1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
(* TODO: most of the definitions in this file need to be moved elsewhere *)
module T = Types
module V = Values
module E = Expressions
module C = Contexts
module Subst = Substitute
module A = CfimAst
module L = Logging
open TypesUtils
open ValuesUtils
open Utils
(** Some utilities *)
let eval_ctx_to_string = Print.Contexts.eval_ctx_to_string
let ety_to_string = Print.EvalCtxCfimAst.ety_to_string
let typed_value_to_string = Print.EvalCtxCfimAst.typed_value_to_string
let place_to_string = Print.EvalCtxCfimAst.place_to_string
let operand_to_string = Print.EvalCtxCfimAst.operand_to_string
let statement_to_string ctx =
Print.EvalCtxCfimAst.statement_to_string ctx "" " "
let statement_to_string_with_tab ctx =
Print.EvalCtxCfimAst.statement_to_string ctx " " " "
let same_symbolic_id (sv0 : V.symbolic_value) (sv1 : V.symbolic_value) : bool =
sv0.V.sv_id = sv1.V.sv_id
let mk_var (index : V.VarId.id) (name : string option) (var_ty : T.ety) : A.var
=
{ A.index; name; var_ty }
(** Small helper - TODO: move *)
let mk_place_from_var_id (var_id : V.VarId.id) : E.place =
{ var_id; projection = [] }
(** Create a fresh symbolic value *)
let mk_fresh_symbolic_value (ty : T.rty) (ctx : C.eval_ctx) :
C.eval_ctx * V.symbolic_value =
let ctx, sv_id = C.fresh_symbolic_value_id ctx in
let svalue = { V.sv_id; V.sv_ty = ty } in
(ctx, svalue)
(** Create a fresh symbolic proj comp *)
let mk_fresh_symbolic_proj_comp (ended_regions : T.RegionId.set_t) (ty : T.rty)
(ctx : C.eval_ctx) : C.eval_ctx * V.symbolic_proj_comp =
let ctx, svalue = mk_fresh_symbolic_value ty ctx in
let sv = { V.svalue; rset_ended = ended_regions } in
(ctx, sv)
(** Create a fresh symbolic value (as a complementary projector) *)
let mk_fresh_symbolic_proj_comp_value (ended_regions : T.RegionId.set_t)
(ty : T.rty) (ctx : C.eval_ctx) : C.eval_ctx * V.typed_value =
let ctx, sv = mk_fresh_symbolic_proj_comp ended_regions ty ctx in
let value : V.value = V.Symbolic sv in
let ty : T.ety = Subst.erase_regions ty in
let sv : V.typed_value = { V.value; ty } in
(ctx, sv)
let mk_typed_value_from_proj_comp (sv : V.symbolic_proj_comp) : V.typed_value =
let ty = Subst.erase_regions sv.V.svalue.V.sv_ty in
let value = V.Symbolic sv in
{ V.value; ty }
(** Create a typed value from a symbolic value.
Initializes the set of ended regions with `empty`.
*)
let mk_typed_value_from_symbolic_value (svalue : V.symbolic_value) :
V.typed_value =
let spc = { V.svalue; rset_ended = T.RegionId.Set.empty } in
mk_typed_value_from_proj_comp spc
let mk_aproj_loans_from_proj_comp (spc : V.symbolic_proj_comp) : V.typed_avalue
=
let ty = spc.V.svalue.V.sv_ty in
let proj = V.AProjLoans spc.V.svalue in
let value = V.ASymbolic proj in
{ V.value; ty }
(** Create a Loans projector from a symbolic value.
Initializes the set of ended regions with `empty`.
*)
let mk_aproj_loans_from_symbolic_value (svalue : V.symbolic_value) :
V.typed_avalue =
let spc = { V.svalue; rset_ended = T.RegionId.Set.empty } in
let av = V.ASymbolic (V.AProjLoans spc.V.svalue) in
let av : V.typed_avalue = { V.value = av; V.ty = svalue.V.sv_ty } in
av
(** TODO: move *)
let borrow_is_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrow) : bool
=
match asb with
| V.AsbBorrow bid' -> bid' = bid
| V.AsbProjReborrows _ -> false
(** TODO: move *)
let borrow_in_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrows) : bool
=
List.exists (borrow_is_asb bid) asb
(** TODO: move *)
let remove_borrow_from_asb (bid : V.BorrowId.id)
(asb : V.abstract_shared_borrows) : V.abstract_shared_borrows =
let removed = ref 0 in
let asb =
List.filter
(fun asb ->
if not (borrow_is_asb bid asb) then true
else (
removed := !removed + 1;
false))
asb
in
assert (!removed = 1);
asb
(** We sometimes need to return a value whose type may vary depending on
whether we find it in a "concrete" value or an abstraction (ex.: loan
contents when we perform environment lookups by using borrow ids) *)
type ('a, 'b) concrete_or_abs = Concrete of 'a | Abstract of 'b
type g_loan_content = (V.loan_content, V.aloan_content) concrete_or_abs
(** Generic loan content: concrete or abstract *)
type g_borrow_content = (V.borrow_content, V.aborrow_content) concrete_or_abs
(** Generic borrow content: concrete or abstract *)
type abs_or_var_id = AbsId of V.AbstractionId.id | VarId of V.VarId.id
exception FoundBorrowContent of V.borrow_content
(** Utility exception *)
exception FoundLoanContent of V.loan_content
(** Utility exception *)
exception FoundABorrowContent of V.aborrow_content
(** Utility exception *)
exception FoundGBorrowContent of g_borrow_content
(** Utility exception *)
exception FoundGLoanContent of g_loan_content
(** Utility exception *)
let symbolic_value_id_in_ctx (sv_id : V.SymbolicValueId.id) (ctx : C.eval_ctx) :
bool =
let obj =
object
inherit [_] C.iter_eval_ctx
method! visit_Symbolic _ sv =
if sv.V.svalue.V.sv_id = sv_id then raise Found else ()
method! visit_ASymbolic _ aproj =
match aproj with
| AProjLoans sv | AProjBorrows (sv, _) ->
if sv.V.sv_id = sv_id then raise Found else ()
method! visit_abstract_shared_borrows _ asb =
let visit (asb : V.abstract_shared_borrow) : unit =
match asb with
| V.AsbBorrow _ -> ()
| V.AsbProjReborrows (sv, _) ->
if sv.V.sv_id = sv_id then raise Found else ()
in
List.iter visit asb
end
in
(* We use exceptions *)
try
obj#visit_eval_ctx () ctx;
false
with Found -> true
(** Check if two different projections intersect. This is necessary when
giving a symbolic value to an abstraction: we need to check that
the regions which are already ended inside the abstraction don't
intersect the regions over which we project in the new abstraction.
Note that the two abstractions have different views (in terms of regions)
of the symbolic value (hence the two region types).
*)
let rec projections_intersect (ty1 : T.rty) (rset1 : T.RegionId.set_t)
(ty2 : T.rty) (rset2 : T.RegionId.set_t) : bool =
match (ty1, ty2) with
| T.Bool, T.Bool | T.Char, T.Char | T.Str, T.Str -> false
| T.Integer int_ty1, T.Integer int_ty2 ->
assert (int_ty1 = int_ty2);
false
| T.Adt (id1, regions1, tys1), T.Adt (id2, regions2, tys2) ->
assert (id1 = id2);
(* The intersection check for the ADTs is very crude:
* we check if some arguments intersect. As all the type and region
* parameters should be used somewhere in the ADT (otherwise rustc
* generates an error), it means that it should be equivalent to checking
* whether two fields intersect (and anyway comparing the field types is
* difficult in case of enumerations...).
* If we didn't have the above property enforced by the rust compiler,
* this check would still be a reasonable conservative approximation. *)
let regions = List.combine regions1 regions2 in
let tys = List.combine tys1 tys2 in
List.exists
(fun (r1, r2) -> region_in_set r1 rset1 && region_in_set r2 rset2)
regions
|| List.exists
(fun (ty1, ty2) -> projections_intersect ty1 rset1 ty2 rset2)
tys
| T.Array ty1, T.Array ty2 | T.Slice ty1, T.Slice ty2 ->
projections_intersect ty1 rset1 ty2 rset2
| T.Ref (r1, ty1, kind1), T.Ref (r2, ty2, kind2) ->
(* Sanity check *)
assert (kind1 = kind2);
(* The projections intersect if the borrows intersect or their contents
* intersect *)
(region_in_set r1 rset1 && region_in_set r2 rset2)
|| projections_intersect ty1 rset1 ty2 rset2
| _ -> failwith "Unreachable"
(** Check if the ended regions of a comp projector over a symbolic value
intersect the regions listed in another projection *)
let symbolic_proj_comp_ended_regions_intersect_proj (s : V.symbolic_proj_comp)
(ty : T.rty) (regions : T.RegionId.set_t) : bool =
projections_intersect s.V.svalue.V.sv_ty s.V.rset_ended ty regions
(** Check that a symbolic value doesn't contain ended regions.
Note that we don't check that the set of ended regions is empty: we
check that the set of ended regions doesn't intersect the set of
regions used in the type (this is more general).
*)
let symbolic_proj_comp_ended_regions (s : V.symbolic_proj_comp) : bool =
let regions = rty_regions s.V.svalue.V.sv_ty in
not (T.RegionId.Set.disjoint regions s.rset_ended)
(** Check if a [value] contains ⊥.
Note that this function is very general: it also checks wether
symbolic values contain already ended regions.
*)
let bottom_in_value (v : V.typed_value) : bool =
let obj =
object
inherit [_] V.iter_typed_value
method! visit_Bottom _ = raise Found
method! visit_symbolic_proj_comp _ s =
if symbolic_proj_comp_ended_regions s then raise Found else ()
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
(** Check if an [avalue] contains ⊥.
Note that this function is very general: it also checks wether
symbolic values contain already ended regions.
TODO: remove?
*)
let bottom_in_avalue (v : V.typed_avalue) (_abs_regions : T.RegionId.set_t) :
bool =
let obj =
object
inherit [_] V.iter_typed_avalue
method! visit_Bottom _ = raise Found
method! visit_symbolic_proj_comp _ sv =
if symbolic_proj_comp_ended_regions sv then raise Found else ()
method! visit_aproj _ ap =
(* Nothing to do actually *)
match ap with
| V.AProjLoans _sv -> ()
| V.AProjBorrows (_sv, _rty) -> ()
end
in
(* We use exceptions *)
try
obj#visit_typed_avalue () v;
false
with Found -> true
|