1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
|
open Pure
(** Default logger *)
let log = Logging.pure_utils_log
type regular_fun_id = A.fun_id * T.RegionGroupId.id option
[@@deriving show, ord]
(** We use this type as a key for lookups *)
module RegularFunIdOrderedType = struct
type t = regular_fun_id
let compare = compare_regular_fun_id
let to_string = show_regular_fun_id
let pp_t = pp_regular_fun_id
let show_t = show_regular_fun_id
end
module RegularFunIdMap = Collections.MakeMap (RegularFunIdOrderedType)
module FunIdOrderedType = struct
type t = fun_id
let compare = compare_fun_id
let to_string = show_fun_id
let pp_t = pp_fun_id
let show_t = show_fun_id
end
module FunIdMap = Collections.MakeMap (FunIdOrderedType)
module FunIdSet = Collections.MakeSet (FunIdOrderedType)
(* TODO : move *)
let binop_can_fail (binop : E.binop) : bool =
match binop with
| BitXor | BitAnd | BitOr | Eq | Lt | Le | Ne | Ge | Gt -> false
| Div | Rem | Add | Sub | Mul -> true
| Shl | Shr -> raise Errors.Unimplemented
(*let mk_arrow_ty (arg_ty : ty) (ret_ty : ty) : ty = Arrow (arg_ty, ret_ty)*)
let dest_arrow_ty (ty : ty) : ty * ty =
match ty with
| Arrow (arg_ty, ret_ty) -> (arg_ty, ret_ty)
| _ -> raise (Failure "Unreachable")
let compute_constant_value_ty (cv : constant_value) : ty =
match cv with
| V.Scalar sv -> Integer sv.V.int_ty
| Bool _ -> Bool
| Char _ -> Char
| String _ -> Str
let mk_typed_lvalue_from_constant_value (cv : constant_value) : typed_lvalue =
let ty = compute_constant_value_ty cv in
{ value = LvConcrete cv; ty }
(*let mk_value_expression (v : typed_rvalue) (mp : mplace option) : texpression =
let e = Value (v, mp) in
let ty = v.ty in
{ e; ty }*)
let mk_let (monadic : bool) (lv : typed_lvalue) (re : texpression)
(next_e : texpression) : texpression =
let e = Let (monadic, lv, re, next_e) in
let ty = next_e.ty in
{ e; ty }
(** Type substitution *)
let ty_substitute (tsubst : TypeVarId.id -> ty) (ty : ty) : ty =
let obj =
object
inherit [_] map_ty
method! visit_TypeVar _ var_id = tsubst var_id
end
in
obj#visit_ty () ty
let make_type_subst (vars : type_var list) (tys : ty list) : TypeVarId.id -> ty
=
let ls = List.combine vars tys in
let mp =
List.fold_left
(fun mp (k, v) -> TypeVarId.Map.add (k : type_var).index v mp)
TypeVarId.Map.empty ls
in
fun id -> TypeVarId.Map.find id mp
(** Retrieve the list of fields for the given variant of a [type_decl].
Raises [Invalid_argument] if the arguments are incorrect.
*)
let type_decl_get_fields (def : type_decl)
(opt_variant_id : VariantId.id option) : field list =
match (def.kind, opt_variant_id) with
| Enum variants, Some variant_id -> (VariantId.nth variants variant_id).fields
| Struct fields, None -> fields
| _ ->
let opt_variant_id =
match opt_variant_id with None -> "None" | Some _ -> "Some"
in
raise
(Invalid_argument
("The variant id should be [Some] if and only if the definition is \
an enumeration:\n\
- def: " ^ show_type_decl def ^ "\n- opt_variant_id: "
^ opt_variant_id))
(** Instantiate the type variables for the chosen variant in an ADT definition,
and return the list of the types of its fields *)
let type_decl_get_instantiated_fields_types (def : type_decl)
(opt_variant_id : VariantId.id option) (types : ty list) : ty list =
let ty_subst = make_type_subst def.type_params types in
let fields = type_decl_get_fields def opt_variant_id in
List.map (fun f -> ty_substitute ty_subst f.field_ty) fields
let fun_sig_substitute (tsubst : TypeVarId.id -> ty) (sg : fun_sig) :
inst_fun_sig =
let subst = ty_substitute tsubst in
let inputs = List.map subst sg.inputs in
let outputs = List.map subst sg.outputs in
{ inputs; outputs }
(** Return true if a list of functions are *not* mutually recursive, false otherwise.
This function is meant to be applied on a set of (forward, backwards) functions
generated for one recursive function.
The way we do the test is very simple:
- we explore the functions one by one, in the order
- if all functions only call functions we already explored, they are not
mutually recursive
*)
let functions_not_mutually_recursive (funs : fun_decl list) : bool =
(* Compute the set of function identifiers in the group *)
let ids =
FunIdSet.of_list
(List.map
(fun (f : fun_decl) -> Regular (A.Regular f.def_id, f.back_id))
funs)
in
let ids = ref ids in
(* Explore every body *)
let body_only_calls_itself (fdef : fun_decl) : bool =
(* Remove the current id from the id set *)
ids := FunIdSet.remove (Regular (A.Regular fdef.def_id, fdef.back_id)) !ids;
(* Check if we call functions from the updated id set *)
let obj =
object
inherit [_] iter_expression as super
method! visit_qualif env qualif =
match qualif.id with
| Func fun_id ->
if FunIdSet.mem fun_id !ids then raise Utils.Found
else super#visit_qualif env qualif
| _ -> super#visit_qualif env qualif
end
in
try
match fdef.body with
| None -> true
| Some body ->
obj#visit_texpression () body.body;
true
with Utils.Found -> false
in
List.for_all body_only_calls_itself funs
(** We use this to check whether we need to add parentheses around expressions.
We only look for outer monadic let-bindings.
This is used when printing the branches of `if ... then ... else ...`.
*)
let rec let_group_requires_parentheses (e : texpression) : bool =
match e.e with
| Local _ | Const _ | App _ | Abs _ | Qualif _ -> false
| Let (monadic, _, _, next_e) ->
if monadic then true else let_group_requires_parentheses next_e
| Switch (_, _) -> false
| Meta (_, next_e) -> let_group_requires_parentheses next_e
let is_var (e : texpression) : bool =
match e.e with Local _ -> true | _ -> false
let as_var (e : texpression) : VarId.id =
match e.e with Local v -> v | _ -> raise (Failure "Unreachable")
(** Remove the external occurrences of [Meta] *)
let rec unmeta (e : texpression) : texpression =
match e.e with Meta (_, e) -> unmeta e | _ -> e
(** Remove *all* the meta information *)
let remove_meta (e : texpression) : texpression =
let obj =
object
inherit [_] map_expression as super
method! visit_Meta env _ e = super#visit_expression env e.e
end
in
obj#visit_texpression () e
let mk_arrow (ty0 : ty) (ty1 : ty) : ty = Arrow (ty0, ty1)
(** Construct a type as a list of arrows: ty1 -> ... tyn *)
let mk_arrows (inputs : ty list) (output : ty) =
let rec aux (tys : ty list) : ty =
match tys with [] -> output | ty :: tys' -> Arrow (ty, aux tys')
in
aux inputs
(** Destruct an `App` expression into an expression and a list of arguments.
We simply destruct the expression as long as it is of the form `App (f, x)`.
*)
let destruct_apps (e : texpression) : texpression * texpression list =
let rec aux (args : texpression list) (e : texpression) :
texpression * texpression list =
match e.e with App (f, x) -> aux (x :: args) f | _ -> (e, args)
in
aux [] e
(** Make an `App (app, arg)` expression *)
let mk_app (app : texpression) (arg : texpression) : texpression =
match app.ty with
| Arrow (ty0, ty1) ->
(* Sanity check *)
assert (ty0 = arg.ty);
let e = App (app, arg) in
let ty = ty1 in
{ e; ty }
| _ -> raise (Failure "Expected an arrow type")
(** The reverse of [destruct_app] *)
let mk_apps (app : texpression) (args : texpression list) : texpression =
List.fold_left (fun app arg -> mk_app app arg) app args
(** Destruct an expression into a qualif identifier and a list of arguments,
* if possible *)
let opt_destruct_qualif_app (e : texpression) :
(qualif * texpression list) option =
let app, args = destruct_apps e in
match app.e with Qualif qualif -> Some (qualif, args) | _ -> None
(** Destruct an expression into a qualif identifier and a list of arguments *)
let destruct_qualif_app (e : texpression) : qualif * texpression list =
Option.get (opt_destruct_qualif_app e)
(** Destruct an expression into a function call, if possible *)
let opt_destruct_function_call (e : texpression) :
(fun_id * ty list * texpression list) option =
match opt_destruct_qualif_app e with
| None -> None
| Some (qualif, args) -> (
match qualif.id with
| Func fun_id -> Some (fun_id, qualif.type_params, args)
| _ -> None)
let opt_destruct_result (ty : ty) : ty option =
match ty with
| Adt (Assumed Result, tys) -> Some (Collections.List.to_cons_nil tys)
| _ -> None
let destruct_result (ty : ty) : ty = Option.get (opt_destruct_result ty)
let opt_destruct_tuple (ty : ty) : ty list option =
match ty with Adt (Tuple, tys) -> Some tys | _ -> None
let mk_abs (x : typed_lvalue) (e : texpression) : texpression =
let ty = Arrow (x.ty, e.ty) in
let e = Abs (x, e) in
{ e; ty }
let rec destruct_abs_list (e : texpression) : typed_lvalue list * texpression =
match e.e with
| Abs (x, e') ->
let xl, e'' = destruct_abs_list e' in
(x :: xl, e'')
| _ -> ([], e)
let destruct_arrow (ty : ty) : ty * ty =
match ty with
| Arrow (ty0, ty1) -> (ty0, ty1)
| _ -> raise (Failure "Not an arrow type")
let rec destruct_arrows (ty : ty) : ty list * ty =
match ty with
| Arrow (ty0, ty1) ->
let tys, out_ty = destruct_arrows ty1 in
(ty0 :: tys, out_ty)
| _ -> ([], ty)
let get_switch_body_ty (sb : switch_body) : ty =
match sb with
| If (e_then, _) -> e_then.ty
| Match branches ->
(* There should be at least one branch *)
(List.hd branches).branch.ty
let map_switch_body_branches (f : texpression -> texpression) (sb : switch_body)
: switch_body =
match sb with
| If (e_then, e_else) -> If (f e_then, f e_else)
| Match branches ->
Match
(List.map
(fun (b : match_branch) -> { b with branch = f b.branch })
branches)
let iter_switch_body_branches (f : texpression -> unit) (sb : switch_body) :
unit =
match sb with
| If (e_then, e_else) ->
f e_then;
f e_else
| Match branches -> List.iter (fun (b : match_branch) -> f b.branch) branches
let mk_switch (scrut : texpression) (sb : switch_body) : texpression =
(* TODO: check the type of the scrutinee *)
let ty = get_switch_body_ty sb in
(* Sanity check: all the branches have the same type *)
iter_switch_body_branches (fun e -> assert (e.ty = ty)) sb;
(* Put together *)
let e = Switch (scrut, sb) in
{ e; ty }
(** Make a "simplified" tuple type from a list of types:
- if there is exactly one type, just return it
- if there is > one type: wrap them in a tuple
*)
let mk_simpl_tuple_ty (tys : ty list) : ty =
match tys with [ ty ] -> ty | _ -> Adt (Tuple, tys)
(** TODO: rename to "mk_..." *)
let unit_ty : ty = Adt (Tuple, [])
(** TODO: rename to "mk_unit_texpression" *)
let unit_rvalue : texpression =
let id = AdtCons { adt_id = Tuple; variant_id = None } in
let qualif = { id; type_params = [] } in
let e = Qualif qualif in
let ty = unit_ty in
{ e; ty }
let mk_texpression_from_var (v : var) : texpression =
let e = Local v.id in
let ty = v.ty in
{ e; ty }
let mk_typed_lvalue_from_var (v : var) (mp : mplace option) : typed_lvalue =
let value = LvVar (Var (v, mp)) in
let ty = v.ty in
{ value; ty }
let mk_meta (m : meta) (e : texpression) : texpression =
let ty = e.ty in
let e = Meta (m, e) in
{ e; ty }
let mk_mplace_texpression (mp : mplace) (e : texpression) : texpression =
mk_meta (MPlace mp) e
let mk_opt_mplace_texpression (mp : mplace option) (e : texpression) :
texpression =
match mp with None -> e | Some mp -> mk_mplace_texpression mp e
(** Make a "simplified" tuple value from a list of values:
- if there is exactly one value, just return it
- if there is > one value: wrap them in a tuple
*)
let mk_simpl_tuple_lvalue (vl : typed_lvalue list) : typed_lvalue =
match vl with
| [ v ] -> v
| _ ->
let tys = List.map (fun (v : typed_lvalue) -> v.ty) vl in
let ty = Adt (Tuple, tys) in
let value = LvAdt { variant_id = None; field_values = vl } in
{ value; ty }
(** Similar to [mk_simpl_tuple_lvalue] *)
let mk_simpl_tuple_texpression (vl : texpression list) : texpression =
match vl with
| [ v ] -> v
| _ ->
(* Compute the types of the fields, and the type of the tuple constructor *)
let tys = List.map (fun (v : texpression) -> v.ty) vl in
let ty = Adt (Tuple, tys) in
let ty = mk_arrows tys ty in
(* Construct the tuple constructor qualifier *)
let id = AdtCons { adt_id = Tuple; variant_id = None } in
let qualif = { id; type_params = tys } in
(* Put everything together *)
let cons = { e = Qualif qualif; ty } in
mk_apps cons vl
let mk_adt_lvalue (adt_ty : ty) (variant_id : VariantId.id)
(vl : typed_lvalue list) : typed_lvalue =
let value = LvAdt { variant_id = Some variant_id; field_values = vl } in
{ value; ty = adt_ty }
let ty_as_integer (t : ty) : T.integer_type =
match t with Integer int_ty -> int_ty | _ -> raise (Failure "Unreachable")
(* TODO: move *)
let type_decl_is_enum (def : T.type_decl) : bool =
match def.kind with T.Struct _ -> false | Enum _ -> true | Opaque -> false
let mk_state_ty : ty = Adt (Assumed State, [])
let mk_result_ty (ty : ty) : ty = Adt (Assumed Result, [ ty ])
(* TODO: rename *)
let mk_result_fail_rvalue (ty : ty) : texpression =
let type_args = [ ty ] in
let ty = Adt (Assumed Result, type_args) in
let id =
AdtCons { adt_id = Assumed Result; variant_id = Some result_fail_id }
in
let qualif = { id; type_params = type_args } in
let cons_e = Qualif qualif in
let cons_ty = ty in
let cons = { e = cons_e; ty = cons_ty } in
cons
(* TODO: rename *)
let mk_result_return_rvalue (v : texpression) : texpression =
let type_args = [ v.ty ] in
let ty = Adt (Assumed Result, type_args) in
let id =
AdtCons { adt_id = Assumed Result; variant_id = Some result_return_id }
in
let qualif = { id; type_params = type_args } in
let cons_e = Qualif qualif in
let cons_ty = mk_arrow v.ty ty in
let cons = { e = cons_e; ty = cons_ty } in
mk_app cons v
let mk_result_fail_lvalue (ty : ty) : typed_lvalue =
let ty = Adt (Assumed Result, [ ty ]) in
let value = LvAdt { variant_id = Some result_fail_id; field_values = [] } in
{ value; ty }
let mk_result_return_lvalue (v : typed_lvalue) : typed_lvalue =
let ty = Adt (Assumed Result, [ v.ty ]) in
let value =
LvAdt { variant_id = Some result_return_id; field_values = [ v ] }
in
{ value; ty }
let opt_destruct_state_monad_result (ty : ty) : ty option =
(* Checking:
* ty == state -> result (state & _) ? *)
match ty with
| Arrow (ty0, ty1) ->
(* ty == ty0 -> ty1
* Checking: ty0 == state ?
* *)
if ty0 = mk_state_ty then
(* Checking: ty1 == result (state & _) *)
match opt_destruct_result ty1 with
| None -> None
| Some ty2 -> (
(* Checking: ty2 == state & _ *)
match opt_destruct_tuple ty2 with
| Some [ ty3; ty4 ] -> if ty3 = mk_state_ty then Some ty4 else None
| _ -> None)
else None
| _ -> None
let opt_unmeta_mplace (e : texpression) : mplace option * texpression =
match e.e with Meta (MPlace mp, e) -> (Some mp, e) | _ -> (None, e)
(** Utility function, used for type checking - TODO: move *)
let get_adt_field_types (type_decls : type_decl TypeDeclId.Map.t)
(type_id : type_id) (variant_id : VariantId.id option) (tys : ty list) :
ty list =
match type_id with
| Tuple ->
(* Tuple *)
assert (variant_id = None);
tys
| AdtId def_id ->
(* "Regular" ADT *)
let def = TypeDeclId.Map.find def_id type_decls in
type_decl_get_instantiated_fields_types def variant_id tys
| Assumed aty -> (
(* Assumed type *)
match aty with
| State ->
(* `State` is opaque *)
raise (Failure "Unreachable: `State` values are opaque")
| Result ->
let ty = Collections.List.to_cons_nil tys in
let variant_id = Option.get variant_id in
if variant_id = result_return_id then [ ty ]
else if variant_id = result_fail_id then []
else
raise (Failure "Unreachable: improper variant id for result type")
| Option ->
let ty = Collections.List.to_cons_nil tys in
let variant_id = Option.get variant_id in
if variant_id = option_some_id then [ ty ]
else if variant_id = option_none_id then []
else
raise (Failure "Unreachable: improper variant id for result type")
| Vec -> raise (Failure "Unreachable: `Vector` values are opaque"))
(** Module to perform type checking - we use this for sanity checks only
TODO: move to a special file (so that we can also use PrintPure for
debugging)
*)
module TypeCheck = struct
type tc_ctx = {
type_decls : type_decl TypeDeclId.Map.t; (** The type declarations *)
env : ty VarId.Map.t; (** Environment from variables to types *)
}
let check_constant_value (v : constant_value) (ty : ty) : unit =
match (ty, v) with
| Integer int_ty, V.Scalar sv -> assert (int_ty = sv.V.int_ty)
| Bool, Bool _ | Char, Char _ | Str, String _ -> ()
| _ -> raise (Failure "Inconsistent type")
let rec check_typed_lvalue (ctx : tc_ctx) (v : typed_lvalue) : tc_ctx =
log#ldebug (lazy ("check_typed_lvalue: " ^ show_typed_lvalue v));
match v.value with
| LvConcrete cv ->
check_constant_value cv v.ty;
ctx
| LvVar Dummy -> ctx
| LvVar (Var (var, _)) ->
assert (var.ty = v.ty);
let env = VarId.Map.add var.id var.ty ctx.env in
{ ctx with env }
| LvAdt av ->
(* Compute the field types *)
let type_id, tys =
match v.ty with
| Adt (type_id, tys) -> (type_id, tys)
| _ -> raise (Failure "Inconsistently typed value")
in
let field_tys =
get_adt_field_types ctx.type_decls type_id av.variant_id tys
in
let check_value (ctx : tc_ctx) (ty : ty) (v : typed_lvalue) : tc_ctx =
if ty <> v.ty then (
log#serror
("check_typed_lvalue: not the same types:" ^ "\n- ty: "
^ show_ty ty ^ "\n- v.ty: " ^ show_ty v.ty);
raise (Failure "Inconsistent types"));
check_typed_lvalue ctx v
in
(* Check the field types - TODO: we might also want to check that the
* type of the applied constructor is correct *)
List.fold_left
(fun ctx (ty, v) -> check_value ctx ty v)
ctx
(List.combine field_tys av.field_values)
let rec check_texpression (ctx : tc_ctx) (e : texpression) : unit =
match e.e with
| Local var_id -> (
(* Lookup the variable - note that the variable may not be there,
* if we type-check a subexpression (i.e.: if the variable is introduced
* "outside" of the expression) - TODO: this won't happen once
* we use a locally nameless representation *)
match VarId.Map.find_opt var_id ctx.env with
| None -> ()
| Some ty -> assert (ty = e.ty))
| Const cv -> check_constant_value cv e.ty
| App (app, arg) ->
let input_ty, output_ty = destruct_arrow app.ty in
assert (input_ty = arg.ty);
assert (output_ty = e.ty);
check_texpression ctx app;
check_texpression ctx arg
| Abs (pat, body) ->
let pat_ty, body_ty = destruct_arrow e.ty in
assert (pat.ty = pat_ty);
assert (body.ty = body_ty);
(* Check the pattern and register the introduced variables at the same time *)
let ctx = check_typed_lvalue ctx pat in
check_texpression ctx body
| Qualif qualif -> (
match qualif.id with
| Func _ -> () (* TODO *)
| Proj { adt_id; field_id } ->
(* Note we can only project fields of structures (not enumerations) *)
let variant_id = None in
let expected_field_tys =
get_adt_field_types ctx.type_decls adt_id variant_id
qualif.type_params
in
let expected_field_ty = FieldId.nth expected_field_tys field_id in
let _adt_ty, field_ty = destruct_arrow e.ty in
(* TODO: check the adt_ty *)
assert (expected_field_ty = field_ty)
| AdtCons id ->
(* TODO: we might also want to check the out type *)
let expected_field_tys =
get_adt_field_types ctx.type_decls id.adt_id id.variant_id
qualif.type_params
in
let field_tys, _ = destruct_arrows e.ty in
assert (expected_field_tys = field_tys))
| Let (monadic, pat, re, e_next) ->
let expected_pat_ty =
if monadic then destruct_result re.ty else re.ty
in
assert (pat.ty = expected_pat_ty);
assert (e.ty = e_next.ty);
(* Check the right-expression *)
check_texpression ctx re;
(* Check the pattern and register the introduced variables at the same time *)
let ctx = check_typed_lvalue ctx pat in
(* Check the next expression *)
check_texpression ctx e_next
| Switch (scrut, switch_body) -> (
check_texpression ctx scrut;
match switch_body with
| If (e_then, e_else) ->
assert (scrut.ty = Bool);
assert (e_then.ty = e.ty);
assert (e_else.ty = e.ty);
check_texpression ctx e_then;
check_texpression ctx e_else
| Match branches ->
let check_branch (br : match_branch) : unit =
assert (br.pat.ty = scrut.ty);
let ctx = check_typed_lvalue ctx br.pat in
check_texpression ctx br.branch
in
List.iter check_branch branches)
| Meta (_, e_next) ->
assert (e_next.ty = e.ty);
check_texpression ctx e_next
end
|