1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
(** This file implements various substitution utilities to instantiate types,
function bodies, etc.
*)
module T = Types
module V = Values
module E = Expressions
module A = CfimAst
module C = Contexts
(** Substitute types variables and regions in a type *)
let rec ty_substitute (rsubst : 'r1 -> 'r2)
(tsubst : T.TypeVarId.id -> 'r2 T.ty) (ty : 'r1 T.ty) : 'r2 T.ty =
let open T in
let subst = ty_substitute rsubst tsubst in
(* helper *)
match ty with
| Adt (def_id, regions, tys) ->
Adt (def_id, List.map rsubst regions, List.map subst tys)
| Tuple tys -> Tuple (List.map subst tys)
| Array aty -> Array (subst aty)
| Slice sty -> Slice (subst sty)
| Ref (r, ref_ty, ref_kind) -> Ref (rsubst r, subst ref_ty, ref_kind)
| Assumed (aty, regions, tys) ->
Assumed (aty, List.map rsubst regions, List.map subst tys)
(* Below variants: we technically return the same value, but because
one has type ['r1 ty] and the other has type ['r2 ty] we need to
deconstruct then reconstruct *)
| Bool -> Bool
| Char -> Char
| Never -> Never
| Integer int_ty -> Integer int_ty
| Str -> Str
| TypeVar vid -> tsubst vid
(** Erase the regions in a type and substitute the type variables *)
let erase_regions_substitute_types (tsubst : T.TypeVarId.id -> T.ety)
(ty : T.rty) : T.ety =
let rsubst (_ : T.RegionVarId.id T.region) : T.erased_region = T.Erased in
ty_substitute rsubst tsubst ty
(** Create a type substitution from a list of type variable ids and a list of
types (with which to substitute the type variable ids *)
let make_type_subst (var_ids : T.TypeVarId.id list) (tys : 'r T.ty list) :
T.TypeVarId.id -> 'r T.ty =
let ls = List.combine var_ids tys in
let mp =
List.fold_left
(fun mp (k, v) -> T.TypeVarId.Map.add k v mp)
T.TypeVarId.Map.empty ls
in
fun id -> T.TypeVarId.Map.find id mp
(** Instantiate the type variables in an ADT definition, and return the list
of types of the fields for the chosen variant *)
let type_def_get_instantiated_field_type (def : T.type_def)
(opt_variant_id : T.VariantId.id option) (types : T.ety list) :
T.ety T.FieldId.vector =
let ty_subst =
make_type_subst
(List.map
(fun x -> x.T.tv_index)
(T.TypeVarId.vector_to_list def.T.type_params))
types
in
let fields = type_def_get_fields def opt_variant_id in
T.FieldId.map
(fun f -> erase_regions_substitute_types ty_subst f.T.field_ty)
fields
(** Return the types of the properly instantiated ADT's variant, provided a
context *)
let ctx_adt_get_instantiated_field_types (ctx : C.eval_ctx)
(def_id : T.TypeDefId.id) (opt_variant_id : T.VariantId.id option)
(types : T.ety list) : T.ety T.FieldId.vector =
let def = C.ctx_lookup_type_def ctx def_id in
type_def_get_instantiated_field_type def opt_variant_id types
(** Apply a type substitution to a place *)
let place_substitute (_tsubst : T.TypeVarId.id -> T.ety) (p : E.place) : E.place
=
(* There is nothing to do *)
p
(** Apply a type substitution to an operand constant value *)
let operand_constant_value_substitute (_tsubst : T.TypeVarId.id -> T.ety)
(op : E.operand_constant_value) : E.operand_constant_value =
(* There is nothing to do *)
op
(** Apply a type substitution to an operand *)
let operand_substitute (tsubst : T.TypeVarId.id -> T.ety) (op : E.operand) :
E.operand =
let p_subst = place_substitute tsubst in
match op with
| E.Copy p -> E.Copy (p_subst p)
| E.Move p -> E.Move (p_subst p)
| E.Constant (ety, cv) ->
let rsubst x = x in
E.Constant
( ty_substitute rsubst tsubst ety,
operand_constant_value_substitute tsubst cv )
(** Apply a type substitution to an rvalue *)
let rvalue_substitute (tsubst : T.TypeVarId.id -> T.ety) (rv : E.rvalue) :
E.rvalue =
let op_subst = operand_substitute tsubst in
let p_subst = place_substitute tsubst in
match rv with
| E.Use op -> E.Use (op_subst op)
| E.Ref (p, bkind) -> E.Ref (p_subst p, bkind)
| E.UnaryOp (unop, op) -> E.UnaryOp (unop, op_subst op)
| E.BinaryOp (binop, op1, op2) ->
E.BinaryOp (binop, op_subst op1, op_subst op2)
| E.Discriminant p -> E.Discriminant (p_subst p)
| E.Aggregate (kind, ops) ->
let ops = List.map op_subst ops in
let kind =
match kind with
| E.AggregatedTuple -> E.AggregatedTuple
| E.AggregatedAdt (def_id, variant_id, regions, tys) ->
let rsubst x = x in
E.AggregatedAdt
( def_id,
variant_id,
regions,
List.map (ty_substitute rsubst tsubst) tys )
in
E.Aggregate (kind, ops)
(** Apply a type substitution to an assertion *)
let assertion_substitute (tsubst : T.TypeVarId.id -> T.ety) (a : A.assertion) :
A.assertion =
{ A.cond = operand_substitute tsubst a.A.cond; A.expected = a.A.expected }
(** Apply a type substitution to a call *)
let call_substitute (tsubst : T.TypeVarId.id -> T.ety) (call : A.call) : A.call
=
let rsubst x = x in
let type_params = List.map (ty_substitute rsubst tsubst) call.A.type_params in
let args = List.map (operand_substitute tsubst) call.A.args in
let dest = place_substitute tsubst call.A.dest in
(* Putting all the paramters on purpose: we want to get a compiler error if
something moves - we may add a field on which we need to apply a substitution *)
{
func = call.A.func;
region_params = call.A.region_params;
A.type_params;
args;
dest;
}
(** Apply a type substitution to a statement *)
let statement_substitute (tsubst : T.TypeVarId.id -> T.ety) (st : A.statement) :
A.statement =
match st with
| A.Assign (p, rvalue) ->
let p = place_substitute tsubst p in
let rvalue = rvalue_substitute tsubst rvalue in
A.Assign (p, rvalue)
| A.FakeRead p ->
let p = place_substitute tsubst p in
A.FakeRead p
| A.SetDiscriminant (p, vid) ->
let p = place_substitute tsubst p in
A.SetDiscriminant (p, vid)
| A.Drop p ->
let p = place_substitute tsubst p in
A.Drop p
| A.Assert assertion ->
let assertion = assertion_substitute tsubst assertion in
A.Assert assertion
| A.Call call ->
let call = call_substitute tsubst call in
A.Call call
| A.Panic | A.Return | A.Break _ | A.Continue _ | A.Nop -> st
(** Apply a type substitution to an expression *)
let rec expression_substitute (tsubst : T.TypeVarId.id -> T.ety)
(e : A.expression) : A.expression =
match e with
| A.Statement st -> A.Statement (statement_substitute tsubst st)
| A.Sequence (e1, e2) ->
A.Sequence
(expression_substitute tsubst e1, expression_substitute tsubst e2)
| A.Switch (op, tgts) ->
A.Switch
(operand_substitute tsubst op, switch_targets_substitute tsubst tgts)
| A.Loop le -> A.Loop (expression_substitute tsubst le)
(** Apply a type substitution to switch targets *)
and switch_targets_substitute (tsubst : T.TypeVarId.id -> T.ety)
(tgts : A.switch_targets) : A.switch_targets =
match tgts with
| A.If (e1, e2) ->
A.If (expression_substitute tsubst e1, expression_substitute tsubst e2)
| A.SwitchInt (int_ty, tgts, otherwise) ->
let tgts =
List.map (fun (sv, e) -> (sv, expression_substitute tsubst e)) tgts
in
let otherwise = expression_substitute tsubst otherwise in
A.SwitchInt (int_ty, tgts, otherwise)
(** Apply a type substitution to a function body. Return the local variables
and the body. *)
let fun_def_substitute_in_body (tsubst : T.TypeVarId.id -> T.ety)
(def : A.fun_def) : V.var V.VarId.vector * A.expression =
let rsubst r = r in
let locals =
V.VarId.map
(fun v -> { v with V.var_ty = ty_substitute rsubst tsubst v.V.var_ty })
def.A.locals
in
let body = expression_substitute tsubst def.body in
(locals, body)
|