1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
(** This module is used to extract the pure ASTs to various theorem provers.
It defines utilities and helpers to make the work as easy as possible:
we try to factorize as much as possible the different extractions to the
backends we target.
*)
open Pure
open TranslateCore
module C = Contexts
module RegionVarId = T.RegionVarId
module F = Format
(** The local logger *)
let log = L.pure_to_extract_log
type region_group_info = {
id : RegionGroupId.id;
(** The id of the region group.
Note that a simple way of generating unique names for backward
functions is to use the region group ids.
*)
region_names : string option list;
(** The names of the region variables included in this group.
Note that names are not always available...
*)
}
module StringSet = Collections.MakeSet (Collections.OrderedString)
module StringMap = Collections.MakeMap (Collections.OrderedString)
type name = Identifiers.name
type formatter = {
bool_name : string;
char_name : string;
int_name : integer_type -> string;
str_name : string;
field_name : name -> FieldId.id -> string option -> string;
(** Inputs:
- type name
- field id
- field name
Note that fields don't always have names, but we still need to
generate some names if we want to extract the structures to records...
We might want to extract such structures to tuples, later, but field
access then causes trouble because not all provers accept syntax like
`x.3` where `x` is a tuple.
*)
variant_name : name -> string -> string;
(** Inputs:
- type name
- variant name
*)
struct_constructor : name -> string;
(** Structure constructors are used when constructing structure values.
For instance, in F*:
```
type pair = { x : nat; y : nat }
let p : pair = Mkpair 0 1
```
Inputs:
- type name
*)
type_name : name -> string; (** Provided a basename, compute a type name. *)
fun_name : A.fun_id -> name -> int -> region_group_info option -> string;
(** Inputs:
- function id: this is especially useful to identify whether the
function is an assumed function or a local function
- function basename
- number of region groups
- region group information in case of a backward function
(`None` if forward function)
*)
var_basename : StringSet.t -> string option -> ty -> string;
(** Generates a variable basename.
Inputs:
- the set of names used in the context so far
- the basename we got from the symbolic execution, if we have one
- the type of the variable (can be useful for heuristics, in order
not to always use "x" for instance, whenever naming anonymous
variables)
Note that once the formatter generated a basename, we add an index
if necessary to prevent name clashes: the burden of name clashes checks
is thus on the caller's side.
*)
type_var_basename : StringSet.t -> string -> string;
(** Generates a type variable basename. *)
append_index : string -> int -> string;
(** Appends an index to a name - we use this to generate unique
names: when doing so, the role of the formatter is just to concatenate
indices to names, the responsability of finding a proper index is
delegated to helper functions.
*)
extract_constant_value : F.formatter -> bool -> constant_value -> unit;
(** Format a constant value.
Inputs:
- formatter
- [inside]: if `true`, the value should be wrapped in parentheses
if it is made of an application (ex.: `U32 3`)
*)
extract_unop :
(bool -> texpression -> unit) ->
F.formatter ->
bool ->
unop ->
texpression ->
unit;
(** Format a unary operation
Inputs:
- extraction context (see below)
- formatter
- expression formatter
- [inside]
- unop
- argument
*)
extract_binop :
(bool -> texpression -> unit) ->
F.formatter ->
bool ->
E.binop ->
integer_type ->
texpression ->
texpression ->
unit;
(** Format a binary operation
Inputs:
- extraction context (see below)
- formatter
- expression formatter
- [inside]
- binop
- argument 0
- argument 1
*)
}
(** A formatter's role is twofold:
1. Come up with name suggestions.
For instance, provided some information about a function (its basename,
information about the region group, etc.) it should come up with an
appropriate name for the forward/backward function.
It can of course apply many transformations, like changing to camel case/
snake case, adding prefixes/suffixes, etc.
2. Format some specific terms, like constants.
*)
(** We use identifiers to look for name clashes *)
type id =
| FunId of A.fun_id * RegionGroupId.id option
| TypeId of type_id
| StructId of type_id
(** We use this when we manipulate the names of the structure
constructors.
For instance, in F*:
```
type pair = { x: nat; y : nat }
let p : pair = Mkpair 0 1
```
*)
| VariantId of type_id * VariantId.id
(** If often happens that variant names must be unique (it is the case in
F* ) which is why we register them here.
*)
| FieldId of type_id * FieldId.id
(** If often happens that in the case of structures, the field names
must be unique (it is the case in F* ) which is why we register
them here.
*)
| TypeVarId of TypeVarId.id
| VarId of VarId.id
| UnknownId
(** Used for stored various strings like keywords, definitions which
should always be in context, etc. and which can't be linked to one
of the above.
*)
[@@deriving show, ord]
module IdOrderedType = struct
type t = id
let compare = compare_id
let to_string = show_id
let pp_t = pp_id
let show_t = show_id
end
module IdMap = Collections.MakeMap (IdOrderedType)
type names_map = {
id_to_name : string IdMap.t;
name_to_id : id StringMap.t;
(** The name to id map is used to look for name clashes, and generate nice
debugging messages: if there is a name clash, it is useful to know
precisely which identifiers are mapped to the same name...
*)
names_set : StringSet.t;
}
(** The names map stores the mappings from names to identifiers and vice-versa.
We use it for lookups (during the translation) and to check for name clashes.
*)
let names_map_add (id : id) (name : string) (nm : names_map) : names_map =
(* Sanity check: no clashes *)
assert (not (StringSet.mem name nm.names_set));
(* Insert *)
let id_to_name = IdMap.add id name nm.id_to_name in
let name_to_id = StringMap.add name id nm.name_to_id in
let names_set = StringSet.add name nm.names_set in
{ id_to_name; name_to_id; names_set }
let names_map_add_assumed_type (id : assumed_ty) (name : string)
(nm : names_map) : names_map =
names_map_add (TypeId (Assumed id)) name nm
let names_map_add_assumed_struct (id : assumed_ty) (name : string)
(nm : names_map) : names_map =
names_map_add (StructId (Assumed id)) name nm
let names_map_add_assumed_variant (id : assumed_ty) (variant_id : VariantId.id)
(name : string) (nm : names_map) : names_map =
names_map_add (VariantId (Assumed id, variant_id)) name nm
let names_map_add_assumed_function (fid : A.assumed_fun_id)
(rg_id : RegionGroupId.id option) (name : string) (nm : names_map) :
names_map =
names_map_add (FunId (A.Assumed fid, rg_id)) name nm
(** Make a (variable) basename unique (by adding an index).
We do this in an inefficient manner (by testing all indices starting from
0) but it shouldn't be a bottleneck.
[append]: appends an index to a string
*)
let basename_to_unique (names_set : StringSet.t)
(append : string -> int -> string) (basename : string) : string =
let rec gen (i : int) : string =
let s = append basename i in
if StringSet.mem s names_set then gen (i + 1) else s
in
if StringSet.mem basename names_set then gen 0 else basename
type extraction_ctx = {
trans_ctx : trans_ctx;
names_map : names_map;
fmt : formatter;
indent_incr : int;
(** The indent increment we insert whenever we need to indent more *)
}
(** Extraction context.
Note that the extraction context contains information coming from the
CFIM AST (not only the pure AST). This is useful for naming, for instance:
we use the region information to generate the names of the backward
functions, etc.
*)
let ctx_add (id : id) (name : string) (ctx : extraction_ctx) : extraction_ctx =
(* TODO : nice debugging message if collision *)
let names_map = names_map_add id name ctx.names_map in
{ ctx with names_map }
let ctx_get (id : id) (ctx : extraction_ctx) : string =
IdMap.find id ctx.names_map.id_to_name
let ctx_get_function (id : A.fun_id) (rg : RegionGroupId.id option)
(ctx : extraction_ctx) : string =
ctx_get (FunId (id, rg)) ctx
let ctx_get_local_function (id : FunDefId.id) (rg : RegionGroupId.id option)
(ctx : extraction_ctx) : string =
ctx_get_function (A.Local id) rg ctx
let ctx_get_type (id : type_id) (ctx : extraction_ctx) : string =
assert (id <> Tuple);
ctx_get (TypeId id) ctx
let ctx_get_local_type (id : TypeDefId.id) (ctx : extraction_ctx) : string =
ctx_get_type (AdtId id) ctx
let ctx_get_assumed_type (id : assumed_ty) (ctx : extraction_ctx) : string =
ctx_get_type (Assumed id) ctx
let ctx_get_var (id : VarId.id) (ctx : extraction_ctx) : string =
ctx_get (VarId id) ctx
let ctx_get_type_var (id : TypeVarId.id) (ctx : extraction_ctx) : string =
ctx_get (TypeVarId id) ctx
let ctx_get_field (type_id : type_id) (field_id : FieldId.id)
(ctx : extraction_ctx) : string =
ctx_get (FieldId (type_id, field_id)) ctx
let ctx_get_struct (def_id : type_id) (ctx : extraction_ctx) : string =
ctx_get (StructId def_id) ctx
let ctx_get_variant (def_id : type_id) (variant_id : VariantId.id)
(ctx : extraction_ctx) : string =
ctx_get (VariantId (def_id, variant_id)) ctx
(** Generate a unique type variable name and add it to the context *)
let ctx_add_type_var (basename : string) (id : TypeVarId.id)
(ctx : extraction_ctx) : extraction_ctx * string =
let name = ctx.fmt.type_var_basename ctx.names_map.names_set basename in
let name =
basename_to_unique ctx.names_map.names_set ctx.fmt.append_index name
in
let ctx = ctx_add (TypeVarId id) name ctx in
(ctx, name)
(** See [ctx_add_type_var] *)
let ctx_add_type_vars (vars : (string * TypeVarId.id) list)
(ctx : extraction_ctx) : extraction_ctx * string list =
List.fold_left_map
(fun ctx (name, id) -> ctx_add_type_var name id ctx)
ctx vars
(** Generate a unique variable name and add it to the context *)
let ctx_add_var (basename : string) (id : VarId.id) (ctx : extraction_ctx) :
extraction_ctx * string =
let name =
basename_to_unique ctx.names_map.names_set ctx.fmt.append_index basename
in
let ctx = ctx_add (VarId id) name ctx in
(ctx, name)
(** See [ctx_add_var] *)
let ctx_add_vars (vars : var list) (ctx : extraction_ctx) :
extraction_ctx * string list =
List.fold_left_map
(fun ctx (v : var) ->
let name = ctx.fmt.var_basename ctx.names_map.names_set v.basename v.ty in
ctx_add_var name v.id ctx)
ctx vars
let ctx_add_type_params (vars : type_var list) (ctx : extraction_ctx) :
extraction_ctx * string list =
List.fold_left_map
(fun ctx (var : type_var) -> ctx_add_type_var var.name var.index ctx)
ctx vars
let ctx_add_type_def_struct (def : type_def) (ctx : extraction_ctx) :
extraction_ctx * string =
let cons_name = ctx.fmt.struct_constructor def.name in
let ctx = ctx_add (StructId (AdtId def.def_id)) cons_name ctx in
(ctx, cons_name)
let ctx_add_type_def (def : type_def) (ctx : extraction_ctx) : extraction_ctx =
let def_name = ctx.fmt.type_name def.name in
let ctx = ctx_add (TypeId (AdtId def.def_id)) def_name ctx in
ctx
let ctx_add_field (def : type_def) (field_id : FieldId.id) (field : field)
(ctx : extraction_ctx) : extraction_ctx * string =
let name = ctx.fmt.field_name def.name field_id field.field_name in
let ctx = ctx_add (FieldId (AdtId def.def_id, field_id)) name ctx in
(ctx, name)
let ctx_add_fields (def : type_def) (fields : (FieldId.id * field) list)
(ctx : extraction_ctx) : extraction_ctx * string list =
List.fold_left_map
(fun ctx (vid, v) -> ctx_add_field def vid v ctx)
ctx fields
let ctx_add_variant (def : type_def) (variant_id : VariantId.id)
(variant : variant) (ctx : extraction_ctx) : extraction_ctx * string =
let name = ctx.fmt.variant_name def.name variant.variant_name in
let ctx = ctx_add (VariantId (AdtId def.def_id, variant_id)) name ctx in
(ctx, name)
let ctx_add_variants (def : type_def) (variants : (VariantId.id * variant) list)
(ctx : extraction_ctx) : extraction_ctx * string list =
List.fold_left_map
(fun ctx (vid, v) -> ctx_add_variant def vid v ctx)
ctx variants
let ctx_add_fun_def (def : fun_def) (ctx : extraction_ctx) : extraction_ctx =
(* Lookup the CFIM def to compute the region group information *)
let def_id = def.def_id in
let cfim_def = FunDefId.Map.find def_id ctx.trans_ctx.fun_context.fun_defs in
let sg = cfim_def.signature in
let num_rgs = List.length sg.regions_hierarchy in
let rg_info =
match def.back_id with
| None -> None
| Some rg_id ->
let rg = T.RegionGroupId.nth sg.regions_hierarchy rg_id in
let regions =
List.map
(fun rid -> T.RegionVarId.nth sg.region_params rid)
rg.regions
in
let region_names =
List.map (fun (r : T.region_var) -> r.name) regions
in
Some { id = rg_id; region_names }
in
let def_id = A.Local def_id in
let name = ctx.fmt.fun_name def_id def.basename num_rgs rg_info in
let ctx = ctx_add (FunId (def_id, def.back_id)) name ctx in
ctx
type names_map_init = {
keywords : string list;
assumed_adts : (assumed_ty * string) list;
assumed_structs : (assumed_ty * string) list;
assumed_variants : (assumed_ty * VariantId.id * string) list;
assumed_functions : (A.assumed_fun_id * RegionGroupId.id option * string) list;
}
(** Initialize a names map with a proper set of keywords/names coming from the
target language/prover. *)
let initialize_names_map (init : names_map_init) : names_map =
let name_to_id =
StringMap.of_list (List.map (fun x -> (x, UnknownId)) init.keywords)
in
let names_set = StringSet.of_list init.keywords in
(* We fist initialize [id_to_name] as empty, because the id of a keyword is [UnknownId].
* Also note that we don't need this mapping for keywords: we insert keywords only
* to check collisions. *)
let id_to_name = IdMap.empty in
let nm = { id_to_name; name_to_id; names_set } in
(* Then we add:
* - the assumed types
* - the assumed struct constructors
* - the assumed variants
* - the assumed functions
*)
let nm =
List.fold_left
(fun nm (type_id, name) -> names_map_add_assumed_type type_id name nm)
nm init.assumed_adts
in
let nm =
List.fold_left
(fun nm (type_id, name) -> names_map_add_assumed_struct type_id name nm)
nm init.assumed_structs
in
let nm =
List.fold_left
(fun nm (type_id, variant_id, name) ->
names_map_add_assumed_variant type_id variant_id name nm)
nm init.assumed_variants
in
let nm =
List.fold_left
(fun nm (fun_id, rg_id, name) ->
names_map_add_assumed_function fun_id rg_id name nm)
nm init.assumed_functions
in
(* Return *)
nm
let compute_type_def_name (fmt : formatter) (def : type_def) : string =
fmt.type_name def.name
(** A helper function: generates a function suffix from a region group
information.
TODO: move all those helpers.
*)
let default_fun_suffix (num_region_groups : int) (rg : region_group_info option)
: string =
(* There are several cases:
- [rg] is `Some`: this is a forward function:
- we add "_fwd"
- [rg] is `None`: this is a backward function:
- this function has one region group: we add "_back"
- this function has several backward function: we add "_back" and an
additional suffix to identify the precise backward function
Note that we always add a suffix (in case there are no region groups,
we could not add the "_fwd" suffix) to prevent name clashes between
definitions (in particular between type and function definitions).
*)
match rg with
| None -> "_fwd"
| Some rg ->
assert (num_region_groups > 0);
if num_region_groups = 1 then (* Exactly one backward function *)
"_back"
else if
(* Several region groups/backward functions:
- if all the regions in the group have names, we use those names
- otherwise we use an index
*)
List.for_all Option.is_some rg.region_names
then
(* Concatenate the region names *)
"_back" ^ String.concat "" (List.map Option.get rg.region_names)
else (* Use the region index *)
"_back" ^ RegionGroupId.to_string rg.id
(** Extract information from a function, and give this information to a
[formatter] to generate a function's name.
Note that we need region information coming from CFIM (when generating
the name for a backward function, we try to use the names of the regions
to
*)
let compute_fun_def_name (ctx : trans_ctx) (fmt : formatter) (fun_id : A.fun_id)
(rg_id : RegionGroupId.id option) : string =
(* Lookup the function CFIM signature (we need the region information) *)
let sg = CfimAstUtils.lookup_fun_sig fun_id ctx.fun_context.fun_defs in
let basename = CfimAstUtils.lookup_fun_name fun_id ctx.fun_context.fun_defs in
(* Compute the regions information *)
let num_region_groups = List.length sg.regions_hierarchy in
let rg_info =
match rg_id with
| None -> None
| Some rg_id ->
let rg = RegionGroupId.nth sg.regions_hierarchy rg_id in
let regions =
List.map (fun rid -> RegionVarId.nth sg.region_params rid) rg.regions
in
let region_names =
List.map (fun (r : T.region_var) -> r.name) regions
in
Some { id = rg.id; region_names }
in
fmt.fun_name fun_id basename num_region_groups rg_info
|