1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
|
(* The following module defines functions to check that some invariants
* are always maintained by evaluation contexts *)
module T = Types
module V = Values
module E = Expressions
module C = Contexts
module Subst = Substitute
module A = CfimAst
module L = Logging
open Cps
open TypesUtils
open InterpreterUtils
open InterpreterBorrowsCore
(** The local logger *)
let log = L.invariants_log
type borrow_info = {
loan_kind : T.ref_kind;
loan_in_abs : bool;
(* true if the loan was found in an abstraction *)
loan_ids : V.BorrowId.Set.t;
borrow_ids : V.BorrowId.Set.t;
}
[@@deriving show]
type outer_borrow_info = {
outer_borrow : bool;
(* true if the value is borrowed *)
outer_shared : bool; (* true if the value is borrowed as shared *)
}
let set_outer_mut (info : outer_borrow_info) : outer_borrow_info =
{ info with outer_borrow = true }
let set_outer_shared (_info : outer_borrow_info) : outer_borrow_info =
{ outer_borrow = true; outer_shared = true }
let ids_reprs_to_string (indent : string)
(reprs : V.BorrowId.id V.BorrowId.Map.t) : string =
V.BorrowId.Map.to_string (Some indent) V.BorrowId.to_string reprs
let borrows_infos_to_string (indent : string)
(infos : borrow_info V.BorrowId.Map.t) : string =
V.BorrowId.Map.to_string (Some indent) show_borrow_info infos
type borrow_kind = Mut | Shared | Inactivated
(** Check that:
- loans and borrows are correctly related
- a two-phase borrow can't point to a value inside an abstraction
*)
let check_loans_borrows_relation_invariant (ctx : C.eval_ctx) : unit =
(* Link all the borrow ids to a representant - necessary because of shared
* borrows/loans *)
let ids_reprs : V.BorrowId.id V.BorrowId.Map.t ref =
ref V.BorrowId.Map.empty
in
(* Link all the id representants to a borrow information *)
let borrows_infos : borrow_info V.BorrowId.Map.t ref =
ref V.BorrowId.Map.empty
in
let context_to_string () : string =
eval_ctx_to_string ctx ^ "- representants:\n"
^ ids_reprs_to_string " " !ids_reprs
^ "\n- info:\n"
^ borrows_infos_to_string " " !borrows_infos
in
(* Ignored loans - when we find an ignored loan while building the borrows_infos
* map, we register it in this list; once the borrows_infos map is completely
* built, we check that all the borrow ids of the ignored loans are in this
* map *)
let ignored_loans : (T.ref_kind * V.BorrowId.id) list ref = ref [] in
(* first, register all the loans *)
(* Some utilities to register the loans *)
let register_ignored_loan (rkind : T.ref_kind) (bid : V.BorrowId.id) : unit =
ignored_loans := (rkind, bid) :: !ignored_loans
in
let register_shared_loan (loan_in_abs : bool) (bids : V.BorrowId.Set.t) : unit
=
let reprs = !ids_reprs in
let infos = !borrows_infos in
(* Use the first borrow id as representant *)
let repr_bid = V.BorrowId.Set.min_elt bids in
assert (not (V.BorrowId.Map.mem repr_bid infos));
(* Insert the mappings to the representant *)
let reprs =
V.BorrowId.Set.fold
(fun bid reprs ->
assert (not (V.BorrowId.Map.mem bid reprs));
V.BorrowId.Map.add bid repr_bid reprs)
bids reprs
in
(* Insert the loan info *)
let info =
{
loan_kind = T.Shared;
loan_in_abs;
loan_ids = bids;
borrow_ids = V.BorrowId.Set.empty;
}
in
let infos = V.BorrowId.Map.add repr_bid info infos in
(* Update *)
ids_reprs := reprs;
borrows_infos := infos
in
let register_mut_loan (loan_in_abs : bool) (bid : V.BorrowId.id) : unit =
let reprs = !ids_reprs in
let infos = !borrows_infos in
(* Sanity checks *)
assert (not (V.BorrowId.Map.mem bid reprs));
assert (not (V.BorrowId.Map.mem bid infos));
(* Add the mapping for the representant *)
let reprs = V.BorrowId.Map.add bid bid reprs in
(* Add the mapping for the loan info *)
let info =
{
loan_kind = T.Mut;
loan_in_abs;
loan_ids = V.BorrowId.Set.singleton bid;
borrow_ids = V.BorrowId.Set.empty;
}
in
let infos = V.BorrowId.Map.add bid info infos in
(* Update *)
ids_reprs := reprs;
borrows_infos := infos
in
let loans_visitor =
object
inherit [_] C.iter_eval_ctx as super
method! visit_Var _ binder v =
let inside_abs = false in
super#visit_Var inside_abs binder v
method! visit_Abs _ abs =
let inside_abs = true in
super#visit_Abs inside_abs abs
method! visit_loan_content inside_abs lc =
(* Register the loan *)
let _ =
match lc with
| V.SharedLoan (bids, _) -> register_shared_loan inside_abs bids
| V.MutLoan bid -> register_mut_loan inside_abs bid
in
(* Continue exploring *)
super#visit_loan_content inside_abs lc
method! visit_aloan_content inside_abs lc =
let _ =
match lc with
| V.AMutLoan (bid, _) -> register_mut_loan inside_abs bid
| V.ASharedLoan (bids, _, _) -> register_shared_loan inside_abs bids
| V.AIgnoredMutLoan (bid, _) -> register_ignored_loan T.Mut bid
| V.AIgnoredSharedLoan _
| V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
| V.AEndedSharedLoan (_, _)
| V.AEndedIgnoredMutLoan
{ given_back = _; child = _; given_back_meta = _ } ->
(* Do nothing *)
()
in
(* Continue exploring *)
super#visit_aloan_content inside_abs lc
end
in
(* Visit *)
let inside_abs = false in
loans_visitor#visit_eval_ctx inside_abs ctx;
(* Then, register all the borrows *)
(* Some utilities to register the borrows *)
let find_info (bid : V.BorrowId.id) : borrow_info =
(* Find the representant *)
match V.BorrowId.Map.find_opt bid !ids_reprs with
| Some repr_bid ->
(* Lookup the info *)
V.BorrowId.Map.find repr_bid !borrows_infos
| None ->
let err =
"find_info: could not find the representant of borrow "
^ V.BorrowId.to_string bid ^ "\n" ^ context_to_string ()
in
log#serror err;
failwith err
in
let update_info (bid : V.BorrowId.id) (info : borrow_info) : unit =
(* Find the representant *)
let repr_bid = V.BorrowId.Map.find bid !ids_reprs in
(* Update the info *)
let infos =
V.BorrowId.Map.update repr_bid
(fun x ->
match x with Some _ -> Some info | None -> failwith "Unreachable")
!borrows_infos
in
borrows_infos := infos
in
let register_ignored_borrow = register_ignored_loan in
let register_borrow (kind : borrow_kind) (bid : V.BorrowId.id) : unit =
(* Lookup the info *)
let info = find_info bid in
(* Check that the borrow kind is consistent *)
(match (info.loan_kind, kind) with
| T.Shared, (Shared | Inactivated) | T.Mut, Mut -> ()
| _ -> failwith "Invariant not satisfied");
(* An inactivated borrow can't point to a value inside an abstraction *)
assert (kind <> Inactivated || not info.loan_in_abs);
(* Insert the borrow id *)
let borrow_ids = info.borrow_ids in
assert (not (V.BorrowId.Set.mem bid borrow_ids));
let info = { info with borrow_ids = V.BorrowId.Set.add bid borrow_ids } in
(* Update the info in the map *)
update_info bid info
in
let borrows_visitor =
object
inherit [_] C.iter_eval_ctx as super
method! visit_abstract_shared_borrows _ asb =
let visit asb =
match asb with
| V.AsbBorrow bid -> register_borrow Shared bid
| V.AsbProjReborrows _ -> ()
in
List.iter visit asb
method! visit_borrow_content env bc =
(* Register the loan *)
let _ =
match bc with
| V.SharedBorrow (_, bid) -> register_borrow Shared bid
| V.MutBorrow (bid, _) -> register_borrow Mut bid
| V.InactivatedMutBorrow bid -> register_borrow Inactivated bid
in
(* Continue exploring *)
super#visit_borrow_content env bc
method! visit_aborrow_content env bc =
let _ =
match bc with
| V.AMutBorrow (_, bid, _) -> register_borrow Mut bid
| V.ASharedBorrow bid -> register_borrow Shared bid
| V.AIgnoredMutBorrow (Some bid, _) -> register_ignored_borrow Mut bid
| V.AIgnoredMutBorrow (None, _)
| V.AEndedMutBorrow _ | V.AEndedIgnoredMutBorrow _
| V.AProjSharedBorrow _ ->
(* Do nothing *)
()
in
(* Continue exploring *)
super#visit_aborrow_content env bc
end
in
(* Visit *)
borrows_visitor#visit_eval_ctx () ctx;
(* Debugging *)
log#ldebug
(lazy ("\nAbout to check context invariant:\n" ^ context_to_string ()));
(* Finally, check that everything is consistant *)
(* First, check all the ignored loans are present at the proper place *)
List.iter
(fun (rkind, bid) ->
let info = find_info bid in
assert (info.loan_kind = rkind))
!ignored_loans;
(* Then, check the borrow infos *)
V.BorrowId.Map.iter
(fun _ info ->
(* Note that we can't directly compare the sets - I guess they are
* different depending on the order in which we add the elements... *)
assert (
V.BorrowId.Set.elements info.loan_ids
= V.BorrowId.Set.elements info.borrow_ids);
match info.loan_kind with
| T.Mut -> assert (V.BorrowId.Set.cardinal info.loan_ids = 1)
| T.Shared -> ())
!borrows_infos
(** Check that:
- borrows/loans can't contain ⊥ or inactivated mut borrows
- shared loans can't contain mutable loans
*)
let check_borrowed_values_invariant (ctx : C.eval_ctx) : unit =
let visitor =
object
inherit [_] C.iter_eval_ctx as super
method! visit_Bottom info =
(* No ⊥ inside borrowed values *)
assert (not info.outer_borrow)
method! visit_ABottom _info =
(* ⊥ inside an abstraction is not the same as in a regular value *)
()
method! visit_loan_content info lc =
(* Update the info *)
let info =
match lc with
| V.SharedLoan (_, _) -> set_outer_shared info
| V.MutLoan _ ->
(* No mutable loan inside a shared loan *)
assert (not info.outer_shared);
set_outer_mut info
in
(* Continue exploring *)
super#visit_loan_content info lc
method! visit_borrow_content info bc =
(* Update the info *)
let info =
match bc with
| V.SharedBorrow _ -> set_outer_shared info
| V.InactivatedMutBorrow _ ->
assert (not info.outer_borrow);
set_outer_shared info
| V.MutBorrow (_, _) -> set_outer_mut info
in
(* Continue exploring *)
super#visit_borrow_content info bc
method! visit_aloan_content info lc =
(* Update the info *)
let info =
match lc with
| V.AMutLoan (_, _) -> set_outer_mut info
| V.ASharedLoan (_, _, _) -> set_outer_shared info
| V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
->
set_outer_mut info
| V.AEndedSharedLoan (_, _) -> set_outer_shared info
| V.AIgnoredMutLoan (_, _) -> set_outer_mut info
| V.AEndedIgnoredMutLoan
{ given_back = _; child = _; given_back_meta = _ } ->
set_outer_mut info
| V.AIgnoredSharedLoan _ -> set_outer_shared info
in
(* Continue exploring *)
super#visit_aloan_content info lc
method! visit_aborrow_content info bc =
(* Update the info *)
let info =
match bc with
| V.AMutBorrow (_, _, _) -> set_outer_mut info
| V.ASharedBorrow _ -> set_outer_shared info
| V.AIgnoredMutBorrow _ | V.AEndedMutBorrow _
| V.AEndedIgnoredMutBorrow _ ->
set_outer_mut info
| V.AProjSharedBorrow _ -> set_outer_shared info
in
(* Continue exploring *)
super#visit_aborrow_content info bc
end
in
(* Explore *)
let info = { outer_borrow = false; outer_shared = false } in
visitor#visit_eval_ctx info ctx
let check_constant_value_type (cv : V.constant_value) (ty : T.ety) : unit =
match (cv, ty) with
| V.Scalar sv, T.Integer int_ty -> assert (sv.int_ty = int_ty)
| V.Bool _, T.Bool | V.Char _, T.Char | V.String _, T.Str -> ()
| _ -> failwith "Erroneous typing"
let check_typing_invariant (ctx : C.eval_ctx) : unit =
(* TODO: the type of aloans doens't make sense: they have a type
* of the shape `& (mut) T` where they should have type `T`...
* This messes a bit the type invariant checks when checking the
* children. In order to isolate the problem (for future modifications)
* we introduce function, so that we can easily spot all the involved
* places.
* *)
let aloan_get_expected_child_type (ty : 'r T.ty) : 'r T.ty =
let _, ty, _ = ty_get_ref ty in
ty
in
let visitor =
object
inherit [_] C.iter_eval_ctx as super
method! visit_abs _ abs = super#visit_abs (Some abs) abs
method! visit_typed_value info tv =
(* Check the current pair (value, type) *)
(match (tv.V.value, tv.V.ty) with
| V.Concrete cv, ty -> check_constant_value_type cv ty
(* ADT case *)
| V.Adt av, T.Adt (T.AdtId def_id, regions, tys) ->
(* Retrieve the definition to check the variant id, the number of
* parameters, etc. *)
let def = C.ctx_lookup_type_def ctx def_id in
(* Check the number of parameters *)
assert (List.length regions = List.length def.region_params);
assert (List.length tys = List.length def.type_params);
(* Check that the variant id is consistent *)
(match (av.V.variant_id, def.T.kind) with
| Some variant_id, T.Enum variants ->
assert (T.VariantId.to_int variant_id < List.length variants)
| None, T.Struct _ -> ()
| _ -> failwith "Erroneous typing");
(* Check that the field types are correct *)
let field_types =
Subst.type_def_get_instantiated_field_etypes def av.V.variant_id
tys
in
let fields_with_types =
List.combine av.V.field_values field_types
in
List.iter
(fun ((v, ty) : V.typed_value * T.ety) -> assert (v.V.ty = ty))
fields_with_types
(* Tuple case *)
| V.Adt av, T.Adt (T.Tuple, regions, tys) ->
assert (regions = []);
assert (av.V.variant_id = None);
(* Check that the fields have the proper values - and check that there
* are as many fields as field types at the same time *)
let fields_with_types = List.combine av.V.field_values tys in
List.iter
(fun ((v, ty) : V.typed_value * T.ety) -> assert (v.V.ty = ty))
fields_with_types
(* Assumed type case *)
| V.Adt av, T.Adt (T.Assumed aty_id, regions, tys) -> (
assert (av.V.variant_id = None);
match (aty_id, av.V.field_values, regions, tys) with
(* Box *)
| T.Box, [ boxed_value ], [], [ boxed_ty ] ->
assert (boxed_value.V.ty = boxed_ty)
| _ -> failwith "Erroneous type")
| V.Bottom, _ -> (* Nothing to check *) ()
| V.Borrow bc, T.Ref (_, ref_ty, rkind) -> (
match (bc, rkind) with
| V.SharedBorrow (_, bid), T.Shared
| V.InactivatedMutBorrow bid, T.Mut -> (
(* Lookup the borrowed value to check it has the proper type *)
let _, glc = lookup_loan ek_all bid ctx in
match glc with
| Concrete (V.SharedLoan (_, sv))
| Abstract (V.ASharedLoan (_, sv, _)) ->
assert (sv.V.ty = ref_ty)
| _ -> failwith "Inconsistent context")
| V.MutBorrow (_, bv), T.Mut ->
assert (
(* Check that the borrowed value has the proper type *)
bv.V.ty = ref_ty)
| _ -> failwith "Erroneous typing")
| V.Loan lc, ty -> (
match lc with
| V.SharedLoan (_, sv) -> assert (sv.V.ty = ty)
| V.MutLoan bid -> (
(* Lookup the borrowed value to check it has the proper type *)
let glc = lookup_borrow ek_all bid ctx in
match glc with
| Concrete (V.MutBorrow (_, bv)) -> assert (bv.V.ty = ty)
| Abstract (V.AMutBorrow (_, _, sv)) ->
assert (Subst.erase_regions sv.V.ty = ty)
| _ -> failwith "Inconsistent context"))
| V.Symbolic sv, ty ->
let ty' = Subst.erase_regions sv.V.sv_ty in
assert (ty' = ty)
| _ -> failwith "Erroneous typing");
(* Continue exploring to inspect the subterms *)
super#visit_typed_value info tv
(* TODO: there is a lot of duplication with [visit_typed_value]
* which is quite annoying. There might be a way of factorizing
* that by factorizing the definitions of value and avalue, but
* the generation of visitors then doesn't work properly (TODO:
* report that). Still, it is actually not that problematic
* because this code shouldn't change a lot in the future,
* so the cost of maintenance should be pretty low.
* *)
method! visit_typed_avalue info atv =
(* Check the current pair (value, type) *)
(match (atv.V.value, atv.V.ty) with
| V.AConcrete cv, ty ->
check_constant_value_type cv (Subst.erase_regions ty)
(* ADT case *)
| V.AAdt av, T.Adt (T.AdtId def_id, regions, tys) ->
(* Retrieve the definition to check the variant id, the number of
* parameters, etc. *)
let def = C.ctx_lookup_type_def ctx def_id in
(* Check the number of parameters *)
assert (List.length regions = List.length def.region_params);
assert (List.length tys = List.length def.type_params);
(* Check that the variant id is consistent *)
(match (av.V.variant_id, def.T.kind) with
| Some variant_id, T.Enum variants ->
assert (T.VariantId.to_int variant_id < List.length variants)
| None, T.Struct _ -> ()
| _ -> failwith "Erroneous typing");
(* Check that the field types are correct *)
let field_types =
Subst.type_def_get_instantiated_field_rtypes def av.V.variant_id
regions tys
in
let fields_with_types =
List.combine av.V.field_values field_types
in
List.iter
(fun ((v, ty) : V.typed_avalue * T.rty) -> assert (v.V.ty = ty))
fields_with_types
(* Tuple case *)
| V.AAdt av, T.Adt (T.Tuple, regions, tys) ->
assert (regions = []);
assert (av.V.variant_id = None);
(* Check that the fields have the proper values - and check that there
* are as many fields as field types at the same time *)
let fields_with_types = List.combine av.V.field_values tys in
List.iter
(fun ((v, ty) : V.typed_avalue * T.rty) -> assert (v.V.ty = ty))
fields_with_types
(* Assumed type case *)
| V.AAdt av, T.Adt (T.Assumed aty_id, regions, tys) -> (
assert (av.V.variant_id = None);
match (aty_id, av.V.field_values, regions, tys) with
(* Box *)
| T.Box, [ boxed_value ], [], [ boxed_ty ] ->
assert (boxed_value.V.ty = boxed_ty)
| _ -> failwith "Erroneous type")
| V.ABottom, _ -> (* Nothing to check *) ()
| V.ABorrow bc, T.Ref (_, ref_ty, rkind) -> (
match (bc, rkind) with
| V.AMutBorrow (_, _, av), T.Mut ->
(* Check that the child value has the proper type *)
assert (av.V.ty = ref_ty)
| V.ASharedBorrow bid, T.Shared -> (
(* Lookup the borrowed value to check it has the proper type *)
let _, glc = lookup_loan ek_all bid ctx in
match glc with
| Concrete (V.SharedLoan (_, sv))
| Abstract (V.ASharedLoan (_, sv, _)) ->
assert (sv.V.ty = Subst.erase_regions ref_ty)
| _ -> failwith "Inconsistent context")
| V.AIgnoredMutBorrow (_opt_bid, av), T.Mut ->
assert (av.V.ty = ref_ty)
| ( V.AEndedIgnoredMutBorrow
{ given_back_loans_proj; child; given_back_meta = _ },
T.Mut ) ->
assert (given_back_loans_proj.V.ty = ref_ty);
assert (child.V.ty = ref_ty)
| V.AProjSharedBorrow _, T.Shared -> ()
| _ -> failwith "Inconsistent context")
| V.ALoan lc, aty -> (
match lc with
| V.AMutLoan (bid, child_av) | V.AIgnoredMutLoan (bid, child_av)
-> (
let borrowed_aty = aloan_get_expected_child_type aty in
assert (child_av.V.ty = borrowed_aty);
(* Lookup the borrowed value to check it has the proper type *)
let glc = lookup_borrow ek_all bid ctx in
match glc with
| Concrete (V.MutBorrow (_, bv)) ->
assert (bv.V.ty = Subst.erase_regions borrowed_aty)
| Abstract (V.AMutBorrow (_, _, sv)) ->
assert (
Subst.erase_regions sv.V.ty
= Subst.erase_regions borrowed_aty)
| _ -> failwith "Inconsistent context")
| V.ASharedLoan (_, sv, child_av) | V.AEndedSharedLoan (sv, child_av)
->
let borrowed_aty = aloan_get_expected_child_type aty in
assert (sv.V.ty = Subst.erase_regions borrowed_aty);
(* TODO: the type of aloans doesn't make sense, see above *)
assert (child_av.V.ty = borrowed_aty)
| V.AEndedMutLoan { given_back; child; given_back_meta = _ }
| V.AEndedIgnoredMutLoan { given_back; child; given_back_meta = _ }
->
let borrowed_aty = aloan_get_expected_child_type aty in
assert (given_back.V.ty = borrowed_aty);
assert (child.V.ty = borrowed_aty)
| V.AIgnoredSharedLoan child_av ->
assert (child_av.V.ty = aloan_get_expected_child_type aty))
| V.ASymbolic aproj, ty -> (
let ty1 = Subst.erase_regions ty in
match aproj with
| V.AProjLoans (sv, _) | V.AProjBorrows (sv, _) ->
let ty2 = Subst.erase_regions sv.V.sv_ty in
assert (ty1 = ty2);
(* Also check that the symbolic values contain regions of interest -
* otherwise they should have been reduced to `_` *)
let abs = Option.get info in
assert (ty_has_regions_in_set abs.regions sv.V.sv_ty)
| V.AEndedProjLoans (_msv, given_back_ls) ->
List.iter
(fun (_, proj) ->
match proj with
| V.AProjBorrows (_sv, ty') -> assert (ty' = ty)
| V.AEndedProjBorrows _ | V.AIgnoredProjBorrows -> ()
| _ -> failwith "Unexpected")
given_back_ls
| V.AEndedProjBorrows _ | V.AIgnoredProjBorrows -> ())
| V.AIgnored, _ -> ()
| _ -> failwith "Erroneous typing");
(* Continue exploring to inspect the subterms *)
super#visit_typed_avalue info atv
end
in
visitor#visit_eval_ctx (None : V.abs option) ctx
type proj_borrows_info = {
abs_id : V.AbstractionId.id;
regions : T.RegionId.Set.t;
proj_ty : T.rty;
as_shared_value : bool; (** True if the value is below a shared borrow *)
}
[@@deriving show]
type proj_loans_info = {
abs_id : V.AbstractionId.id;
regions : T.RegionId.Set.t;
}
[@@deriving show]
type sv_info = {
ty : T.rty;
env_count : int;
aproj_borrows : proj_borrows_info list;
aproj_loans : proj_loans_info list;
}
[@@deriving show]
(** Check the invariants over the symbolic values.
- a symbolic value can't be both in proj_borrows and in the concrete env
(this is why we preemptively expand copyable symbolic values)
- if a symbolic value contains regions: there is at most one occurrence
of this value in the concrete env
- if there is an aproj_borrows in the environment, there must also be a
corresponding aproj_loans
- aproj_loans are mutually disjoint
- TODO: aproj_borrows are mutually disjoint
- the union of the aproj_loans contains the aproj_borrows applied on the
same symbolic values
*)
let check_symbolic_values (_config : C.config) (ctx : C.eval_ctx) : unit =
(* Small utility *)
let module M = V.SymbolicValueId.Map in
let infos : sv_info M.t ref = ref M.empty in
let lookup_info (sv : V.symbolic_value) : sv_info =
match M.find_opt sv.V.sv_id !infos with
| Some info -> info
| None ->
{ ty = sv.sv_ty; env_count = 0; aproj_borrows = []; aproj_loans = [] }
in
let update_info (sv : V.symbolic_value) (info : sv_info) =
infos := M.add sv.sv_id info !infos
in
let add_env_sv (sv : V.symbolic_value) : unit =
let info = lookup_info sv in
let info = { info with env_count = info.env_count + 1 } in
update_info sv info
in
let add_aproj_borrows (sv : V.symbolic_value) abs_id regions proj_ty
as_shared_value : unit =
let info = lookup_info sv in
let binfo = { abs_id; regions; proj_ty; as_shared_value } in
let info = { info with aproj_borrows = binfo :: info.aproj_borrows } in
update_info sv info
in
let add_aproj_loans (sv : V.symbolic_value) abs_id regions : unit =
let info = lookup_info sv in
let linfo = { abs_id; regions } in
let info = { info with aproj_loans = linfo :: info.aproj_loans } in
update_info sv info
in
(* Visitor *)
let obj =
object
inherit [_] C.iter_eval_ctx as super
method! visit_abs _ abs = super#visit_abs (Some abs) abs
method! visit_Symbolic _ sv = add_env_sv sv
method! visit_abstract_shared_borrows abs asb =
let abs = Option.get abs in
let visit asb =
match asb with
| V.AsbBorrow _ -> ()
| AsbProjReborrows (sv, proj_ty) ->
add_aproj_borrows sv abs.abs_id abs.regions proj_ty true
in
List.iter visit asb
method! visit_aproj abs aproj =
(let abs = Option.get abs in
match aproj with
| AProjLoans (sv, _) -> add_aproj_loans sv abs.abs_id abs.regions
| AProjBorrows (sv, proj_ty) ->
add_aproj_borrows sv abs.abs_id abs.regions proj_ty false
| AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> ());
super#visit_aproj abs aproj
end
in
(* Collect the information *)
obj#visit_eval_ctx None ctx;
log#ldebug
(lazy
("check_symbolic_values: collected information:\n"
^ V.SymbolicValueId.Map.to_string (Some " ") show_sv_info !infos));
(* Check *)
let check_info _id info =
(* TODO: check that:
* - the borrows are mutually disjoint
*)
(* A symbolic value can't be both in the regular environment and inside
* projectors of borrows in abstractions *)
assert (info.env_count = 0 || info.aproj_borrows = []);
(* A symbolic value containing borrows can't be duplicated (i.e., copied):
* it must be expanded first *)
if ty_has_borrows ctx.type_context.type_infos info.ty then
assert (info.env_count <= 1);
(* A duplicated symbolic value is necessarily primitively copyable *)
assert (info.env_count <= 1 || ty_is_primitively_copyable info.ty);
assert (info.aproj_borrows = [] || info.aproj_loans <> []);
(* At the same time:
* - check that the loans don't intersect
* - compute the set of regions for which we project loans
*)
(* Check that the loan projectors contain the region projectors *)
let loan_regions =
List.fold_left
(fun regions linfo ->
let regions =
T.RegionId.Set.fold
(fun rid regions ->
assert (not (T.RegionId.Set.mem rid regions));
T.RegionId.Set.add rid regions)
regions linfo.regions
in
regions)
T.RegionId.Set.empty info.aproj_loans
in
(* Check that the union of the loan projectors contains the borrow projections. *)
List.iter
(fun binfo ->
assert (
projection_contains info.ty loan_regions binfo.proj_ty binfo.regions))
info.aproj_borrows;
()
in
M.iter check_info !infos
let check_invariants (config : C.config) (ctx : C.eval_ctx) : unit =
if config.C.check_invariants then (
log#ldebug (lazy "Checking invariants");
check_loans_borrows_relation_invariant ctx;
check_borrowed_values_invariant ctx;
check_typing_invariant ctx;
check_symbolic_values config ctx)
else log#ldebug (lazy "Not checking invariants (check is not activated)")
(** Same as [check_invariants], but written in CPS *)
let cf_check_invariants (config : C.config) : cm_fun =
fun cf ctx ->
check_invariants config ctx;
cf ctx
|