1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
open Identifiers
module T = Types
module V = Values
module E = Expressions
module A = CfimAst
module TypeDefId = T.TypeDefId
module TypeVarId = T.TypeVarId
module RegionId = T.RegionId
module VariantId = T.VariantId
module FieldId = T.FieldId
module SymbolicValueId = V.SymbolicValueId
module FunDefId = A.FunDefId
module SynthPhaseId = IdGen ()
(** We give an identifier to every phase of the synthesis (forward, backward
for group of regions 0, etc.) *)
module VarId = IdGen ()
(** Pay attention to the fact that we also define a [VarId] module in Values *)
type assumed_ty =
| Result
(** The assumed types for the pure AST.
In comparison with CFIM:
- we removed `Box` (because it is translated as the identity: `Box T == T`)
- we added `Result`, which is the type used in the error monad. This allows
us to have a unified treatment of expressions.
*)
[@@deriving show, ord]
let result_return_id = VariantId.of_int 0
let result_fail_id = VariantId.of_int 1
type type_id = AdtId of TypeDefId.id | Tuple | Assumed of assumed_ty
[@@deriving show, ord]
(** Ancestor for iter visitor for [ty] *)
class ['self] iter_ty_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_id : 'env -> TypeVarId.id -> unit = fun _ _ -> ()
method visit_type_id : 'env -> type_id -> unit = fun _ _ -> ()
method visit_integer_type : 'env -> T.integer_type -> unit = fun _ _ -> ()
end
(** Ancestor for map visitor for [ty] *)
class ['self] map_ty_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.map
method visit_id : 'env -> TypeVarId.id -> TypeVarId.id = fun _ id -> id
method visit_type_id : 'env -> type_id -> type_id = fun _ id -> id
method visit_integer_type : 'env -> T.integer_type -> T.integer_type =
fun _ ity -> ity
end
type ty =
| Adt of type_id * ty list
(** [Adt] encodes ADTs and tuples and assumed types.
TODO: what about the ended regions? (ADTs may be parameterized
with several region variables. When giving back an ADT value, we may
be able to only give back part of the ADT. We need a way to encode
such "partial" ADTs.
*)
| TypeVar of TypeVarId.id
| Bool
| Char
| Integer of T.integer_type
| Str
| Array of ty (* TODO: there should be a constant with the array *)
| Slice of ty
[@@deriving
show,
visitors
{
name = "iter_ty";
variety = "iter";
ancestors = [ "iter_ty_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_ty";
variety = "map";
ancestors = [ "map_ty_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
}]
type field = { field_name : string; field_ty : ty } [@@deriving show]
type variant = { variant_name : string; fields : field list } [@@deriving show]
type type_def_kind = Struct of field list | Enum of variant list
[@@deriving show]
type type_var = T.type_var [@@deriving show]
type type_def = {
def_id : TypeDefId.id;
name : name;
type_params : type_var list;
kind : type_def_kind;
}
[@@deriving show]
type scalar_value = V.scalar_value
type constant_value = V.constant_value
type var = {
id : VarId.id;
basename : string option;
(** The "basename" is used to generate a meaningful name for the variable
(by potentially adding an index to uniquely identify it).
*)
ty : ty;
}
(** Because we introduce a lot of temporary variables, the list of variables
is not fixed: we thus must carry all its information with the variable
itself.
*)
type projection_elem = { pkind : E.field_proj_kind; field_id : FieldId.id }
type projection = projection_elem list
type mplace = { name : string option; projection : projection }
(** "Meta" place.
Meta-data retrieved from the symbolic execution, which gives provenance
information about the values. We use this to generate names for the variables
we introduce.
*)
type place = { var : VarId.id; projection : projection }
(** Ancestor for [iter_var_or_dummy] visitor *)
class ['self] iter_value_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_constant_value : 'env -> constant_value -> unit = fun _ _ -> ()
method visit_var : 'env -> var -> unit = fun _ _ -> ()
method visit_place : 'env -> place -> unit = fun _ _ -> ()
method visit_mplace : 'env -> mplace -> unit = fun _ _ -> ()
method visit_ty : 'env -> ty -> unit = fun _ _ -> ()
end
(** Ancestor for [map_var_or_dummy] visitor *)
class ['self] map_value_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.map
method visit_constant_value : 'env -> constant_value -> constant_value =
fun _ x -> x
method visit_var : 'env -> var -> var = fun _ x -> x
method visit_place : 'env -> place -> place = fun _ x -> x
method visit_mplace : 'env -> mplace -> mplace = fun _ x -> x
method visit_ty : 'env -> ty -> ty = fun _ x -> x
end
(** Ancestor for [reduce_var_or_dummy] visitor *)
class virtual ['self] reduce_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.reduce
method visit_constant_value : 'env -> constant_value -> 'a =
fun _ _ -> self#zero
method visit_var : 'env -> var -> 'a = fun _ _ -> self#zero
method visit_place : 'env -> place -> 'a = fun _ _ -> self#zero
method visit_mplace : 'env -> mplace -> 'a = fun _ _ -> self#zero
method visit_ty : 'env -> ty -> 'a = fun _ _ -> self#zero
end
type var_or_dummy =
| Var of var * mplace option
| Dummy (** Ignored value: `_`. *)
[@@deriving
visitors
{
name = "iter_var_or_dummy";
variety = "iter";
ancestors = [ "iter_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_var_or_dummy";
variety = "map";
ancestors = [ "map_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.map] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_var_or_dummy";
variety = "reduce";
ancestors = [ "reduce_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.reduce] *);
polymorphic = false;
}]
(** A left value (which appears on the left of assignments *)
type lvalue = LvVar of var_or_dummy | LvAdt of adt_lvalue
and adt_lvalue = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_lvalue list;
}
and typed_lvalue = { value : lvalue; ty : ty }
[@@deriving
visitors
{
name = "iter_typed_lvalue";
variety = "iter";
ancestors = [ "iter_var_or_dummy" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_typed_lvalue";
variety = "map";
ancestors = [ "map_var_or_dummy" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_typed_lvalue";
variety = "reduce";
ancestors = [ "reduce_var_or_dummy" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
polymorphic = false;
}]
type rvalue =
| RvConcrete of constant_value
| RvPlace of place
| RvAdt of adt_rvalue
and adt_rvalue = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_rvalue list;
}
and typed_rvalue = { value : rvalue; ty : ty }
[@@deriving
visitors
{
name = "iter_typed_rvalue";
variety = "iter";
ancestors = [ "iter_typed_lvalue" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_typed_rvalue";
variety = "map";
ancestors = [ "map_typed_lvalue" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_typed_rvalue";
variety = "reduce";
ancestors = [ "reduce_typed_lvalue" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
polymorphic = false;
}]
type unop = Not | Neg of T.integer_type
type fun_id =
| Regular of A.fun_id * T.RegionGroupId.id option
(** Backward id: `Some` if the function is a backward function, `None`
if it is a forward function *)
| Unop of unop
| Binop of E.binop * T.integer_type
(** Meta-information stored in the AST *)
type meta = Assignment of mplace * typed_rvalue
(** Ancestor for [iter_expression] visitor *)
class ['self] iter_expression_base =
object (_self : 'self)
inherit [_] iter_typed_rvalue
method visit_meta : 'env -> meta -> unit = fun _ _ -> ()
method visit_integer_type : 'env -> T.integer_type -> unit = fun _ _ -> ()
method visit_scalar_value : 'env -> scalar_value -> unit = fun _ _ -> ()
method visit_id : 'env -> VariantId.id -> unit = fun _ _ -> ()
method visit_fun_id : 'env -> fun_id -> unit = fun _ _ -> ()
end
(** Ancestor for [map_expression] visitor *)
class ['self] map_expression_base =
object (_self : 'self)
inherit [_] map_typed_rvalue
method visit_meta : 'env -> meta -> meta = fun _ x -> x
method visit_integer_type : 'env -> T.integer_type -> T.integer_type =
fun _ x -> x
method visit_scalar_value : 'env -> scalar_value -> scalar_value =
fun _ x -> x
method visit_id : 'env -> VariantId.id -> VariantId.id = fun _ x -> x
method visit_fun_id : 'env -> fun_id -> fun_id = fun _ x -> x
end
(** Ancestor for [reduce_expression] visitor *)
class virtual ['self] reduce_expression_base =
object (self : 'self)
inherit [_] reduce_typed_rvalue
method visit_meta : 'env -> meta -> 'a = fun _ _ -> self#zero
method visit_integer_type : 'env -> T.integer_type -> 'a =
fun _ _ -> self#zero
method visit_scalar_value : 'env -> scalar_value -> 'a =
fun _ _ -> self#zero
method visit_id : 'env -> VariantId.id -> 'a = fun _ _ -> self#zero
method visit_fun_id : 'env -> fun_id -> 'a = fun _ _ -> self#zero
end
(** **Rk.:** here, [expression] is not at all equivalent to the expressions
used in CFIM. They are lambda-calculus expressions, and are thus actually
more general than the CFIM statements, in a sense.
TODO: actually when I defined [expression] I still had Rust in mind, so
it is not a "textbook" lambda calculus expression (still quite constrained).
As we want to do transformations on it, through micro-passes, it would be
good to update it and make it more "regular".
TODO: remove `Return` and `Fail` (they should be "normal" values, I think)
*)
type expression =
| Value of typed_rvalue * mplace option
| Call of call
| Let of bool * typed_lvalue * expression * expression
(** Let binding.
The boolean controls whether the let is monadic or not.
For instance, in F*:
- non-monadic: `let x = ... in ...`
- monadic: `x <-- ...; ...`
Note that we are quite general for the left-value on purpose; this
is used in several situations:
1. When deconstructing a tuple:
```
let (x, y) = p in ...
```
(not all languages have syntax like `p.0`, `p.1`... and it is more
readable anyway).
2. When expanding an enumeration with one variant.
In this case, [Deconstruct] has to be understood as:
```
let Cons x tl = ls in
...
```
Note that later, depending on the language we extract to, we can
eventually update it to something like this (for F*, for instance):
```
let x = Cons?.v ls in
let tl = Cons?.tl ls in
...
```
*)
| Switch of typed_rvalue * mplace option * switch_body
| Meta of meta * expression (** Meta-information *)
and call = {
func : fun_id;
type_params : ty list;
args : expression list;
(** Note that immediately after we converted the symbolic AST to a pure AST,
some functions may have no arguments. For instance:
```
fn f();
```
We later add a unit argument.
*)
}
and switch_body =
| If of expression * expression
| SwitchInt of T.integer_type * (scalar_value * expression) list * expression
| Match of match_branch list
and match_branch = { pat : typed_lvalue; branch : expression }
[@@deriving
visitors
{
name = "iter_expression";
variety = "iter";
ancestors = [ "iter_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_expression";
variety = "map";
ancestors = [ "map_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "reduce_expression";
variety = "reduce";
ancestors = [ "reduce_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
}]
type fun_sig = {
type_params : type_var list;
inputs : ty list;
outputs : ty list;
(** The list of outputs.
Immediately after the translation from symbolic to pure we have this
the following:
In case of a forward function, the list will have length = 1.
However, in case of backward function, the list may have length > 1.
If the length is > 1, it gets extracted to a tuple type. Followingly,
we could not use a list because we can encode tuples, but here we
want to account for the fact that we immediately deconstruct the tuple
upon calling the backward function (because the backward function is
called to update a set of values in the environment).
After the "to monadic" pass, the list has size exactly one (and we
use the `Result` type).
*)
}
type inst_fun_sig = { inputs : ty list; outputs : ty list }
type fun_def = {
def_id : FunDefId.id;
back_id : T.RegionGroupId.id option;
basename : name;
(** The "base" name of the function.
The base name is the original name of the Rust function. We add suffixes
(to identify the forward/backward functions) later.
*)
signature : fun_sig;
inputs : var list;
inputs_lvs : typed_lvalue list;
(** The inputs seen as lvalues. Allows to make transformations, for example
to replace unused variables by `_` *)
body : expression;
}
|