1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
|
module T = Types
module V = Values
open Scalars
module E = Expressions
open Errors
module C = Contexts
module Subst = Substitute
module A = CfimAst
module L = Logging
open TypesUtils
open ValuesUtils
(** Some utilities *)
let eval_ctx_to_string = Print.Contexts.eval_ctx_to_string
let ety_to_string = Print.EvalCtxCfimAst.ety_to_string
let typed_value_to_string = Print.EvalCtxCfimAst.typed_value_to_string
let place_to_string = Print.EvalCtxCfimAst.place_to_string
let operand_to_string = Print.EvalCtxCfimAst.operand_to_string
let statement_to_string ctx =
Print.EvalCtxCfimAst.statement_to_string ctx "" " "
let same_symbolic_id (sv0 : V.symbolic_value) (sv1 : V.symbolic_value) : bool =
sv0.V.sv_id = sv1.V.sv_id
(* TODO: move *)
let mk_var (index : V.VarId.id) (name : string option) (var_ty : T.ety) : A.var
=
{ A.index; name; var_ty }
(** Small helper *)
let mk_place_from_var_id (var_id : V.VarId.id) : E.place =
{ var_id; projection = [] }
(** Deconstruct a type of the form `Box<T>` to retrieve the `T` inside *)
let ty_get_box (box_ty : T.ety) : T.ety =
match box_ty with
| T.Adt (T.Assumed T.Box, [], [ boxed_ty ]) -> boxed_ty
| _ -> failwith "Not a boxed type"
(** Deconstruct a type of the form `&T` or `&mut T` to retrieve the `T` (and
the borrow kind, etc.)
*)
let ty_get_ref (ty : T.ety) : T.erased_region * T.ety * T.ref_kind =
match ty with
| T.Ref (r, ty, ref_kind) -> (r, ty, ref_kind)
| _ -> failwith "Not a ref type"
(** Box a value *)
let mk_box_value (v : V.typed_value) : V.typed_value =
let box_ty = T.Adt (T.Assumed T.Box, [], [ v.V.ty ]) in
let box_v = V.Adt { variant_id = None; field_values = [ v ] } in
mk_typed_value box_ty box_v
(** Create a fresh symbolic proj comp *)
let mk_fresh_symbolic_proj_comp (ended_regions : T.RegionId.set_t) (ty : T.rty)
(ctx : C.eval_ctx) : C.eval_ctx * V.symbolic_proj_comp =
let ctx, sv_id = C.fresh_symbolic_value_id ctx in
let svalue = { V.sv_id; V.sv_ty = ty } in
let sv = { V.svalue; rset_ended = ended_regions } in
(ctx, sv)
(** Create a fresh symbolic value (as a complementary projector) *)
let mk_fresh_symbolic_proj_comp_value (ended_regions : T.RegionId.set_t)
(ty : T.rty) (ctx : C.eval_ctx) : C.eval_ctx * V.typed_value =
let ctx, sv = mk_fresh_symbolic_proj_comp ended_regions ty ctx in
let value : V.value = V.Symbolic sv in
let ty : T.ety = Subst.erase_regions ty in
let sv : V.typed_value = { V.value; ty } in
(ctx, sv)
let mk_typed_value_from_proj_comp (sv : V.symbolic_proj_comp) : V.typed_value =
let ty = Subst.erase_regions sv.V.svalue.V.sv_ty in
let value = V.Symbolic sv in
{ V.value; ty }
let mk_aproj_loans_from_proj_comp (sv : V.symbolic_proj_comp) : V.typed_avalue =
let ty = sv.V.svalue.V.sv_ty in
let proj = V.AProjLoans sv.V.svalue in
let value = V.ASymbolic proj in
{ V.value; ty }
(** TODO: move *)
let borrow_is_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrow) : bool
=
match asb with
| V.AsbBorrow bid' -> bid' = bid
| V.AsbProjReborrows _ -> false
(** TODO: move *)
let borrow_in_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrows) : bool
=
List.exists (borrow_is_asb bid) asb
(** TODO: move *)
let remove_borrow_from_asb (bid : V.BorrowId.id)
(asb : V.abstract_shared_borrows) : V.abstract_shared_borrows =
let removed = ref 0 in
let asb =
List.filter
(fun asb ->
if not (borrow_is_asb bid asb) then true
else (
removed := !removed + 1;
false))
asb
in
assert (!removed = 1);
asb
(* TODO: cleanup this a bit, once we have a better understanding about what we need *)
type exploration_kind = {
enter_shared_loans : bool;
enter_mut_borrows : bool;
enter_abs : bool;
(** Note that if we allow to enter abs, we don't check whether we enter
mutable/shared loans or borrows: there are no use cases requiring
a finer control. *)
}
(** This record controls how some generic helper lookup/update
functions behave, by restraining the kind of therms they can enter.
*)
let ek_all : exploration_kind =
{ enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }
(** We sometimes need to return a value whose type may vary depending on
whether we find it in a "concrete" value or an abstraction (ex.: loan
contents when we perform environment lookups by using borrow ids) *)
type ('a, 'b) concrete_or_abs = Concrete of 'a | Abstract of 'b
type g_loan_content = (V.loan_content, V.aloan_content) concrete_or_abs
(** Generic loan content: concrete or abstract *)
type g_borrow_content = (V.borrow_content, V.aborrow_content) concrete_or_abs
(** Generic borrow content: concrete or abstract *)
type abs_or_var_id = AbsId of V.AbstractionId.id | VarId of V.VarId.id
exception Found
(** Utility exception
When looking for something while exploring a term, it can be easier to
just throw an exception to signal we found what we were looking for.
*)
exception FoundBorrowContent of V.borrow_content
(** Utility exception *)
exception FoundLoanContent of V.loan_content
(** Utility exception *)
exception FoundABorrowContent of V.aborrow_content
(** Utility exception *)
exception FoundGBorrowContent of g_borrow_content
(** Utility exception *)
exception FoundGLoanContent of g_loan_content
(** Utility exception *)
(** Check if a value contains a borrow *)
let borrows_in_value (v : V.typed_value) : bool =
let obj =
object
inherit [_] V.iter_typed_value
method! visit_borrow_content _env _ = raise Found
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
(** Check if a value contains inactivated mutable borrows *)
let inactivated_in_value (v : V.typed_value) : bool =
let obj =
object
inherit [_] V.iter_typed_value
method! visit_InactivatedMutBorrow _env _ = raise Found
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
(** Check if a value contains a loan *)
let loans_in_value (v : V.typed_value) : bool =
let obj =
object
inherit [_] V.iter_typed_value
method! visit_loan_content _env _ = raise Found
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
let symbolic_value_id_in_ctx (sv_id : V.SymbolicValueId.id) (ctx : C.eval_ctx) :
bool =
let obj =
object
inherit [_] C.iter_eval_ctx
method! visit_Symbolic _ sv =
if sv.V.svalue.V.sv_id = sv_id then raise Found else ()
method! visit_ASymbolic _ aproj =
match aproj with
| AProjLoans sv | AProjBorrows (sv, _) ->
if sv.V.sv_id = sv_id then raise Found else ()
method! visit_abstract_shared_borrows _ asb =
let visit (asb : V.abstract_shared_borrow) : unit =
match asb with
| V.AsbBorrow _ -> ()
| V.AsbProjReborrows (sv, _) ->
if sv.V.sv_id = sv_id then raise Found else ()
in
List.iter visit asb
end
in
(* We use exceptions *)
try
obj#visit_eval_ctx () ctx;
false
with Found -> true
(** Lookup a loan content.
The loan is referred to by a borrow id.
TODO: group abs_or_var_id and g_loan_content.
*)
let lookup_loan_opt (ek : exploration_kind) (l : V.BorrowId.id)
(ctx : C.eval_ctx) : (abs_or_var_id * g_loan_content) option =
(* We store here whether we are inside an abstraction or a value - note that we
* could also track that with the environment, it would probably be more idiomatic
* and cleaner *)
let abs_or_var : abs_or_var_id option ref = ref None in
let obj =
object
inherit [_] C.iter_eval_ctx as super
method! visit_borrow_content env bc =
match bc with
| V.SharedBorrow bid ->
(* Nothing specific to do *)
super#visit_SharedBorrow env bid
| V.InactivatedMutBorrow bid ->
(* Nothing specific to do *)
super#visit_InactivatedMutBorrow env bid
| V.MutBorrow (bid, mv) ->
(* Control the dive *)
if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
else ()
method! visit_loan_content env lc =
match lc with
| V.SharedLoan (bids, sv) ->
(* Check if this is the loan we are looking for, and control the dive *)
if V.BorrowId.Set.mem l bids then
raise (FoundGLoanContent (Concrete lc))
else if ek.enter_shared_loans then
super#visit_SharedLoan env bids sv
else ()
| V.MutLoan bid ->
(* Check if this is the loan we are looking for *)
if bid = l then raise (FoundGLoanContent (Concrete lc))
else super#visit_MutLoan env bid
(** We reimplement [visit_Loan] (rather than the more precise functions
[visit_SharedLoan], etc.) on purpose: as we have an exhaustive match
below, we are more resilient to definition updates (the compiler
is our friend).
*)
method! visit_aloan_content env lc =
match lc with
| V.AMutLoan (bid, av) ->
if bid = l then raise (FoundGLoanContent (Abstract lc))
else super#visit_AMutLoan env bid av
| V.ASharedLoan (bids, v, av) ->
if V.BorrowId.Set.mem l bids then
raise (FoundGLoanContent (Abstract lc))
else super#visit_ASharedLoan env bids v av
| V.AEndedMutLoan { given_back; child } ->
super#visit_AEndedMutLoan env given_back child
| V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av
| V.AIgnoredMutLoan (bid, av) -> super#visit_AIgnoredMutLoan env bid av
| V.AEndedIgnoredMutLoan { given_back; child } ->
super#visit_AEndedIgnoredMutLoan env given_back child
| V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av
(** Note that we don't control diving inside the abstractions: if we
allow to dive inside abstractions, we allow to go anywhere
(because there are no use cases requiring finer control) *)
method! visit_Var env bv v =
assert (Option.is_none !abs_or_var);
abs_or_var := Some (VarId bv.C.index);
super#visit_Var env bv v;
abs_or_var := None
method! visit_Abs env abs =
assert (Option.is_none !abs_or_var);
if ek.enter_abs then (
abs_or_var := Some (AbsId abs.V.abs_id);
super#visit_Abs env abs)
else ()
end
in
(* We use exceptions *)
try
obj#visit_eval_ctx () ctx;
None
with FoundGLoanContent lc -> (
match !abs_or_var with
| Some abs_or_var -> Some (abs_or_var, lc)
| None -> failwith "Inconsistent state")
(** Lookup a loan content.
The loan is referred to by a borrow id.
Raises an exception if no loan was found.
*)
let lookup_loan (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) :
abs_or_var_id * g_loan_content =
match lookup_loan_opt ek l ctx with
| None -> failwith "Unreachable"
| Some res -> res
(** Update a loan content.
The loan is referred to by a borrow id.
This is a helper function: it might break invariants.
*)
let update_loan (ek : exploration_kind) (l : V.BorrowId.id)
(nlc : V.loan_content) (ctx : C.eval_ctx) : C.eval_ctx =
(* We use a reference to check that we update exactly one loan: when updating
* inside values, we check we don't update more than one loan. Then, upon
* returning we check that we updated at least once. *)
let r = ref false in
let update () : V.loan_content =
assert (not !r);
r := true;
nlc
in
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_borrow_content env bc =
match bc with
| V.SharedBorrow _ | V.InactivatedMutBorrow _ ->
(* Nothing specific to do *)
super#visit_borrow_content env bc
| V.MutBorrow (bid, mv) ->
(* Control the dive into mutable borrows *)
if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
else V.MutBorrow (bid, mv)
method! visit_loan_content env lc =
match lc with
| V.SharedLoan (bids, sv) ->
(* Shared loan: check if this is the loan we are looking for, and
control the dive. *)
if V.BorrowId.Set.mem l bids then update ()
else if ek.enter_shared_loans then
super#visit_SharedLoan env bids sv
else V.SharedLoan (bids, sv)
| V.MutLoan bid ->
(* Mut loan: checks if this is the loan we are looking for *)
if bid = l then update () else super#visit_MutLoan env bid
(** We reimplement [visit_loan_content] (rather than one of the sub-
functions) on purpose: exhaustive matches are good for maintenance *)
method! visit_abs env abs =
if ek.enter_abs then super#visit_abs env abs else abs
(** Note that once inside the abstractions, we don't control diving
(there are no use cases requiring finer control).
Also, as we give back a [loan_content] (and not an [aloan_content])
we don't need to do reimplement the visit functions for the values
inside the abstractions (rk.: there may be "concrete" values inside
abstractions, so there is a utility in diving inside). *)
end
in
let ctx = obj#visit_eval_ctx () ctx in
(* Check that we updated at least one loan *)
assert !r;
ctx
(** Update a abstraction loan content.
The loan is referred to by a borrow id.
This is a helper function: it might break invariants.
*)
let update_aloan (ek : exploration_kind) (l : V.BorrowId.id)
(nlc : V.aloan_content) (ctx : C.eval_ctx) : C.eval_ctx =
(* We use a reference to check that we update exactly one loan: when updating
* inside values, we check we don't update more than one loan. Then, upon
* returning we check that we updated at least once. *)
let r = ref false in
let update () : V.aloan_content =
assert (not !r);
r := true;
nlc
in
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_aloan_content env lc =
match lc with
| V.AMutLoan (bid, av) ->
if bid = l then update () else super#visit_AMutLoan env bid av
| V.ASharedLoan (bids, v, av) ->
if V.BorrowId.Set.mem l bids then update ()
else super#visit_ASharedLoan env bids v av
| V.AEndedMutLoan { given_back; child } ->
super#visit_AEndedMutLoan env given_back child
| V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av
| V.AIgnoredMutLoan (bid, av) -> super#visit_AIgnoredMutLoan env bid av
| V.AEndedIgnoredMutLoan { given_back; child } ->
super#visit_AEndedIgnoredMutLoan env given_back child
| V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av
method! visit_abs env abs =
if ek.enter_abs then super#visit_abs env abs else abs
(** Note that once inside the abstractions, we don't control diving
(there are no use cases requiring finer control). *)
end
in
let ctx = obj#visit_eval_ctx () ctx in
(* Check that we updated at least one loan *)
assert !r;
ctx
(** Lookup a borrow content from a borrow id. *)
let lookup_borrow_opt (ek : exploration_kind) (l : V.BorrowId.id)
(ctx : C.eval_ctx) : g_borrow_content option =
let obj =
object
inherit [_] C.iter_eval_ctx as super
method! visit_borrow_content env bc =
match bc with
| V.MutBorrow (bid, mv) ->
(* Check the borrow id and control the dive *)
if bid = l then raise (FoundGBorrowContent (Concrete bc))
else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
else ()
| V.SharedBorrow bid ->
(* Check the borrow id *)
if bid = l then raise (FoundGBorrowContent (Concrete bc)) else ()
| V.InactivatedMutBorrow bid ->
(* Check the borrow id *)
if bid = l then raise (FoundGBorrowContent (Concrete bc)) else ()
method! visit_loan_content env lc =
match lc with
| V.MutLoan bid ->
(* Nothing special to do *) super#visit_MutLoan env bid
| V.SharedLoan (bids, sv) ->
(* Control the dive *)
if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
else ()
method! visit_aborrow_content env bc =
match bc with
| V.AMutBorrow (bid, av) ->
if bid = l then raise (FoundGBorrowContent (Abstract bc))
else super#visit_AMutBorrow env bid av
| V.ASharedBorrow bid ->
if bid = l then raise (FoundGBorrowContent (Abstract bc))
else super#visit_ASharedBorrow env bid
| V.AIgnoredMutBorrow av -> super#visit_AIgnoredMutBorrow env av
| V.AProjSharedBorrow asb ->
if borrow_in_asb l asb then
raise (FoundGBorrowContent (Abstract bc))
else ()
method! visit_abs env abs =
if ek.enter_abs then super#visit_abs env abs else ()
end
in
(* We use exceptions *)
try
obj#visit_eval_ctx () ctx;
None
with FoundGBorrowContent lc -> Some lc
(** Lookup a borrow content from a borrow id.
Raise an exception if no loan was found
*)
let lookup_borrow (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx)
: g_borrow_content =
match lookup_borrow_opt ek l ctx with
| None -> failwith "Unreachable"
| Some lc -> lc
(** Update a borrow content.
The borrow is referred to by a borrow id.
This is a helper function: it might break invariants.
*)
let update_borrow (ek : exploration_kind) (l : V.BorrowId.id)
(nbc : V.borrow_content) (ctx : C.eval_ctx) : C.eval_ctx =
(* We use a reference to check that we update exactly one borrow: when updating
* inside values, we check we don't update more than one borrow. Then, upon
* returning we check that we updated at least once. *)
let r = ref false in
let update () : V.borrow_content =
assert (not !r);
r := true;
nbc
in
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_borrow_content env bc =
match bc with
| V.MutBorrow (bid, mv) ->
(* Check the id and control dive *)
if bid = l then update ()
else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
else V.MutBorrow (bid, mv)
| V.SharedBorrow bid ->
(* Check the id *)
if bid = l then update () else super#visit_SharedBorrow env bid
| V.InactivatedMutBorrow bid ->
(* Check the id *)
if bid = l then update ()
else super#visit_InactivatedMutBorrow env bid
method! visit_loan_content env lc =
match lc with
| V.SharedLoan (bids, sv) ->
(* Control the dive *)
if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
else V.SharedLoan (bids, sv)
| V.MutLoan bid ->
(* Nothing specific to do *)
super#visit_MutLoan env bid
method! visit_abs env abs =
if ek.enter_abs then super#visit_abs env abs else abs
end
in
let ctx = obj#visit_eval_ctx () ctx in
(* Check that we updated at least one borrow *)
assert !r;
ctx
(** Update an abstraction borrow content.
The borrow is referred to by a borrow id.
This is a helper function: it might break invariants.
*)
let update_aborrow (ek : exploration_kind) (l : V.BorrowId.id) (nv : V.avalue)
(ctx : C.eval_ctx) : C.eval_ctx =
(* We use a reference to check that we update exactly one borrow: when updating
* inside values, we check we don't update more than one borrow. Then, upon
* returning we check that we updated at least once. *)
let r = ref false in
let update () : V.avalue =
assert (not !r);
r := true;
nv
in
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_ABorrow env bc =
match bc with
| V.AMutBorrow (bid, av) ->
if bid = l then update ()
else V.ABorrow (super#visit_AMutBorrow env bid av)
| V.ASharedBorrow bid ->
if bid = l then update ()
else V.ABorrow (super#visit_ASharedBorrow env bid)
| V.AIgnoredMutBorrow av ->
V.ABorrow (super#visit_AIgnoredMutBorrow env av)
| V.AProjSharedBorrow asb ->
if borrow_in_asb l asb then update ()
else V.ABorrow (super#visit_AProjSharedBorrow env asb)
method! visit_abs env abs =
if ek.enter_abs then super#visit_abs env abs else abs
end
in
let ctx = obj#visit_eval_ctx () ctx in
(* Check that we updated at least one borrow *)
assert !r;
ctx
|