(* Execute the backward functions *)
let backwards =
T.RegionGroupId.mapi
(fun gid _ -> evaluate (Some gid))
fdef.signature.regions_hierarchy
in
(* Return *)
(forward, backwards)
(** Translate a function, by generating its forward and backward translations.
[fun_sigs]: maps the forward/backward functions to their signatures. In case
of backward functions, we also provide names for the outputs.
TODO: maybe we should introduce a record for this.
*)
let translate_function_to_pure (config : C.partial_config)
(trans_ctx : trans_ctx)
(fun_sigs : SymbolicToPure.fun_sig_named_outputs RegularFunIdMap.t)
(fdef : A.fun_def) : pure_fun_translation =
(* Debug *)
log#ldebug
(lazy ("translate_function_to_pure: " ^ Print.name_to_string fdef.A.name));
let { type_context; fun_context } = trans_ctx in
let def_id = fdef.def_id in
(* Compute the symbolic ASTs *)
let symbolic_forward, symbolic_backwards =
translate_function_to_symbolics config trans_ctx fdef
in
(* Convert the symbolic ASTs to pure ASTs: *)
(* Initialize the context *)
let forward_sig = RegularFunIdMap.find (A.Local def_id, None) fun_sigs in
let forward_ret_ty =
match forward_sig.sg.outputs with
| [ ty ] -> ty
| _ -> failwith "Unreachable"
in
let sv_to_var = V.SymbolicValueId.Map.empty in
let var_counter = Pure.VarId.generator_zero in
let calls = V.FunCallId.Map.empty in
let abstractions = V.AbstractionId.Map.empty in
let type_context =
{
SymbolicToPure.types_infos = type_context.type_infos;
cfim_type_defs = type_context.type_defs;
}
in
let fun_context =
{ SymbolicToPure.cfim_fun_defs = fun_context.fun_defs; fun_sigs }
in
let ctx =
{
SymbolicToPure.bid = None;
(* Dummy for now *)
ret_ty = forward_ret_ty;
(* Will need to be updated for the backward functions *)
sv_to_var;
var_counter;
type_context;
fun_context;
fun_def = fdef;
forward_inputs = [];
(* Empty for now *)
backward_inputs = T.RegionGroupId.Map.empty;
(* Empty for now *)
backward_outputs = T.RegionGroupId.Map.empty;
(* Empty for now *)
calls;
abstractions;
}
in
(* We need to initialize the input/output variables *)
let forward_input_vars = CfimAstUtils.fun_def_get_input_vars fdef in
let forward_input_varnames =
List.map (fun (v : A.var) -> v.name) forward_input_vars
in
let num_forward_inputs = fdef.arg_count in
let add_forward_inputs input_svs ctx =
let input_svs = List.combine forward_input_varnames input_svs in
let ctx, forward_inputs =
SymbolicToPure.fresh_named_vars_for_symbolic_values input_svs ctx
in
{ ctx with forward_inputs }
in
(* Translate the forward function *)
let pure_forward =
SymbolicToPure.translate_fun_def
(add_forward_inputs (fst symbolic_forward) ctx)
(snd symbolic_forward)
in
(* Translate the backward functions *)
let translate_backward (rg : T.region_var_group) : Pure.fun_def =
(* For the backward inputs/outputs initialization: we use the fact that
* there are no nested borrows for now, and so that the region groups
* can't have parents *)
assert (rg.parents = []);
let back_id = rg.id in
let input_svs, symbolic = T.RegionGroupId.nth symbolic_backwards back_id in
let ctx = add_forward_inputs input_svs ctx in
(* TODO: the computation of the backward inputs is a bit awckward... *)
let backward_sg =
RegularFunIdMap.find (A.Local def_id, Some back_id) fun_sigs
in
let _, backward_inputs =
Collections.List.split_at backward_sg.sg.inputs num_forward_inputs
in
(* As we forbid nested borrows, the additional inputs for the backward
* functions come from the borrows in the return value of the rust function:
* we thus use the name "ret" for those inputs *)
let backward_inputs =
List.map (fun ty -> (Some "ret", ty)) backward_inputs
in
let ctx, backward_inputs = SymbolicToPure.fresh_vars backward_inputs ctx in
(* The outputs for the backward functions, however, come from borrows
* present in the input values of the rust function: for those we reuse
* the names of the input values. *)
let backward_outputs =
List.combine backward_sg.output_names backward_sg.sg.outputs
in
let ctx, backward_outputs =
SymbolicToPure.fresh_vars backward_outputs ctx
in
let backward_output_tys =
List.map (fun (v : Pure.var) -> v.ty) backward_outputs
in
let backward_ret_ty = mk_tuple_ty backward_output_tys in
let backward_inputs =
T.RegionGroupId.Map.singleton back_id backward_inputs
in
let backward_outputs =
T.RegionGroupId.Map.singleton back_id backward_outputs
in
(* Put everything in the context *)
let ctx =
{
ctx with
bid = Some back_id;
ret_ty = backward_ret_ty;
backward_inputs;
backward_outputs;
}
in
(* Translate *)
SymbolicToPure.translate_fun_def ctx symbolic
in
let pure_backwards =
List.map translate_backward fdef.signature.regions_hierarchy
in
(* Return *)
(pure_forward, pure_backwards)
let translate_module_to_pure (config : C.partial_config) (m : M.cfim_module) :
trans_ctx * Pure.type_def list * pure_fun_translation list =
(* Debug *)
log#ldebug (lazy "translate_module_to_pure");
(* Compute the type and function contexts *)
let type_context, fun_context = compute_type_fun_contexts m in
let trans_ctx = { type_context; fun_context } in
(* Translate all the type definitions *)
let type_defs = SymbolicToPure.translate_type_defs m.types in
(* Translate all the function *signatures* *)
let assumed_sigs =
List.map
(fun (id, sg) ->
(A.Assumed id, List.map (fun _ -> None) (sg : A.fun_sig).inputs, sg))
Assumed.assumed_sigs
in
let local_sigs =
List.map
(fun (fdef : A.fun_def) ->
( A.Local fdef.def_id,
List.map
(fun (v : A.var) -> v.name)
(CfimAstUtils.fun_def_get_input_vars fdef),
fdef.signature ))
m.functions
in
let sigs = List.append assumed_sigs local_sigs in
let fun_sigs =
SymbolicToPure.translate_fun_signatures type_context.type_infos sigs
in
(* Translate all the functions *)
let pure_translations =
List.map (translate_function_to_pure config trans_ctx fun_sigs) m.functions
in
(* Apply the micro-passes *)
(* TODO: move the configuration *)
let passes_config =
{
Micro.unfold_monadic_let_bindings = true;
filter_unused_monadic_calls = true;
}
in
let pure_translations =
List.map
(Micro.apply_passes_to_pure_fun_translation passes_config trans_ctx)
pure_translations
in
(* Return *)
(trans_ctx, type_defs, pure_translations)
(** Translate a module and write the synthesized code to an output file *)
let translate_module (filename : string) (config : C.partial_config)
(m : M.cfim_module) : unit =
(* Translate the module to the pure AST *)
let trans_ctx, trans_types, trans_funs = translate_module_to_pure config m in
(* Initialize the extraction context - for now we extract only to F* *)
let names_map =
PureToExtract.initialize_names_map ExtractToFStar.fstar_names_map_init
in
let variant_concatenate_type_name = true in
let fstar_fmt =
ExtractToFStar.mk_formatter trans_ctx variant_concatenate_type_name
in
let extract_ctx =
{ PureToExtract.trans_ctx; names_map; fmt = fstar_fmt; indent_incr = 2 }
in
(* Register unique names for all the top-level types and functions.
* Note that the order in which we generate the names doesn't matter:
* we just need to generate a mapping from identifier to name, and make
* sure there are no name clashes. *)
let extract_ctx =
List.fold_left
(fun extract_ctx def ->
ExtractToFStar.extract_type_def_register_names extract_ctx def)
extract_ctx trans_types
in
let extract_ctx =
List.fold_left
(fun extract_ctx def ->
ExtractToFStar.extract_fun_def_register_names extract_ctx def)
extract_ctx trans_funs
in
(* Open the output file *)
(* First compute the filename by replacing the extension and converting the
* case (rust module names are snake case) *)
let module_name, extract_filename =
match Filename.chop_suffix_opt ~suffix:".cfim" filename with
| None ->
(* Note that we already checked the suffix upon opening the file *)
failwith "Unreachable"
| Some filename ->
(* Split between basename and dirname *)
let dirname = Filename.dirname filename in
let basename = Filename.basename filename in
(* Convert the case *)
let module_name = StringUtils.to_camel_case basename in
(* We add the extension for F* *)
(module_name, Filename.concat dirname (module_name ^ ".fst"))
in
let out = open_out extract_filename in
let fmt = Format.formatter_of_out_channel out in
(* Put the translated definitions in maps *)
let trans_types =
Pure.TypeDefId.Map.of_list
(List.map (fun (d : Pure.type_def) -> (d.def_id, d)) trans_types)
in
let trans_funs =
Pure.FunDefId.Map.of_list
(List.map
(fun ((fd, bdl) : pure_fun_translation) -> (fd.def_id, (fd, bdl)))
trans_funs)
in
(* Set the margin *)
Format.pp_set_margin fmt 80;
(* Create a vertical box *)
Format.pp_open_vbox fmt 0;
(* Add the module name *)
Format.pp_print_string fmt ("(** " ^ m.M.name ^ " *)");
Format.pp_print_break fmt 0 0;
Format.pp_print_string fmt ("module " ^ module_name);
Format.pp_print_break fmt 0 0;
Format.pp_print_string fmt "open FStar.Mul";
Format.pp_print_break fmt 0 0;
Format.pp_print_string fmt "open Primitives";
Format.pp_print_break fmt 0 0;
Format.pp_print_break fmt 0 0;
Format.pp_print_string fmt "#set-options \"--z3rlimit 50 --fuel 0 --ifuel 1\"";
Format.pp_print_break fmt 0 0;
(* Export the definition groups to the file, in the proper order *)
let export_type (qualif : ExtractToFStar.type_def_qualif)
(id : Pure.TypeDefId.id) : unit =
let def = Pure.TypeDefId.Map.find id trans_types in
ExtractToFStar.extract_type_def extract_ctx fmt qualif def
in
(* In case of (non-mutually) recursive functions, we use a simple procedure to
* check if the forward and backward functions are mutually recursive.
*)
let export_functions (is_rec : bool) (is_mut_rec : bool)
(fls : Pure.fun_def list) : unit =
List.iteri
(fun i def ->
let qualif =
if not is_rec then ExtractToFStar.Let
else if is_mut_rec then
if i = 0 then ExtractToFStar.LetRec else ExtractToFStar.And
else ExtractToFStar.LetRec
in
ExtractToFStar.extract_fun_def extract_ctx fmt qualif def)
fls
in
let export_decl (decl : M.declaration_group) : unit =
match decl with
| Type (NonRec id) -> export_type ExtractToFStar.Type id
| Type (Rec ids) ->
List.iteri
(fun i id ->
let qualif =
if i = 0 then ExtractToFStar.Type else ExtractToFStar.And
in
export_type qualif id)
ids
| Fun (NonRec id) ->
(* Concatenate *)
let fwd, back_ls = Pure.FunDefId.Map.find id trans_funs in
let fls = fwd :: back_ls in
(* Translate *)
export_functions false false fls
| Fun (Rec [ id ]) ->
(* Simply recursive functions *)
(* Concatenate *)
let fwd, back_ls = Pure.FunDefId.Map.find id trans_funs in
let fls = fwd :: back_ls in
(* Check if mutually rec *)
let is_mut_rec = not (PureUtils.functions_not_mutually_recursive fls) in
(* Translate *)
export_functions true is_mut_rec fls
| Fun (Rec ids) ->
(* General case of mutually recursive functions *)
(* Concatenate *)
let compute_fun_id_list (id : Pure.FunDefId.id) : Pure.fun_def list =
let fwd, back_ls = Pure.FunDefId.Map.find id trans_funs in
fwd :: back_ls
in
let fls = List.concat (List.map compute_fun_id_list ids) in
(* Translate *)
export_functions true true fls
in
List.iter export_decl m.declarations;
(* Close the box and end the formatting *)
Format.pp_close_box fmt ();
Format.pp_print_newline fmt ()
|