1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
(** This module defines printing functions for the types defined in Pure.ml *)
open Pure
module T = Types
module V = Values
module E = Expressions
module A = CfimAst
module TypeDeclId = T.TypeDeclId
module TypeVarId = T.TypeVarId
module RegionId = T.RegionId
module VariantId = T.VariantId
module FieldId = T.FieldId
module SymbolicValueId = V.SymbolicValueId
module FunDeclId = A.FunDeclId
type type_formatter = {
type_var_id_to_string : TypeVarId.id -> string;
type_decl_id_to_string : TypeDeclId.id -> string;
}
type value_formatter = {
type_var_id_to_string : TypeVarId.id -> string;
type_decl_id_to_string : TypeDeclId.id -> string;
adt_variant_to_string : TypeDeclId.id -> VariantId.id -> string;
var_id_to_string : VarId.id -> string;
adt_field_names : TypeDeclId.id -> VariantId.id option -> string list option;
}
let value_to_type_formatter (fmt : value_formatter) : type_formatter =
{
type_var_id_to_string = fmt.type_var_id_to_string;
type_decl_id_to_string = fmt.type_decl_id_to_string;
}
(* TODO: we need to store which variables we have encountered so far, and
remove [var_id_to_string].
*)
type ast_formatter = {
type_var_id_to_string : TypeVarId.id -> string;
type_decl_id_to_string : TypeDeclId.id -> string;
adt_variant_to_string : TypeDeclId.id -> VariantId.id -> string;
var_id_to_string : VarId.id -> string;
adt_field_to_string :
TypeDeclId.id -> VariantId.id option -> FieldId.id -> string option;
adt_field_names : TypeDeclId.id -> VariantId.id option -> string list option;
fun_decl_id_to_string : A.FunDeclId.id -> string;
}
let ast_to_value_formatter (fmt : ast_formatter) : value_formatter =
{
type_var_id_to_string = fmt.type_var_id_to_string;
type_decl_id_to_string = fmt.type_decl_id_to_string;
adt_variant_to_string = fmt.adt_variant_to_string;
var_id_to_string = fmt.var_id_to_string;
adt_field_names = fmt.adt_field_names;
}
let ast_to_type_formatter (fmt : ast_formatter) : type_formatter =
let fmt = ast_to_value_formatter fmt in
value_to_type_formatter fmt
let name_to_string = Print.name_to_string
let fun_name_to_string = Print.fun_name_to_string
let option_to_string = Print.option_to_string
let type_var_to_string = Print.Types.type_var_to_string
let integer_type_to_string = Print.Types.integer_type_to_string
let scalar_value_to_string = Print.Values.scalar_value_to_string
let mk_type_formatter (type_decls : T.type_decl TypeDeclId.Map.t)
(type_params : type_var list) : type_formatter =
let type_var_id_to_string vid =
let var = T.TypeVarId.nth type_params vid in
type_var_to_string var
in
let type_decl_id_to_string def_id =
let def = T.TypeDeclId.Map.find def_id type_decls in
name_to_string def.name
in
{ type_var_id_to_string; type_decl_id_to_string }
(* TODO: there is a bit of duplication with Print.fun_decl_to_ast_formatter.
TODO: use the pure defs as inputs? Note that it is a bit annoying for the
functions (there is a difference between the forward/backward functions...)
while we only need those definitions to lookup proper names for the def ids.
*)
let mk_ast_formatter (type_decls : T.type_decl TypeDeclId.Map.t)
(fun_decls : A.fun_decl FunDeclId.Map.t) (type_params : type_var list) :
ast_formatter =
let type_var_id_to_string vid =
let var = T.TypeVarId.nth type_params vid in
type_var_to_string var
in
let type_decl_id_to_string def_id =
let def = T.TypeDeclId.Map.find def_id type_decls in
name_to_string def.name
in
let adt_variant_to_string =
Print.Contexts.type_ctx_to_adt_variant_to_string_fun type_decls
in
let var_id_to_string vid =
(* TODO: somehow lookup in the context *)
"^" ^ VarId.to_string vid
in
let adt_field_names =
Print.Contexts.type_ctx_to_adt_field_names_fun type_decls
in
let adt_field_to_string =
Print.CfimAst.type_ctx_to_adt_field_to_string_fun type_decls
in
let fun_decl_id_to_string def_id =
let def = A.FunDeclId.Map.find def_id fun_decls in
fun_name_to_string def.name
in
{
type_var_id_to_string;
type_decl_id_to_string;
adt_variant_to_string;
var_id_to_string;
adt_field_names;
adt_field_to_string;
fun_decl_id_to_string;
}
let type_id_to_string (fmt : type_formatter) (id : type_id) : string =
match id with
| AdtId id -> fmt.type_decl_id_to_string id
| Tuple -> ""
| Assumed aty -> (
match aty with
| State -> "State"
| Result -> "Result"
| Option -> "Option"
| Vec -> "Vec")
let rec ty_to_string (fmt : type_formatter) (ty : ty) : string =
match ty with
| Adt (id, tys) -> (
let tys = List.map (ty_to_string fmt) tys in
match id with
| Tuple -> "(" ^ String.concat " * " tys ^ ")"
| AdtId _ | Assumed _ ->
let tys = if tys = [] then "" else " " ^ String.concat " " tys in
type_id_to_string fmt id ^ tys)
| TypeVar tv -> fmt.type_var_id_to_string tv
| Bool -> "bool"
| Char -> "char"
| Integer int_ty -> integer_type_to_string int_ty
| Str -> "str"
| Array aty -> "[" ^ ty_to_string fmt aty ^ "; ?]"
| Slice sty -> "[" ^ ty_to_string fmt sty ^ "]"
| Arrow (arg_ty, ret_ty) ->
ty_to_string fmt arg_ty ^ " -> " ^ ty_to_string fmt ret_ty
let field_to_string fmt (f : field) : string =
match f.field_name with
| None -> ty_to_string fmt f.field_ty
| Some field_name -> field_name ^ " : " ^ ty_to_string fmt f.field_ty
let variant_to_string fmt (v : variant) : string =
v.variant_name ^ "("
^ String.concat ", " (List.map (field_to_string fmt) v.fields)
^ ")"
let type_decl_to_string (fmt : type_formatter) (def : type_decl) : string =
let types = def.type_params in
let name = name_to_string def.name in
let params =
if types = [] then ""
else " " ^ String.concat " " (List.map type_var_to_string types)
in
match def.kind with
| Struct fields ->
if List.length fields > 0 then
let fields =
String.concat ","
(List.map (fun f -> "\n " ^ field_to_string fmt f) fields)
in
"struct " ^ name ^ params ^ "{" ^ fields ^ "}"
else "struct " ^ name ^ params ^ "{}"
| Enum variants ->
let variants =
List.map (fun v -> "| " ^ variant_to_string fmt v) variants
in
let variants = String.concat "\n" variants in
"enum " ^ name ^ params ^ " =\n" ^ variants
let var_to_string (fmt : type_formatter) (v : var) : string =
let varname =
match v.basename with
| Some name -> name ^ "^" ^ VarId.to_string v.id
| None -> "^" ^ VarId.to_string v.id
in
"(" ^ varname ^ " : " ^ ty_to_string fmt v.ty ^ ")"
let var_or_dummy_to_string (fmt : value_formatter) (v : var_or_dummy) : string =
match v with
| Var (v, _) -> var_to_string (value_to_type_formatter fmt) v
| Dummy -> "_"
let rec projection_to_string (fmt : ast_formatter) (inside : string)
(p : projection) : string =
match p with
| [] -> inside
| pe :: p' -> (
let s = projection_to_string fmt inside p' in
match pe.pkind with
| E.ProjOption variant_id ->
assert (variant_id == T.option_some_id);
assert (pe.field_id == T.FieldId.zero);
"(" ^ s ^ "as Option::Some)." ^ T.FieldId.to_string pe.field_id
| E.ProjTuple _ -> "(" ^ s ^ ")." ^ T.FieldId.to_string pe.field_id
| E.ProjAdt (adt_id, opt_variant_id) -> (
let field_name =
match fmt.adt_field_to_string adt_id opt_variant_id pe.field_id with
| Some field_name -> field_name
| None -> T.FieldId.to_string pe.field_id
in
match opt_variant_id with
| None -> "(" ^ s ^ ")." ^ field_name
| Some variant_id ->
let variant_name = fmt.adt_variant_to_string adt_id variant_id in
"(" ^ s ^ " as " ^ variant_name ^ ")." ^ field_name))
let place_to_string (fmt : ast_formatter) (p : place) : string =
(* TODO: improve that *)
let var = fmt.var_id_to_string p.var in
projection_to_string fmt var p.projection
let adt_g_value_to_string (fmt : value_formatter)
(value_to_string : 'v -> string) (variant_id : VariantId.id option)
(field_values : 'v list) (ty : ty) : string =
let field_values = List.map value_to_string field_values in
match ty with
| Adt (Tuple, _) ->
(* Tuple *)
"(" ^ String.concat ", " field_values ^ ")"
| Adt (AdtId def_id, _) ->
(* "Regular" ADT *)
let adt_ident =
match variant_id with
| Some vid -> fmt.adt_variant_to_string def_id vid
| None -> fmt.type_decl_id_to_string def_id
in
if field_values <> [] then
match fmt.adt_field_names def_id variant_id with
| None ->
let field_values = String.concat ", " field_values in
adt_ident ^ " (" ^ field_values ^ ")"
| Some field_names ->
let field_values = List.combine field_names field_values in
let field_values =
List.map
(fun (field, value) -> field ^ " = " ^ value ^ ";")
field_values
in
let field_values = String.concat " " field_values in
adt_ident ^ " { " ^ field_values ^ " }"
else adt_ident
| Adt (Assumed aty, _) -> (
(* Assumed type *)
match aty with
| State ->
(* The `State` type is opaque: we can't get there *)
raise (Failure "Unreachable")
| Result ->
let variant_id = Option.get variant_id in
if variant_id = result_return_id then
match field_values with
| [ v ] -> "@Result::Return " ^ v
| _ -> raise (Failure "Result::Return takes exactly one value")
else if variant_id = result_fail_id then (
assert (field_values = []);
"@Result::Fail")
else
raise (Failure "Unreachable: improper variant id for result type")
| Option ->
let variant_id = Option.get variant_id in
if variant_id = option_some_id then
match field_values with
| [ v ] -> "@Option::Some " ^ v
| _ -> raise (Failure "Option::Some takes exactly one value")
else if variant_id = option_none_id then (
assert (field_values = []);
"@Option::None")
else
raise (Failure "Unreachable: improper variant id for result type")
| Vec ->
assert (variant_id = None);
let field_values =
List.mapi (fun i v -> string_of_int i ^ " -> " ^ v) field_values
in
"Vec [" ^ String.concat "; " field_values ^ "]")
| _ ->
let fmt = value_to_type_formatter fmt in
raise
(Failure
("Inconsistently typed value: expected ADT type but found:"
^ "\n- ty: " ^ ty_to_string fmt ty ^ "\n- variant_id: "
^ Print.option_to_string VariantId.to_string variant_id))
let rec typed_lvalue_to_string (fmt : value_formatter) (v : typed_lvalue) :
string =
match v.value with
| LvConcrete cv -> Print.Values.constant_value_to_string cv
| LvVar var -> var_or_dummy_to_string fmt var
| LvAdt av ->
adt_g_value_to_string fmt
(typed_lvalue_to_string fmt)
av.variant_id av.field_values v.ty
let rec typed_rvalue_to_string (fmt : ast_formatter) (v : typed_rvalue) : string
=
match v.value with
| RvConcrete cv -> Print.Values.constant_value_to_string cv
| RvPlace p -> place_to_string fmt p
| RvAdt av ->
adt_g_value_to_string
(ast_to_value_formatter fmt)
(typed_rvalue_to_string fmt)
av.variant_id av.field_values v.ty
let fun_sig_to_string (fmt : ast_formatter) (sg : fun_sig) : string =
let ty_fmt = ast_to_type_formatter fmt in
let type_params = List.map type_var_to_string sg.type_params in
let inputs = List.map (ty_to_string ty_fmt) sg.inputs in
let outputs = List.map (ty_to_string ty_fmt) sg.outputs in
let outputs =
match outputs with
| [] ->
(* Can happen with backward functions which don't give back
* anything (shared borrows only) *)
"()"
| [ out ] -> out
| outputs -> "(" ^ String.concat " * " outputs ^ ")"
in
let all_types = List.concat [ type_params; inputs; [ outputs ] ] in
String.concat " -> " all_types
let inst_fun_sig_to_string (fmt : ast_formatter) (sg : inst_fun_sig) : string =
let ty_fmt = ast_to_type_formatter fmt in
let inputs = List.map (ty_to_string ty_fmt) sg.inputs in
let outputs = List.map (ty_to_string ty_fmt) sg.outputs in
let outputs =
match outputs with
| [] -> "()"
| [ out ] -> out
| outputs -> "(" ^ String.concat " * " outputs ^ ")"
in
let all_types = List.append inputs [ outputs ] in
String.concat " -> " all_types
let regular_fun_id_to_string (fmt : ast_formatter) (fun_id : A.fun_id) : string
=
match fun_id with
| A.Local fid -> fmt.fun_decl_id_to_string fid
| A.Assumed fid -> (
match fid with
| A.Replace -> "core::mem::replace"
| A.BoxNew -> "alloc::boxed::Box::new"
| A.BoxDeref -> "core::ops::deref::Deref::deref"
| A.BoxDerefMut -> "core::ops::deref::DerefMut::deref_mut"
| A.BoxFree -> "alloc::alloc::box_free"
| A.VecNew -> "alloc::vec::Vec::new"
| A.VecPush -> "alloc::vec::Vec::push"
| A.VecInsert -> "alloc::vec::Vec::insert"
| A.VecLen -> "alloc::vec::Vec::len"
| A.VecIndex -> "core::ops::index::Index<alloc::vec::Vec>::index"
| A.VecIndexMut ->
"core::ops::index::IndexMut<alloc::vec::Vec>::index_mut")
let fun_suffix (rg_id : T.RegionGroupId.id option) : string =
match rg_id with
| None -> ""
| Some rg_id -> "@" ^ T.RegionGroupId.to_string rg_id
let unop_to_string (unop : unop) : string =
match unop with Not -> "¬" | Neg _ -> "-"
let binop_to_string = Print.CfimAst.binop_to_string
let fun_id_to_string (fmt : ast_formatter) (fun_id : fun_id) : string =
match fun_id with
| Regular (fun_id, rg_id) ->
let f = regular_fun_id_to_string fmt fun_id in
f ^ fun_suffix rg_id
| Unop unop -> unop_to_string unop
| Binop (binop, int_ty) ->
binop_to_string binop ^ "<" ^ integer_type_to_string int_ty ^ ">"
let mplace_to_string (fmt : ast_formatter) (p : mplace) : string =
let name = match p.name with None -> "_" | Some name -> name in
projection_to_string fmt name p.projection
let meta_to_string (fmt : ast_formatter) (meta : meta) : string =
let meta =
match meta with
| Assignment (p, rv) ->
"@assign(" ^ mplace_to_string fmt p ^ " := "
^ typed_rvalue_to_string fmt rv
^ ")"
in
"@meta[" ^ meta ^ "]"
let rec expression_to_string (fmt : ast_formatter) (indent : string)
(indent_incr : string) (e : expression) : string =
match e with
| Value (v, _) -> typed_rvalue_to_string fmt v
| Call call -> call_to_string fmt indent indent_incr call
| Let (monadic, lv, re, e) ->
let_to_string fmt indent indent_incr monadic lv re e
| Switch (scrutinee, body) ->
switch_to_string fmt indent indent_incr scrutinee body
| Meta (meta, e) ->
let meta = meta_to_string fmt meta in
let e = texpression_to_string fmt indent indent_incr e in
indent ^ meta ^ "\n" ^ e
and texpression_to_string (fmt : ast_formatter) (indent : string)
(indent_incr : string) (e : texpression) : string =
expression_to_string fmt indent indent_incr e.e
and call_to_string (fmt : ast_formatter) (indent : string)
(indent_incr : string) (call : call) : string =
let ty_fmt = ast_to_type_formatter fmt in
let tys = List.map (ty_to_string ty_fmt) call.type_params in
(* The arguments are expressions, so indentation might get weird... (though
* those expressions will in most cases just be values) *)
let indent1 = indent ^ indent_incr in
let args =
List.map (texpression_to_string fmt indent1 indent_incr) call.args
in
let all_args = List.append tys args in
let fun_id = fun_id_to_string fmt call.func in
if all_args = [] then fun_id else fun_id ^ " " ^ String.concat " " all_args
and let_to_string (fmt : ast_formatter) (indent : string) (indent_incr : string)
(monadic : bool) (lv : typed_lvalue) (re : texpression) (e : texpression) :
string =
let indent1 = indent ^ indent_incr in
let val_fmt = ast_to_value_formatter fmt in
let re = texpression_to_string fmt indent1 indent_incr re in
let e = texpression_to_string fmt indent indent_incr e in
let lv = typed_lvalue_to_string val_fmt lv in
if monadic then lv ^ " <-- " ^ re ^ ";\n" ^ indent ^ e
else "let " ^ lv ^ " = " ^ re ^ " in\n" ^ indent ^ e
and switch_to_string (fmt : ast_formatter) (indent : string)
(indent_incr : string) (scrutinee : texpression) (body : switch_body) :
string =
let indent1 = indent ^ indent_incr in
(* Printing can mess up on the scrutinee, because it is an expression - but
* in most situations it will be a value or a function call, so it should be
* ok*)
let scrut = texpression_to_string fmt indent1 indent_incr scrutinee in
match body with
| If (e_true, e_false) ->
let e_true = texpression_to_string fmt indent1 indent_incr e_true in
let e_false = texpression_to_string fmt indent1 indent_incr e_false in
"if " ^ scrut ^ "\n" ^ indent ^ "then\n" ^ indent ^ e_true ^ "\n" ^ indent
^ "else\n" ^ indent ^ e_false
| Match branches ->
let val_fmt = ast_to_value_formatter fmt in
let branch_to_string (b : match_branch) : string =
let pat = typed_lvalue_to_string val_fmt b.pat in
indent ^ "| " ^ pat ^ " ->\n" ^ indent1
^ texpression_to_string fmt indent1 indent_incr b.branch
in
let branches = List.map branch_to_string branches in
"match " ^ scrut ^ " with\n" ^ String.concat "\n" branches
let fun_decl_to_string (fmt : ast_formatter) (def : fun_decl) : string =
let type_fmt = ast_to_type_formatter fmt in
let name = fun_name_to_string def.basename ^ fun_suffix def.back_id in
let signature = fun_sig_to_string fmt def.signature in
let inputs = List.map (var_to_string type_fmt) def.inputs in
let inputs =
if inputs = [] then "" else " fun " ^ String.concat " " inputs ^ " ->\n"
in
let body = texpression_to_string fmt " " " " def.body in
"let " ^ name ^ " :\n " ^ signature ^ " =\n" ^ inputs ^ " " ^ body
|