1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
open Identifiers
module T = Types
module V = Values
module E = Expressions
module A = CfimAst
module TypeDefId = T.TypeDefId
module TypeVarId = T.TypeVarId
module RegionId = T.RegionId
module VariantId = T.VariantId
module FieldId = T.FieldId
module SymbolicValueId = V.SymbolicValueId
module FunDefId = A.FunDefId
module SynthPhaseId = IdGen ()
(** We give an identifier to every phase of the synthesis (forward, backward
for group of regions 0, etc.) *)
module VarId = IdGen ()
(** Pay attention to the fact that we also define a [VarId] module in Values *)
type ty =
| Adt of T.type_id * ty list
(** [Adt] encodes ADTs and tuples and assumed types.
TODO: what about the ended regions? (ADTs may be parameterized
with several region variables. When giving back an ADT value, we may
be able to only give back part of the ADT. We need a way to encode
such "partial" ADTs.
TODO: we may want to redefine type_id here, to remove some types like
boxe. But on the other hand, it might introduce a lot of administrative
manipulations just to remove boxe...
*)
| TypeVar of TypeVarId.id
| Bool
| Char
| Integer of T.integer_type
| Str
| Array of ty (* TODO: there should be a constant with the array *)
| Slice of ty
[@@deriving
show,
visitors
{
name = "iter_ty";
variety = "iter";
ancestors = [ "T.iter_ty_base" ];
(* Reusing the visitor from Types.ml *)
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_ty";
variety = "map";
ancestors = [ "T.map_ty_base" ];
(* Reusing the visitor from Types.ml *)
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
}]
type field = { field_name : string; field_ty : ty } [@@deriving show]
type variant = { variant_name : string; fields : field list } [@@deriving show]
type type_def_kind = Struct of field list | Enum of variant list
[@@deriving show]
type type_var = T.type_var [@@deriving show]
type type_def = {
def_id : TypeDefId.id;
name : name;
type_params : type_var list;
kind : type_def_kind;
}
[@@deriving show]
type scalar_value = V.scalar_value
type constant_value = V.constant_value
type var = { id : VarId.id; ty : ty }
(** Because we introduce a lot of temporary variables, the list of variables
is not fixed: we thus must carry all its information with the variable
itself.
TODO: add a field for the basename.
*)
type var_or_dummy =
| Var of var (** TODO: use var_id, not var *)
| Dummy (** Ignored value: `_`. *)
(** A left value (which appears on the left of assignments *)
type lvalue =
| LvVar of var_or_dummy
| LvTuple of typed_lvalue list
(** Rk.: for now we don't support general ADTs *)
and typed_lvalue = { value : lvalue; ty : ty }
type projection_elem = { pkind : E.field_proj_kind; field_id : FieldId.id }
type projection = projection_elem list
type place = { var : VarId.id; projection : projection }
type rvalue =
| RvConcrete of constant_value
| RvPlace of place
| RvAdt of adt_rvalue
and adt_rvalue = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_rvalue list;
}
and typed_rvalue = { value : rvalue; ty : ty }
(** In most situations we won't use the type in [typed_rvalue].
Note that it is still necessary to have some useful informations
about ADTs, though.
*)
type unop = Not | Neg of T.integer_type
type fun_id =
| Regular of A.fun_id * T.RegionGroupId.id option
(** Backward id: `Some` if the function is a backward function, `None`
if it is a forward function *)
| Unop of unop
| Binop of E.binop * T.integer_type
type call = {
func : fun_id;
type_params : ty list;
args : typed_rvalue list;
(** Note that at this point, some functions have no arguments. For instance:
```
fn f();
```
In the extracted code, we add a unit argument. This is unit argument is
added later, when going from the "pure" AST to the "extracted" AST.
*)
}
type let_bindings =
| Call of typed_lvalue list * call
(** The called function and the tuple of returned values. *)
| Assign of typed_lvalue * typed_rvalue
(** Variable assignment: the introduced pattern and the place we read *)
| Deconstruct of
var_or_dummy list * (TypeDefId.id * VariantId.id) option * typed_rvalue
(** This is used in two cases.
1. When deconstructing a tuple:
```
let (x, y) = p in ...
```
(not all languages have syntax like `p.0`, `p.1`... and it is more
readable anyway).
2. When expanding an enumeration with one variant.
In this case, [Deconstruct] has to be understood as:
```
let Cons x tl = ls in
...
```
Later, depending on the language we extract to, we can eventually
update it to something like this (for F*, for instance):
```
let x = Cons?.v ls in
let tl = Cons?.tl ls in
...
```
Note that we prefer not handling this case through a match.
TODO: actually why not encoding it as a match internally, then
generating the `let Cons ... = ... in ...` upon outputting the
code if we detect there is exactly one variant?...
*)
(** **Rk.:** here, [expression] is not at all equivalent to the expressions
used in CFIM. They are lambda-calculus expressions, and are thus actually
more general than the CFIM statements, in a sense.
*)
type expression =
| Return of typed_rvalue
| Panic
| Let of let_bindings * expression
(** Let bindings include the let-bindings introduced because of function calls *)
| Switch of typed_rvalue * switch_body
and switch_body =
| If of expression * expression
| SwitchInt of T.integer_type * (scalar_value * expression) list * expression
| Match of match_branch list
and match_branch = {
variant_id : VariantId.id;
vars : var_or_dummy list;
branch : expression;
}
type fun_sig = {
type_params : type_var list;
inputs : ty list;
outputs : ty list;
(** The list of outputs.
In case of a forward function, the list will have length = 1.
However, in case of backward function, the list may have length > 1.
If the length is > 1, it gets extracted to a tuple type. Followingly,
we could not use a list because we can encode tuples, but here we
want to account for the fact that we immediately deconstruct the tuple
upon calling the backward function (because the backward function is
called to update a set of values in the environment).
*)
}
type inst_fun_sig = { inputs : ty list; outputs : ty list }
type fun_def = {
def_id : FunDefId.id;
back_id : T.RegionGroupId.id option;
basename : name;
(** The "base" name of the function.
The base name is the original name of the Rust function. We add suffixes
(to identify the forward/backward functions) later.
*)
signature : fun_sig;
inputs : var list;
body : expression;
}
|