1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
module T = Types
module V = Values
open Scalars
module E = Expressions
open Errors
module C = Contexts
module Subst = Substitute
module L = Logging
open TypesUtils
open ValuesUtils
module Inv = Invariants
module S = Synthesis
open InterpreterUtils
open InterpreterExpansion
open InterpreterPaths
(** TODO: change the name *)
type eval_error = Panic
type 'a eval_result = ('a, eval_error) result
(** Small utility *)
let prepare_rplace (config : C.config) (access : access_kind) (p : E.place)
(ctx : C.eval_ctx) : C.eval_ctx * V.typed_value =
let ctx = update_ctx_along_read_place config access p ctx in
let ctx = end_loans_at_place config access p ctx in
let v = read_place_unwrap config access p ctx in
(ctx, v)
(** Convert a constant operand value to a typed value *)
let constant_value_to_typed_value (ctx : C.eval_ctx) (ty : T.ety)
(cv : E.operand_constant_value) : V.typed_value =
(* Check the type while converting *)
match (ty, cv) with
(* Unit *)
| T.Adt (T.Tuple, [], []), Unit -> mk_unit_value
(* Adt with one variant and no fields *)
| T.Adt (T.AdtId def_id, [], []), ConstantAdt def_id' ->
assert (def_id = def_id');
(* Check that the adt definition only has one variant with no fields,
compute the variant id at the same time. *)
let def = C.ctx_lookup_type_def ctx def_id in
assert (List.length def.region_params = 0);
assert (List.length def.type_params = 0);
let variant_id =
match def.kind with
| Struct fields ->
assert (List.length fields = 0);
None
| Enum variants ->
assert (List.length variants = 1);
let variant_id = T.VariantId.zero in
let variant = T.VariantId.nth variants variant_id in
assert (List.length variant.fields = 0);
Some variant_id
in
let value = V.Adt { variant_id; field_values = [] } in
{ value; ty }
(* Scalar, boolean... *)
| T.Bool, ConstantValue (Bool v) -> { V.value = V.Concrete (Bool v); ty }
| T.Char, ConstantValue (Char v) -> { V.value = V.Concrete (Char v); ty }
| T.Str, ConstantValue (String v) -> { V.value = V.Concrete (String v); ty }
| T.Integer int_ty, ConstantValue (V.Scalar v) ->
(* Check the type and the ranges *)
assert (int_ty == v.int_ty);
assert (check_scalar_value_in_range v);
{ V.value = V.Concrete (V.Scalar v); ty }
(* Remaining cases (invalid) - listing as much as we can on purpose
(allows to catch errors at compilation if the definitions change) *)
| _, Unit | _, ConstantAdt _ | _, ConstantValue _ ->
failwith "Improperly typed constant value"
(** Prepare the evaluation of an operand. *)
let eval_operand_prepare (config : C.config) (ctx : C.eval_ctx) (op : E.operand)
: C.eval_ctx * V.typed_value =
let ctx, v =
match op with
| Expressions.Constant (ty, cv) ->
let v = constant_value_to_typed_value ctx ty cv in
(ctx, v)
| Expressions.Copy p ->
(* Access the value *)
let access = Read in
prepare_rplace config access p ctx
| Expressions.Move p ->
(* Access the value *)
let access = Move in
prepare_rplace config access p ctx
in
assert (not (bottom_in_value v));
(ctx, v)
(** Evaluate an operand. *)
let eval_operand (config : C.config) (ctx : C.eval_ctx) (op : E.operand) :
C.eval_ctx * V.typed_value =
(* Debug *)
L.log#ldebug
(lazy
("eval_operand:\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n\n- op:\n"
^ operand_to_string ctx op ^ "\n"));
(* Evaluate *)
match op with
| Expressions.Constant (ty, cv) ->
let v = constant_value_to_typed_value ctx ty cv in
(ctx, v)
| Expressions.Copy p ->
(* Access the value *)
let access = Read in
let ctx, v = prepare_rplace config access p ctx in
(* Copy the value *)
L.log#ldebug (lazy ("Value to copy:\n" ^ typed_value_to_string ctx v));
assert (not (bottom_in_value v));
let allow_adt_copy = false in
copy_value allow_adt_copy config ctx v
| Expressions.Move p -> (
(* Access the value *)
let access = Move in
let ctx, v = prepare_rplace config access p ctx in
(* Move the value *)
L.log#ldebug (lazy ("Value to move:\n" ^ typed_value_to_string ctx v));
assert (not (bottom_in_value v));
let bottom : V.typed_value = { V.value = Bottom; ty = v.ty } in
match write_place config access p bottom ctx with
| Error _ -> failwith "Unreachable"
| Ok ctx -> (ctx, v))
(** Evaluate several operands. *)
let eval_operands (config : C.config) (ctx : C.eval_ctx) (ops : E.operand list)
: C.eval_ctx * V.typed_value list =
List.fold_left_map (fun ctx op -> eval_operand config ctx op) ctx ops
let eval_two_operands (config : C.config) (ctx : C.eval_ctx) (op1 : E.operand)
(op2 : E.operand) : C.eval_ctx * V.typed_value * V.typed_value =
match eval_operands config ctx [ op1; op2 ] with
| ctx, [ v1; v2 ] -> (ctx, v1, v2)
| _ -> failwith "Unreachable"
let eval_unary_op_concrete (config : C.config) (ctx : C.eval_ctx)
(unop : E.unop) (op : E.operand) : (C.eval_ctx * V.typed_value) eval_result
=
(* Evaluate the operand *)
let ctx, v = eval_operand config ctx op in
(* Apply the unop *)
match (unop, v.V.value) with
| E.Not, V.Concrete (Bool b) ->
Ok (ctx, { v with V.value = V.Concrete (Bool (not b)) })
| E.Neg, V.Concrete (V.Scalar sv) -> (
let i = Z.neg sv.V.value in
match mk_scalar sv.int_ty i with
| Error _ -> Error Panic
| Ok sv -> Ok (ctx, { v with V.value = V.Concrete (V.Scalar sv) }))
| _ -> failwith "Invalid input for unop"
let eval_unary_op_symbolic (config : C.config) (ctx : C.eval_ctx)
(unop : E.unop) (op : E.operand) : (C.eval_ctx * V.typed_value) eval_result
=
(* Evaluate the operand *)
let ctx, v = eval_operand config ctx op in
(* Generate a fresh symbolic value to store the result *)
let ctx, res_sv_id = C.fresh_symbolic_value_id ctx in
let res_sv_ty =
match (unop, v.V.ty) with
| E.Not, T.Bool -> T.Bool
| E.Neg, T.Integer int_ty -> T.Integer int_ty
| _ -> failwith "Invalid input for unop"
in
let res_sv = { V.sv_id = res_sv_id; sv_ty = res_sv_ty } in
(* Synthesize *)
S.synthesize_unary_op unop v res_sv;
(* Return *)
Ok (ctx, mk_typed_value_from_symbolic_value res_sv)
let eval_unary_op (config : C.config) (ctx : C.eval_ctx) (unop : E.unop)
(op : E.operand) : (C.eval_ctx * V.typed_value) eval_result =
match config.mode with
| C.ConcreteMode -> eval_unary_op_concrete config ctx unop op
| C.SymbolicMode -> eval_unary_op_symbolic config ctx unop op
let eval_binary_op_concrete (config : C.config) (ctx : C.eval_ctx)
(binop : E.binop) (op1 : E.operand) (op2 : E.operand) :
(C.eval_ctx * V.typed_value) eval_result =
(* Evaluate the operands *)
let ctx, v1, v2 = eval_two_operands config ctx op1 op2 in
(* Equality check binops (Eq, Ne) accept values from a wide variety of types.
* The remaining binops only operate on scalars. *)
if binop = Eq || binop = Ne then (
(* Equality operations *)
assert (v1.ty = v2.ty);
(* Equality/inequality check is primitive only for a subset of types *)
assert (type_is_primitively_copyable v1.ty);
let b = v1 = v2 in
Ok (ctx, { V.value = V.Concrete (Bool b); ty = T.Bool }))
else
(* For the non-equality operations, the input values are necessarily scalars *)
match (v1.V.value, v2.V.value) with
| V.Concrete (V.Scalar sv1), V.Concrete (V.Scalar sv2) -> (
let res =
(* There are binops which require the two operands to have the same
type, and binops for which it is not the case.
There are also binops which return booleans, and binops which
return integers.
*)
match binop with
| E.Lt | E.Le | E.Ge | E.Gt ->
(* The two operands must have the same type and the result is a boolean *)
assert (sv1.int_ty = sv2.int_ty);
let b =
match binop with
| E.Lt -> Z.lt sv1.V.value sv2.V.value
| E.Le -> Z.leq sv1.V.value sv2.V.value
| E.Ge -> Z.geq sv1.V.value sv2.V.value
| E.Gt -> Z.gt sv1.V.value sv2.V.value
| E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
| E.BitOr | E.Shl | E.Shr | E.Ne | E.Eq ->
failwith "Unreachable"
in
Ok
({ V.value = V.Concrete (Bool b); ty = T.Bool } : V.typed_value)
| E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
| E.BitOr -> (
(* The two operands must have the same type and the result is an integer *)
assert (sv1.int_ty = sv2.int_ty);
let res =
match binop with
| E.Div ->
if sv2.V.value = Z.zero then Error ()
else mk_scalar sv1.int_ty (Z.div sv1.V.value sv2.V.value)
| E.Rem ->
(* See [https://github.com/ocaml/Zarith/blob/master/z.mli] *)
if sv2.V.value = Z.zero then Error ()
else mk_scalar sv1.int_ty (Z.rem sv1.V.value sv2.V.value)
| E.Add -> mk_scalar sv1.int_ty (Z.add sv1.V.value sv2.V.value)
| E.Sub -> mk_scalar sv1.int_ty (Z.sub sv1.V.value sv2.V.value)
| E.Mul -> mk_scalar sv1.int_ty (Z.mul sv1.V.value sv2.V.value)
| E.BitXor -> raise Unimplemented
| E.BitAnd -> raise Unimplemented
| E.BitOr -> raise Unimplemented
| E.Lt | E.Le | E.Ge | E.Gt | E.Shl | E.Shr | E.Ne | E.Eq ->
failwith "Unreachable"
in
match res with
| Error err -> Error err
| Ok sv ->
Ok
{
V.value = V.Concrete (V.Scalar sv);
ty = Integer sv1.int_ty;
})
| E.Shl | E.Shr -> raise Unimplemented
| E.Ne | E.Eq -> failwith "Unreachable"
in
match res with Error _ -> Error Panic | Ok v -> Ok (ctx, v))
| _ -> failwith "Invalid inputs for binop"
let eval_binary_op_symbolic (config : C.config) (ctx : C.eval_ctx)
(binop : E.binop) (op1 : E.operand) (op2 : E.operand) :
(C.eval_ctx * V.typed_value) eval_result =
(* Evaluate the operands *)
let ctx, v1, v2 = eval_two_operands config ctx op1 op2 in
(* Generate a fresh symbolic value to store the result *)
let ctx, res_sv_id = C.fresh_symbolic_value_id ctx in
let res_sv_ty =
if binop = Eq || binop = Ne then (
(* Equality operations *)
assert (v1.ty = v2.ty);
(* Equality/inequality check is primitive only for a subset of types *)
assert (type_is_primitively_copyable v1.ty);
T.Bool)
else
(* Other operations: input types are integers *)
match (v1.V.ty, v2.V.ty) with
| T.Integer int_ty1, T.Integer int_ty2 -> (
match binop with
| E.Lt | E.Le | E.Ge | E.Gt ->
assert (int_ty1 = int_ty2);
T.Bool
| E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
| E.BitOr ->
assert (int_ty1 = int_ty2);
T.Integer int_ty1
| E.Shl | E.Shr -> raise Unimplemented
| E.Ne | E.Eq -> failwith "Unreachable")
| _ -> failwith "Invalid inputs for binop"
in
let res_sv = { V.sv_id = res_sv_id; sv_ty = res_sv_ty } in
(* Synthesize *)
S.synthesize_binary_op binop v1 v2 res_sv;
(* Return *)
Ok (ctx, mk_typed_value_from_symbolic_value res_sv)
let eval_binary_op (config : C.config) (ctx : C.eval_ctx) (binop : E.binop)
(op1 : E.operand) (op2 : E.operand) :
(C.eval_ctx * V.typed_value) eval_result =
match config.mode with
| C.ConcreteMode -> eval_binary_op_concrete config ctx binop op1 op2
| C.SymbolicMode -> eval_binary_op_symbolic config ctx binop op1 op2
(** Evaluate the discriminant of a concrete (i.e., non symbolic) ADT value *)
let eval_rvalue_discriminant_concrete (config : C.config) (p : E.place)
(ctx : C.eval_ctx) : C.eval_ctx * V.typed_value =
(* Note that discriminant values have type `isize` *)
(* Access the value *)
let access = Read in
let ctx, v = prepare_rplace config access p ctx in
match v.V.value with
| Adt av -> (
match av.variant_id with
| None ->
failwith "Invalid input for `discriminant`: structure instead of enum"
| Some variant_id -> (
let id = Z.of_int (T.VariantId.to_int variant_id) in
match mk_scalar Isize id with
| Error _ ->
failwith "Disciminant id out of range"
(* Should really never happen *)
| Ok sv ->
(ctx, { V.value = V.Concrete (V.Scalar sv); ty = Integer Isize }))
)
| _ -> failwith "Invalid input for `discriminant`"
let eval_rvalue_discriminant (config : C.config) (p : E.place)
(ctx : C.eval_ctx) : (C.eval_ctx * V.typed_value) list =
S.synthesize_eval_rvalue_discriminant p;
(* Note that discriminant values have type `isize` *)
(* Access the value *)
let access = Read in
let ctx, v = prepare_rplace config access p ctx in
match v.V.value with
| Adt _ -> [ eval_rvalue_discriminant_concrete config p ctx ]
| Symbolic sv ->
(* Expand the symbolic value - may lead to branching *)
let ctxl = expand_symbolic_enum_value config sv ctx in
(* This time the value is concrete: reevaluate *)
List.map (eval_rvalue_discriminant_concrete config p) ctxl
| _ -> failwith "Invalid input for `discriminant`"
let eval_rvalue_ref (config : C.config) (ctx : C.eval_ctx) (p : E.place)
(bkind : E.borrow_kind) : C.eval_ctx * V.typed_value =
S.synthesize_eval_rvalue_ref p bkind;
match bkind with
| E.Shared | E.TwoPhaseMut ->
(* Access the value *)
let access = if bkind = E.Shared then Read else Write in
let ctx, v = prepare_rplace config access p ctx in
(* Compute the rvalue - simply a shared borrow with a fresh id *)
let ctx, bid = C.fresh_borrow_id ctx in
(* Note that the reference is *mutable* if we do a two-phase borrow *)
let rv_ty =
T.Ref (T.Erased, v.ty, if bkind = E.Shared then Shared else Mut)
in
let bc =
if bkind = E.Shared then V.SharedBorrow bid
else V.InactivatedMutBorrow bid
in
let rv : V.typed_value = { V.value = V.Borrow bc; ty = rv_ty } in
(* Compute the value with which to replace the value at place p *)
let nv =
match v.V.value with
| V.Loan (V.SharedLoan (bids, sv)) ->
(* Shared loan: insert the new borrow id *)
let bids1 = V.BorrowId.Set.add bid bids in
{ v with V.value = V.Loan (V.SharedLoan (bids1, sv)) }
| _ ->
(* Not a shared loan: add a wrapper *)
let v' = V.Loan (V.SharedLoan (V.BorrowId.Set.singleton bid, v)) in
{ v with V.value = v' }
in
(* Update the value in the context *)
let ctx = write_place_unwrap config access p nv ctx in
(* Return *)
(ctx, rv)
| E.Mut ->
(* Access the value *)
let access = Write in
let ctx, v = prepare_rplace config access p ctx in
(* Compute the rvalue - wrap the value in a mutable borrow with a fresh id *)
let ctx, bid = C.fresh_borrow_id ctx in
let rv_ty = T.Ref (T.Erased, v.ty, Mut) in
let rv : V.typed_value =
{ V.value = V.Borrow (V.MutBorrow (bid, v)); ty = rv_ty }
in
(* Compute the value with which to replace the value at place p *)
let nv = { v with V.value = V.Loan (V.MutLoan bid) } in
(* Update the value in the context *)
let ctx = write_place_unwrap config access p nv ctx in
(* Return *)
(ctx, rv)
let eval_rvalue_aggregate (config : C.config) (ctx : C.eval_ctx)
(aggregate_kind : E.aggregate_kind) (ops : E.operand list) :
C.eval_ctx * V.typed_value =
S.synthesize_eval_rvalue_aggregate aggregate_kind ops;
(* Evaluate the operands *)
let ctx, values = eval_operands config ctx ops in
(* Match on the aggregate kind *)
match aggregate_kind with
| E.AggregatedTuple ->
let tys = List.map (fun (v : V.typed_value) -> v.V.ty) values in
let v = V.Adt { variant_id = None; field_values = values } in
let ty = T.Adt (T.Tuple, [], tys) in
(ctx, { V.value = v; ty })
| E.AggregatedAdt (def_id, opt_variant_id, regions, types) ->
(* Sanity checks *)
let type_def = C.ctx_lookup_type_def ctx def_id in
assert (List.length type_def.region_params = List.length regions);
let expected_field_types =
Subst.ctx_adt_get_instantiated_field_etypes ctx def_id opt_variant_id
types
in
assert (
expected_field_types
= List.map (fun (v : V.typed_value) -> v.V.ty) values);
(* Construct the value *)
let av : V.adt_value =
{ V.variant_id = opt_variant_id; V.field_values = values }
in
let aty = T.Adt (T.AdtId def_id, regions, types) in
(ctx, { V.value = Adt av; ty = aty })
(** Evaluate an rvalue which is not a discriminant.
We define a function for this specific case, because evaluating
a discriminant might lead to branching (if we evaluate the discriminant
of a symbolic enumeration value), while it is not the case for the
other rvalues.
*)
let eval_rvalue_non_discriminant (config : C.config) (ctx : C.eval_ctx)
(rvalue : E.rvalue) : (C.eval_ctx * V.typed_value) eval_result =
match rvalue with
| E.Use op -> Ok (eval_operand config ctx op)
| E.Ref (p, bkind) -> Ok (eval_rvalue_ref config ctx p bkind)
| E.UnaryOp (unop, op) -> eval_unary_op config ctx unop op
| E.BinaryOp (binop, op1, op2) -> eval_binary_op config ctx binop op1 op2
| E.Aggregate (aggregate_kind, ops) ->
Ok (eval_rvalue_aggregate config ctx aggregate_kind ops)
| E.Discriminant _ -> failwith "Unreachable"
(** Evaluate an rvalue in a given context: return the updated context and
the computed value.
Returns a list of pairs (new context, computed rvalue) because
`discriminant` might lead to a branching in case it is applied
on a symbolic enumeration value.
*)
let eval_rvalue (config : C.config) (ctx : C.eval_ctx) (rvalue : E.rvalue) :
(C.eval_ctx * V.typed_value) list eval_result =
match rvalue with
| E.Discriminant p -> Ok (eval_rvalue_discriminant config p ctx)
| _ -> (
match eval_rvalue_non_discriminant config ctx rvalue with
| Error e -> Error e
| Ok res -> Ok [ res ])
|