1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
open Identifiers
open Names
module T = Types
module V = Values
module E = Expressions
module A = LlbcAst
module TypeDeclId = T.TypeDeclId
module TypeVarId = T.TypeVarId
module RegionGroupId = T.RegionGroupId
module VariantId = T.VariantId
module FieldId = T.FieldId
module SymbolicValueId = V.SymbolicValueId
module FunDeclId = A.FunDeclId
module SynthPhaseId = IdGen ()
(** We give an identifier to every phase of the synthesis (forward, backward
for group of regions 0, etc.) *)
module VarId = IdGen ()
(** Pay attention to the fact that we also define a [VarId] module in Values *)
type integer_type = T.integer_type [@@deriving show, ord]
(** The assumed types for the pure AST.
In comparison with LLBC:
- we removed `Box` (because it is translated as the identity: `Box T == T`)
- we added:
- `Result`: the type used in the error monad. This allows us to have a
unified treatment of expressions (especially when we have to unfold the
monadic binds)
- `State`: the type of the state, when using state-error monads. Note that
this state is opaque to Aeneas (the user can define it, or leave it as
assumed)
*)
type assumed_ty = State | Result | Vec | Option [@@deriving show, ord]
(* TODO: we should never directly manipulate `Return` and `Fail`, but rather
* the monadic functions `return` and `fail` (makes treatment of error and
* state-error monads more uniform) *)
let result_return_id = VariantId.of_int 0
let result_fail_id = VariantId.of_int 1
let option_some_id = T.option_some_id
let option_none_id = T.option_none_id
type type_id = AdtId of TypeDeclId.id | Tuple | Assumed of assumed_ty
[@@deriving show, ord]
(** Ancestor for iter visitor for [ty] *)
class ['self] iter_ty_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_id : 'env -> TypeVarId.id -> unit = fun _ _ -> ()
method visit_type_id : 'env -> type_id -> unit = fun _ _ -> ()
method visit_integer_type : 'env -> integer_type -> unit = fun _ _ -> ()
end
(** Ancestor for map visitor for [ty] *)
class ['self] map_ty_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.map
method visit_id : 'env -> TypeVarId.id -> TypeVarId.id = fun _ id -> id
method visit_type_id : 'env -> type_id -> type_id = fun _ id -> id
method visit_integer_type : 'env -> integer_type -> integer_type =
fun _ ity -> ity
end
type ty =
| Adt of type_id * ty list
(** [Adt] encodes ADTs and tuples and assumed types.
TODO: what about the ended regions? (ADTs may be parameterized
with several region variables. When giving back an ADT value, we may
be able to only give back part of the ADT. We need a way to encode
such "partial" ADTs.
*)
| TypeVar of TypeVarId.id
| Bool
| Char
| Integer of integer_type
| Str
| Array of ty (* TODO: this should be an assumed type?... *)
| Slice of ty (* TODO: this should be an assumed type?... *)
| Arrow of ty * ty
[@@deriving
show,
visitors
{
name = "iter_ty";
variety = "iter";
ancestors = [ "iter_ty_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_ty";
variety = "map";
ancestors = [ "map_ty_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
}]
type field = { field_name : string option; field_ty : ty } [@@deriving show]
type variant = { variant_name : string; fields : field list } [@@deriving show]
type type_decl_kind = Struct of field list | Enum of variant list | Opaque
[@@deriving show]
type type_var = T.type_var [@@deriving show]
type type_decl = {
def_id : TypeDeclId.id;
name : name;
type_params : type_var list;
kind : type_decl_kind;
}
[@@deriving show]
type scalar_value = V.scalar_value [@@deriving show]
type constant_value = V.constant_value [@@deriving show]
type var = {
id : VarId.id;
basename : string option;
(** The "basename" is used to generate a meaningful name for the variable
(by potentially adding an index to uniquely identify it).
*)
ty : ty;
}
[@@deriving show]
(** Because we introduce a lot of temporary variables, the list of variables
is not fixed: we thus must carry all its information with the variable
itself.
*)
(* TODO: we might want to redefine field_proj_kind here, to prevent field accesses
* on enumerations.
* Also: tuples...
* Rmk: projections are actually only used as meta-data.
* *)
type mprojection_elem = { pkind : E.field_proj_kind; field_id : FieldId.id }
[@@deriving show]
type mprojection = mprojection_elem list [@@deriving show]
type mplace = {
var_id : V.VarId.id;
name : string option;
projection : mprojection;
}
[@@deriving show]
(** "Meta" place.
Meta-data retrieved from the symbolic execution, which gives provenance
information about the values. We use this to generate names for the variables
we introduce.
*)
type variant_id = VariantId.id [@@deriving show]
(** Ancestor for [iter_pat_var_or_dummy] visitor *)
class ['self] iter_value_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_constant_value : 'env -> constant_value -> unit = fun _ _ -> ()
method visit_var : 'env -> var -> unit = fun _ _ -> ()
method visit_mplace : 'env -> mplace -> unit = fun _ _ -> ()
method visit_ty : 'env -> ty -> unit = fun _ _ -> ()
method visit_variant_id : 'env -> variant_id -> unit = fun _ _ -> ()
end
(** Ancestor for [map_typed_rvalue] visitor *)
class ['self] map_value_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.map
method visit_constant_value : 'env -> constant_value -> constant_value =
fun _ x -> x
method visit_var : 'env -> var -> var = fun _ x -> x
method visit_mplace : 'env -> mplace -> mplace = fun _ x -> x
method visit_ty : 'env -> ty -> ty = fun _ x -> x
method visit_variant_id : 'env -> variant_id -> variant_id = fun _ x -> x
end
(** Ancestor for [reduce_typed_rvalue] visitor *)
class virtual ['self] reduce_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.reduce
method visit_constant_value : 'env -> constant_value -> 'a =
fun _ _ -> self#zero
method visit_var : 'env -> var -> 'a = fun _ _ -> self#zero
method visit_mplace : 'env -> mplace -> 'a = fun _ _ -> self#zero
method visit_ty : 'env -> ty -> 'a = fun _ _ -> self#zero
method visit_variant_id : 'env -> variant_id -> 'a = fun _ _ -> self#zero
end
(** Ancestor for [mapreduce_typed_rvalue] visitor *)
class virtual ['self] mapreduce_value_base =
object (self : 'self)
inherit [_] VisitorsRuntime.mapreduce
method visit_constant_value : 'env -> constant_value -> constant_value * 'a
=
fun _ x -> (x, self#zero)
method visit_var : 'env -> var -> var * 'a = fun _ x -> (x, self#zero)
method visit_mplace : 'env -> mplace -> mplace * 'a =
fun _ x -> (x, self#zero)
method visit_ty : 'env -> ty -> ty * 'a = fun _ x -> (x, self#zero)
method visit_variant_id : 'env -> variant_id -> variant_id * 'a =
fun _ x -> (x, self#zero)
end
(** A pattern (which appears on the left of assignments, in matches, etc.). *)
type pattern =
| PatConcrete of constant_value
(** [PatConcrete] is necessary because we merge the switches over integer
values and the matches over enumerations *)
| PatVar of var * mplace option
| PatDummy (** Ignored value: `_`. *)
| PatAdt of adt_pattern
and adt_pattern = {
variant_id : variant_id option;
field_values : typed_pattern list;
}
and typed_pattern = { value : pattern; ty : ty }
[@@deriving
show,
visitors
{
name = "iter_typed_pattern";
variety = "iter";
ancestors = [ "iter_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_typed_pattern";
variety = "map";
ancestors = [ "map_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_typed_pattern";
variety = "reduce";
ancestors = [ "reduce_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
polymorphic = false;
},
visitors
{
name = "mapreduce_typed_pattern";
variety = "mapreduce";
ancestors = [ "mapreduce_value_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
polymorphic = false;
}]
type unop = Not | Neg of integer_type [@@deriving show, ord]
type fun_id =
| Regular of A.fun_id * T.RegionGroupId.id option
(** Backward id: `Some` if the function is a backward function, `None`
if it is a forward function.
TODO: we need to redefine A.fun_id here, to add `fail` and
`return` (important to get a unified treatment of the state-error
monad). For now, when using the state-error monad: extraction
works only if we unfold all the monadic let-bindings, and we
then replace the content of the occurrences of `Return` to also
return the state (which is really super ugly).
*)
| Unop of unop
| Binop of E.binop * integer_type
[@@deriving show, ord]
type adt_cons_id = { adt_id : type_id; variant_id : variant_id option }
[@@deriving show]
(** An identifier for an ADT constructor *)
type projection = { adt_id : type_id; field_id : FieldId.id } [@@deriving show]
(** Projection - For now we don't support projection of tuple fields
(because not all the backends have syntax for this).
*)
type qualif_id =
| Func of fun_id
| AdtCons of adt_cons_id (** A function or ADT constructor identifier *)
| Proj of projection (** Field projector *)
[@@deriving show]
type qualif = { id : qualif_id; type_args : ty list } [@@deriving show]
(** An instantiated qualified.
Note that for now we have a clear separation between types and expressions,
which explains why we have the `type_params` field: a function or ADT
constructor is always fully instantiated.
*)
type var_id = VarId.id [@@deriving show]
(** Ancestor for [iter_expression] visitor *)
class ['self] iter_expression_base =
object (_self : 'self)
inherit [_] iter_typed_pattern
method visit_integer_type : 'env -> integer_type -> unit = fun _ _ -> ()
method visit_var_id : 'env -> var_id -> unit = fun _ _ -> ()
method visit_qualif : 'env -> qualif -> unit = fun _ _ -> ()
end
(** Ancestor for [map_expression] visitor *)
class ['self] map_expression_base =
object (_self : 'self)
inherit [_] map_typed_pattern
method visit_integer_type : 'env -> integer_type -> integer_type =
fun _ x -> x
method visit_var_id : 'env -> var_id -> var_id = fun _ x -> x
method visit_qualif : 'env -> qualif -> qualif = fun _ x -> x
end
(** Ancestor for [reduce_expression] visitor *)
class virtual ['self] reduce_expression_base =
object (self : 'self)
inherit [_] reduce_typed_pattern
method visit_integer_type : 'env -> integer_type -> 'a =
fun _ _ -> self#zero
method visit_var_id : 'env -> var_id -> 'a = fun _ _ -> self#zero
method visit_qualif : 'env -> qualif -> 'a = fun _ _ -> self#zero
end
(** Ancestor for [mapreduce_expression] visitor *)
class virtual ['self] mapreduce_expression_base =
object (self : 'self)
inherit [_] mapreduce_typed_pattern
method visit_integer_type : 'env -> integer_type -> integer_type * 'a =
fun _ x -> (x, self#zero)
method visit_var_id : 'env -> var_id -> var_id * 'a =
fun _ x -> (x, self#zero)
method visit_qualif : 'env -> qualif -> qualif * 'a =
fun _ x -> (x, self#zero)
end
(** **Rk.:** here, [expression] is not at all equivalent to the expressions
used in LLBC. They are lambda-calculus expressions, and are thus actually
more general than the LLBC statements, in a sense.
*)
type expression =
| Var of var_id (** a variable *)
| Const of constant_value
| App of texpression * texpression
(** Application of a function to an argument.
The function calls are still quite structured.
Change that?... We might want to have a "normal" lambda calculus
app (with head and argument): this would allow us to replace some
field accesses with calls to projectors over fields (when there
are clashes of field names, some provers like F* get pretty bad...)
*)
| Abs of typed_pattern * texpression (** Lambda abstraction: `fun x -> e` *)
| Qualif of qualif (** A top-level qualifier *)
| Let of bool * typed_pattern * texpression * texpression
(** Let binding.
TODO: the boolean should be replaced by an enum: sometimes we use
the error-monad, sometimes we use the state-error monad (and we
do this an a per-function basis! For instance, arithmetic functions
are always in the error monad).
The boolean controls whether the let is monadic or not.
For instance, in F*:
- non-monadic: `let x = ... in ...`
- monadic: `x <-- ...; ...`
Note that we are quite general for the left-value on purpose; this
is used in several situations:
1. When deconstructing a tuple:
```
let (x, y) = p in ...
```
(not all languages have syntax like `p.0`, `p.1`... and it is more
readable anyway).
2. When expanding an enumeration with one variant.
In this case, [Deconstruct] has to be understood as:
```
let Cons x tl = ls in
...
```
Note that later, depending on the language we extract to, we can
eventually update it to something like this (for F*, for instance):
```
let x = Cons?.v ls in
let tl = Cons?.tl ls in
...
```
*)
| Switch of texpression * switch_body
| Meta of (meta[@opaque]) * texpression (** Meta-information *)
and switch_body = If of texpression * texpression | Match of match_branch list
and match_branch = { pat : typed_pattern; branch : texpression }
and texpression = { e : expression; ty : ty }
and mvalue = (texpression[@opaque])
(** Meta-value (converted to an expression). It is important that the content
is opaque.
TODO: is it possible to mark the whole mvalue type as opaque?
*)
and meta =
| Assignment of mplace * mvalue * mplace option
(** Meta-information stored in the AST.
The first mplace stores the destination.
The mvalue stores the value which is put in the destination
The second (optional) mplace stores the origin.
*)
| MPlace of mplace (** Meta-information about the origin of a value *)
[@@deriving
show,
visitors
{
name = "iter_expression";
variety = "iter";
ancestors = [ "iter_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_expression";
variety = "map";
ancestors = [ "map_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "reduce_expression";
variety = "reduce";
ancestors = [ "reduce_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
},
visitors
{
name = "mapreduce_expression";
variety = "mapreduce";
ancestors = [ "mapreduce_expression_base" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
}]
type fun_sig_info = {
num_fwd_inputs : int;
(** The number of input types for forward computation *)
num_back_inputs : int option;
(** The number of additional inputs for the backward computation (if pertinent) *)
input_state : bool; (** `true` if the function takes a state as input *)
output_state : bool;
(** `true` if the function outputs a state (it then lives
in a state monad) *)
can_fail : bool; (** `true` if the return type is a `result` *)
}
(** Meta information about a function signature *)
type fun_sig = {
type_params : type_var list;
inputs : ty list;
output : ty;
doutputs : ty list;
(** The "decomposed" list of outputs.
In case of a forward function, the list has length = 1, for the
type of the returned value.
In case of backward function, the list contains all the types of
all the given back values (there is at most one type per forward
input argument).
Ex.:
```
fn choose<'a, T>(b : bool, x : &'a mut T, y : &'a mut T) -> &'a mut T;
```
Decomposed outputs:
- forward function: [T]
- backward function: [T; T] (for "x" and "y")
*)
info : fun_sig_info; (** Additional information *)
}
(** A function signature.
We have the following cases:
- forward function:
`in_ty0 -> ... -> in_tyn -> out_ty` (* pure function *)
`in_ty0 -> ... -> in_tyn -> result out_ty` (* error-monad *)
`in_ty0 -> ... -> in_tyn -> state -> result (state & out_ty)` (* state-error *)
- backward function:
`in_ty0 -> ... -> in_tyn -> back_in0 -> ... back_inm -> (back_out0 & ... & back_outp)` (* pure function *)
`in_ty0 -> ... -> in_tyn -> back_in0 -> ... back_inm ->
result (back_out0 & ... & back_outp)` (* error-monad *)
`in_ty0 -> ... -> in_tyn -> state -> back_in0 -> ... back_inm ->
result (back_out0 & ... & back_outp)` (* state-error *)
Note that a backward function never returns (i.e., updates) a state: only
forward functions do so. Also, the state input parameter is *betwee*
the forward inputs and the backward inputs.
The function's type should be given by `mk_arrows sig.inputs sig.output`.
We provide additional meta-information:
- we divide between forward inputs and backward inputs (i.e., inputs specific
to the forward functions, and additional inputs necessary if the signature is
for a backward function)
- we have booleans to give us the fact that the function takes a state as
input, or can fail, etc. without having to inspect the signature
- etc.
*)
type inst_fun_sig = {
inputs : ty list;
output : ty;
doutputs : ty list;
info : fun_sig_info;
}
(** An instantiated function signature. See [fun_sig] *)
type fun_body = {
inputs : var list;
inputs_lvs : typed_pattern list;
(** The inputs seen as patterns. Allows to make transformations, for example
to replace unused variables by `_` *)
body : texpression;
}
type fun_decl = {
def_id : FunDeclId.id;
back_id : T.RegionGroupId.id option;
basename : fun_name;
(** The "base" name of the function.
The base name is the original name of the Rust function. We add suffixes
(to identify the forward/backward functions) later.
*)
signature : fun_sig;
body : fun_body option;
}
|