1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
module T = Types
module V = Values
open Scalars
module E = Expressions
open Errors
module C = Contexts
module Subst = Substitute
module A = CfimAst
module L = Logging
open TypesUtils
open ValuesUtils
module Inv = Invariants
module S = Synthesis
open Utils
open InterpreterUtils
(** Auxiliary function.
Apply a proj_borrows on a shared borrow.
In the case of shared borrows, we return [abstract_shared_borrows],
not avalues.
*)
let rec apply_proj_borrows_on_shared_borrow (ctx : C.eval_ctx)
(fresh_reborrow : V.BorrowId.id -> V.BorrowId.id)
(regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) :
V.abstract_shared_borrows =
(* Sanity check - TODO: move this elsewhere (here we perform the check at every
* recursive call which is a bit overkill...) *)
let ety = Substitute.erase_regions ty in
assert (ety = v.V.ty);
(* Project *)
match (v.V.value, ty) with
| V.Concrete _, (T.Bool | T.Char | T.Integer _ | T.Str) -> []
| V.Adt adt, T.Adt (id, region_params, tys) ->
(* Retrieve the types of the fields *)
let field_types =
Subst.ctx_adt_value_get_instantiated_field_rtypes ctx adt id
region_params tys
in
(* Project over the field values *)
let fields_types = List.combine adt.V.field_values field_types in
let proj_fields =
List.map
(fun (fv, fty) ->
apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions fv
fty)
fields_types
in
List.concat proj_fields
| V.Bottom, _ -> failwith "Unreachable"
| V.Borrow bc, T.Ref (r, ref_ty, kind) ->
(* Retrieve the bid of the borrow and the asb of the projected borrowed value *)
let bid, asb =
(* Not in the set: dive *)
match (bc, kind) with
| V.MutBorrow (bid, bv), T.Mut ->
(* Apply the projection on the borrowed value *)
let asb =
apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions bv
ref_ty
in
(bid, asb)
| V.SharedBorrow bid, T.Shared ->
(* Lookup the shared value *)
let ek = ek_all in
let sv = lookup_loan ek bid ctx in
let asb =
match sv with
| _, Concrete (V.SharedLoan (_, sv))
| _, Abstract (V.ASharedLoan (_, sv, _)) ->
apply_proj_borrows_on_shared_borrow ctx fresh_reborrow regions
sv ref_ty
| _ -> failwith "Unexpected"
in
(bid, asb)
| V.InactivatedMutBorrow _, _ ->
failwith
"Can't apply a proj_borrow over an inactivated mutable borrow"
| _ -> failwith "Unreachable"
in
let asb =
(* Check if the region is in the set of projected regions (note that
* we never project over static regions) *)
if region_in_set r regions then
let bid' = fresh_reborrow bid in
V.AsbBorrow bid' :: asb
else asb
in
asb
| V.Loan _, _ -> failwith "Unreachable"
| V.Symbolic s, _ ->
assert (not (symbolic_proj_comp_ended_regions_intersect_proj s ty regions));
[ V.AsbProjReborrows (s.V.svalue, ty) ]
| _ -> failwith "Unreachable"
(** Apply (and reduce) a projector over borrows to a value.
- [regions]: the regions we project
- [v]: the value over which we project
- [ty]: the projection type (is used to map borrows to regions, or to
interpret the borrows as belonging to some regions...). Remember that
`v` doesn't contain region information.
For instance, if we have:
`v <: ty` where:
- `v = mut_borrow l ...`
- `ty = Ref (r, ...)`
then we interpret the borrow `l` as belonging to region `r`
Also, when applying projections on shared values, we need to apply
reborrows. This is a bit annoying because, with the way we compute
the projection on borrows, we can't update the context immediately.
Instead, we remember the list of borrows we have to insert in the
context *afterwards*.
[check_symbolic_no_ended] controls whether we check or not whether
symbolic values don't contain already ended regions.
This check is activated when applying projectors upon calling a function
(because we need to check that function arguments don't contain ⊥),
but deactivated when expanding symbolic values:
```
fn f<'a,'b>(x : &'a mut u32, y : &'b mut u32) -> (&'a mut u32, &'b mut u32);
let p = f(&mut x, &mut y); // p -> @s0
assert(x == ...); // end 'a
let z = p.1; // HERE: the symbolic expansion of @s0 contains ended regions
```
*)
let rec apply_proj_borrows (check_symbolic_no_ended : bool) (ctx : C.eval_ctx)
(fresh_reborrow : V.BorrowId.id -> V.BorrowId.id)
(regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) :
V.typed_avalue =
(* Sanity check - TODO: move this elsewhere (here we perform the check at every
* recursive call which is a bit overkill...) *)
let ety = Substitute.erase_regions ty in
assert (ety = v.V.ty);
(* Match *)
let value : V.avalue =
match (v.V.value, ty) with
| V.Concrete cv, (T.Bool | T.Char | T.Integer _ | T.Str) -> V.AConcrete cv
| V.Adt adt, T.Adt (id, region_params, tys) ->
(* Retrieve the types of the fields *)
let field_types =
Subst.ctx_adt_value_get_instantiated_field_rtypes ctx adt id
region_params tys
in
(* Project over the field values *)
let fields_types = List.combine adt.V.field_values field_types in
let proj_fields =
List.map
(fun (fv, fty) ->
apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
regions fv fty)
fields_types
in
V.AAdt { V.variant_id = adt.V.variant_id; field_values = proj_fields }
| V.Bottom, _ -> failwith "Unreachable"
| V.Borrow bc, T.Ref (r, ref_ty, kind) ->
if
(* Check if the region is in the set of projected regions (note that
* we never project over static regions) *)
region_in_set r regions
then
(* In the set *)
let bc =
match (bc, kind) with
| V.MutBorrow (bid, bv), T.Mut ->
(* Apply the projection on the borrowed value *)
let bv =
apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
regions bv ref_ty
in
V.AMutBorrow (bid, bv)
| V.SharedBorrow bid, T.Shared -> V.ASharedBorrow bid
| V.InactivatedMutBorrow _, _ ->
failwith
"Can't apply a proj_borrow over an inactivated mutable borrow"
| _ -> failwith "Unreachable"
in
V.ABorrow bc
else
(* Not in the set: ignore *)
let bc =
match (bc, kind) with
| V.MutBorrow (_bid, bv), T.Mut ->
(* Apply the projection on the borrowed value *)
let bv =
apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
regions bv ref_ty
in
V.AIgnoredMutBorrow bv
| V.SharedBorrow bid, T.Shared ->
(* Lookup the shared value *)
let ek = ek_all in
let sv = lookup_loan ek bid ctx in
let asb =
match sv with
| _, Concrete (V.SharedLoan (_, sv))
| _, Abstract (V.ASharedLoan (_, sv, _)) ->
apply_proj_borrows_on_shared_borrow ctx fresh_reborrow
regions sv ref_ty
| _ -> failwith "Unexpected"
in
V.AProjSharedBorrow asb
| V.InactivatedMutBorrow _, _ ->
failwith
"Can't apply a proj_borrow over an inactivated mutable borrow"
| _ -> failwith "Unreachable"
in
V.ABorrow bc
| V.Loan _, _ -> failwith "Unreachable"
| V.Symbolic s, _ ->
(* Check that the symbolic value doesn't contain already ended regions,
* if necessary *)
if check_symbolic_no_ended then
assert (
not (symbolic_proj_comp_ended_regions_intersect_proj s ty regions));
V.ASymbolic (V.AProjBorrows (s.V.svalue, ty))
| _ -> failwith "Unreachable"
in
{ V.value; V.ty }
(** Convert a symbolic expansion *which is not a borrow* to a value *)
let symbolic_expansion_non_borrow_to_value (sv : V.symbolic_value)
(see : symbolic_expansion) : V.typed_value =
let ty = Subst.erase_regions sv.V.sv_ty in
let value =
match see with
| SeConcrete cv -> V.Concrete cv
| SeAdt (variant_id, field_values) ->
let field_values =
List.map mk_typed_value_from_proj_comp field_values
in
V.Adt { V.variant_id; V.field_values }
| SeMutRef (_, _) | SeSharedRef (_, _) ->
failwith "Unexpected symbolic reference expansion"
in
{ V.value; V.ty }
(** Convert a symbolic expansion to a value.
If the expansion is a mutable reference expansion, it converts it to a borrow.
This function is meant to be used when reducing projectors over borrows,
during a symbolic expansion.
*)
let symbolic_expansion_non_shared_borrow_to_value (sv : V.symbolic_value)
(see : symbolic_expansion) : V.typed_value =
match see with
| SeMutRef (bid, bv) ->
let ty = Subst.erase_regions sv.V.sv_ty in
let bv = mk_typed_value_from_proj_comp bv in
let value = V.Borrow (V.MutBorrow (bid, bv)) in
{ V.value; ty }
| SeSharedRef (_, _) ->
failwith "Unexpected symbolic shared reference expansion"
| _ -> symbolic_expansion_non_borrow_to_value sv see
(** Apply (and reduce) a projector over loans to a value.
TODO: detailed comments. See [apply_proj_borrows]
*)
let apply_proj_loans_on_symbolic_expansion (regions : T.RegionId.set_t)
(see : symbolic_expansion) (original_sv_ty : T.rty) : V.typed_avalue =
(* Match *)
let (value, ty) : V.avalue * T.rty =
match (see, original_sv_ty) with
| SeConcrete cv, (T.Bool | T.Char | T.Integer _ | T.Str) ->
(V.AConcrete cv, original_sv_ty)
| SeAdt (variant_id, field_values), T.Adt (_id, _region_params, _tys) ->
(* Project over the field values *)
let field_values =
List.map mk_aproj_loans_from_proj_comp field_values
in
(V.AAdt { V.variant_id; field_values }, original_sv_ty)
| SeMutRef (bid, spc), T.Ref (r, ref_ty, T.Mut) ->
(* Apply the projector to the borrowed value *)
let child_av = mk_aproj_loans_from_proj_comp spc in
(* Check if the region is in the set of projected regions (note that
* we never project over static regions) *)
if region_in_set r regions then
(* In the set: keep *)
(V.ALoan (V.AMutLoan (bid, child_av)), ref_ty)
else
(* Not in the set: ignore *)
(V.ALoan (V.AIgnoredMutLoan (bid, child_av)), ref_ty)
| SeSharedRef (bids, spc), T.Ref (r, ref_ty, T.Shared) ->
(* Apply the projector to the borrowed value *)
let child_av = mk_aproj_loans_from_proj_comp spc in
(* Check if the region is in the set of projected regions (note that
* we never project over static regions) *)
if region_in_set r regions then
(* In the set: keep *)
let shared_value = mk_typed_value_from_proj_comp spc in
(V.ALoan (V.ASharedLoan (bids, shared_value, child_av)), ref_ty)
else
(* Not in the set: ignore *)
(V.ALoan (V.AIgnoredSharedLoan child_av), ref_ty)
| _ -> failwith "Unreachable"
in
{ V.value; V.ty }
(** Auxiliary function. See [give_back_value].
Apply reborrows to a context.
The [reborrows] input is a list of pairs (shared loan id, id to insert
in the shared loan).
This function is used when applying projectors on shared borrows: when
doing so, we might need to reborrow subvalues from the shared value.
For instance:
```
fn f<'a,'b,'c>(x : &'a 'b 'c u32)
```
When introducing the abstractions for 'a, 'b and 'c, we apply a projector
on some value `shared_borrow l : &'a &'b &'c u32`.
In the 'a abstraction, this shared borrow gets projected. However, when
reducing the projectors for the 'b and 'c abstractions, we need to make
sure that the borrows living in regions 'b and 'c live as long as those
regions. This is done by looking up the shared value and applying reborrows
on the borrows we find there (note that those reborrows apply on shared
borrows - easy - and mutable borrows - in this case, we reborrow the whole
borrow: `mut_borrow ... ~~> shared_loan {...} (mut_borrow ...)`).
*)
let apply_reborrows (reborrows : (V.BorrowId.id * V.BorrowId.id) list)
(ctx : C.eval_ctx) : C.eval_ctx =
(* This is a bit brutal, but whenever we insert a reborrow, we remove
* it from the list. This allows us to check that all the reborrows were
* applied before returning.
* We might reimplement that in a more efficient manner by using maps. *)
let reborrows = ref reborrows in
(* Check if a value is a mutable borrow, and return its identifier if
it is the case *)
let get_borrow_in_mut_borrow (v : V.typed_value) : V.BorrowId.id option =
match v.V.value with
| V.Borrow lc -> (
match lc with
| V.SharedBorrow _ | V.InactivatedMutBorrow _ -> None
| V.MutBorrow (id, _) -> Some id)
| _ -> None
in
(* Add the proper reborrows to a set of borrow ids (for a shared loan) *)
let insert_reborrows bids =
(* Find the reborrows to apply *)
let insert, reborrows' =
List.partition (fun (bid, _) -> V.BorrowId.Set.mem bid bids) !reborrows
in
reborrows := reborrows';
let insert = List.map snd insert in
(* Insert the borrows *)
List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) bids insert
in
(* Get the list of reborrows for a given borrow id *)
let get_reborrows_for_bid bid =
(* Find the reborrows to apply *)
let insert, reborrows' =
List.partition (fun (bid', _) -> bid' = bid) !reborrows
in
reborrows := reborrows';
List.map snd insert
in
let borrows_to_set bids =
List.fold_left
(fun bids bid -> V.BorrowId.Set.add bid bids)
V.BorrowId.Set.empty bids
in
(* Insert reborrows for a given borrow id into a given set of borrows *)
let insert_reborrows_for_bid bids bid =
(* Find the reborrows to apply *)
let insert = get_reborrows_for_bid bid in
(* Insert the borrows *)
List.fold_left (fun bids bid -> V.BorrowId.Set.add bid bids) bids insert
in
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_typed_value env v =
match v.V.value with
| V.Borrow (V.MutBorrow (bid, bv)) ->
let insert = get_reborrows_for_bid bid in
let nbc = super#visit_MutBorrow env bid bv in
let nbc = { v with V.value = V.Borrow nbc } in
if insert = [] then (* No reborrows: do nothing special *)
nbc
else
(* There are reborrows: insert a shared loan *)
let insert = borrows_to_set insert in
let value = V.Loan (V.SharedLoan (insert, nbc)) in
let ty = v.V.ty in
{ V.value; ty }
| _ -> super#visit_typed_value env v
(** We may need to reborrow mutable borrows. Note that this doesn't
happen for aborrows *)
method! visit_loan_content env lc =
match lc with
| V.SharedLoan (bids, sv) ->
(* Insert the reborrows *)
let bids = insert_reborrows bids in
(* Check if the contained value is a mutable borrow, in which
* case we might need to reborrow it by adding more borrow ids
* to the current set of borrows - by doing this small
* manipulation here, we accumulate the borrow ids in the same
* shared loan, right above the mutable borrow, and avoid
* stacking shared loans (note that doing this is not a problem
* from a soundness point of view, but it is a bit ugly...) *)
let bids =
match get_borrow_in_mut_borrow sv with
| None -> bids
| Some bid -> insert_reborrows_for_bid bids bid
in
(* Update and explore *)
super#visit_SharedLoan env bids sv
| V.MutLoan bid ->
(* Nothing special to do *)
super#visit_MutLoan env bid
(** We reimplement [visit_loan_content] (rather than one of the sub-
functions) on purpose: exhaustive matches are good for maintenance *)
method! visit_aloan_content env lc =
(* TODO: ashared_loan (amut_loan ) case *)
match lc with
| V.ASharedLoan (bids, v, av) ->
(* Insert the reborrows *)
let bids = insert_reborrows bids in
(* Update and explore *)
super#visit_ASharedLoan env bids v av
| V.AIgnoredSharedLoan _
| V.AMutLoan (_, _)
| V.AEndedMutLoan { given_back = _; child = _ }
| V.AEndedSharedLoan (_, _)
| V.AIgnoredMutLoan (_, _)
| V.AEndedIgnoredMutLoan { given_back = _; child = _ } ->
(* Nothing particular to do *)
super#visit_aloan_content env lc
end
in
(* Visit *)
let ctx = obj#visit_eval_ctx () ctx in
(* Check that there are no reborrows remaining *)
assert (!reborrows = []);
(* Return *)
ctx
(** Auxiliary function to prepare reborrowing operations (used when
applying projectors).
Returns two functions:
- a function to generate fresh re-borrow ids, and register the reborrows
- a function to apply the reborrows in a context
Those functions are of course stateful.
*)
let prepare_reborrows (config : C.config) (allow_reborrows : bool)
(ctx : C.eval_ctx) :
(V.BorrowId.id -> V.BorrowId.id) * (C.eval_ctx -> C.eval_ctx) =
let reborrows : (V.BorrowId.id * V.BorrowId.id) list ref = ref [] in
let borrow_counter = ref ctx.C.borrow_counter in
(* The function to generate and register fresh reborrows *)
let fresh_reborrow (bid : V.BorrowId.id) : V.BorrowId.id =
if allow_reborrows then (
let bid', cnt' = V.BorrowId.fresh !borrow_counter in
borrow_counter := cnt';
reborrows := (bid, bid') :: !reborrows;
bid')
else failwith "Unexpected reborrow"
in
(* The function to apply the reborrows in a context *)
let apply_registered_reborrows (ctx : C.eval_ctx) : C.eval_ctx =
match config.C.mode with
| C.ConcreteMode ->
(* Reborrows are introduced when applying projections in symbolic mode *)
assert (!borrow_counter = ctx.C.borrow_counter);
assert (!reborrows = []);
ctx
| C.SymbolicMode ->
(* Update the borrow counter *)
let ctx = { ctx with C.borrow_counter = !borrow_counter } in
(* Apply the reborrows *)
apply_reborrows !reborrows ctx
in
(fresh_reborrow, apply_registered_reborrows)
let apply_proj_borrows_on_input_value (config : C.config) (ctx : C.eval_ctx)
(regions : T.RegionId.set_t) (v : V.typed_value) (ty : T.rty) :
C.eval_ctx * V.typed_avalue =
let check_symbolic_no_ended = true in
let allow_reborrows = true in
(* Prepare the reborrows *)
let fresh_reborrow, apply_registered_reborrows =
prepare_reborrows config allow_reborrows ctx
in
(* Apply the projector *)
let av =
apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow regions v ty
in
(* Apply the reborrows *)
let ctx = apply_registered_reborrows ctx in
(* Return *)
(ctx, av)
|