summaryrefslogtreecommitdiff
path: root/src/InterpreterBorrowsCore.ml
blob: e3789273b6ba9b92ed628aeeef6f6877bb78d2a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
(* This file defines the basic blocks to implement the semantics of borrows.
 * Note that those functions are not only used in InterpreterBorrows, but
 * also in Invariants or InterpreterProjectors *)

module T = Types
module V = Values
module C = Contexts
module Subst = Substitute
module L = Logging
open TypesUtils
open InterpreterUtils

(** The local logger *)
let log = L.borrows_log

(** TODO: cleanup this a bit, once we have a better understanding about
    what we need.
    TODO: I'm not sure in which file this should be moved... *)
type exploration_kind = {
  enter_shared_loans : bool;
  enter_mut_borrows : bool;
  enter_abs : bool;
      (** Note that if we allow to enter abs, we don't check whether we enter
          mutable/shared loans or borrows: there are no use cases requiring
          a finer control. *)
}
(** This record controls how some generic helper lookup/update
    functions behave, by restraining the kind of therms they can enter.
*)

let ek_all : exploration_kind =
  { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }

type borrow_ids = Borrows of V.BorrowId.set_t | Borrow of V.BorrowId.id
[@@deriving show]

exception FoundBorrowIds of borrow_ids

type priority_borrows_or_abs =
  | OuterBorrows of borrow_ids
  | OuterAbs of V.AbstractionId.id
  | InnerLoans of borrow_ids
[@@deriving show]

let update_if_none opt x = match opt with None -> Some x | _ -> opt

exception FoundPriority of priority_borrows_or_abs
(** Utility exception *)

type loan_or_borrow_content =
  | LoanContent of V.loan_content
  | BorrowContent of V.borrow_content
[@@deriving show]

(** Check if two different projections intersect. This is necessary when
    giving a symbolic value to an abstraction: we need to check that
    the regions which are already ended inside the abstraction don't
    intersect the regions over which we project in the new abstraction.
    Note that the two abstractions have different views (in terms of regions)
    of the symbolic value (hence the two region types).
*)
let rec projections_intersect (ty1 : T.rty) (rset1 : T.RegionId.set_t)
    (ty2 : T.rty) (rset2 : T.RegionId.set_t) : bool =
  match (ty1, ty2) with
  | T.Bool, T.Bool | T.Char, T.Char | T.Str, T.Str -> false
  | T.Integer int_ty1, T.Integer int_ty2 ->
      assert (int_ty1 = int_ty2);
      false
  | T.Adt (id1, regions1, tys1), T.Adt (id2, regions2, tys2) ->
      assert (id1 = id2);
      (* The intersection check for the ADTs is very crude: 
       * we check if some arguments intersect. As all the type and region
       * parameters should be used somewhere in the ADT (otherwise rustc
       * generates an error), it means that it should be equivalent to checking
       * whether two fields intersect (and anyway comparing the field types is
       * difficult in case of enumerations...).
       * If we didn't have the above property enforced by the rust compiler,
       * this check would still be a reasonable conservative approximation. *)
      let regions = List.combine regions1 regions2 in
      let tys = List.combine tys1 tys2 in
      List.exists
        (fun (r1, r2) -> region_in_set r1 rset1 && region_in_set r2 rset2)
        regions
      || List.exists
           (fun (ty1, ty2) -> projections_intersect ty1 rset1 ty2 rset2)
           tys
  | T.Array ty1, T.Array ty2 | T.Slice ty1, T.Slice ty2 ->
      projections_intersect ty1 rset1 ty2 rset2
  | T.Ref (r1, ty1, kind1), T.Ref (r2, ty2, kind2) ->
      (* Sanity check *)
      assert (kind1 = kind2);
      (* The projections intersect if the borrows intersect or their contents
       * intersect *)
      (region_in_set r1 rset1 && region_in_set r2 rset2)
      || projections_intersect ty1 rset1 ty2 rset2
  | T.TypeVar id1, T.TypeVar id2 ->
      assert (id1 = id2);
      false
  | _ ->
      log#lerror
        (lazy
          ("projections_intersect: unexpected inputs:" ^ "\n- ty1: "
         ^ T.show_rty ty1 ^ "\n- ty2: " ^ T.show_rty ty2));
      failwith "Unreachable"

(** Lookup a loan content.

    The loan is referred to by a borrow id.

    TODO: group abs_or_var_id and g_loan_content. 
 *)
let lookup_loan_opt (ek : exploration_kind) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) : (abs_or_var_id * g_loan_content) option =
  (* We store here whether we are inside an abstraction or a value - note that we
   * could also track that with the environment, it would probably be more idiomatic
   * and cleaner *)
  let abs_or_var : abs_or_var_id option ref = ref None in

  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow bid ->
            (* Nothing specific to do *)
            super#visit_SharedBorrow env bid
        | V.InactivatedMutBorrow bid ->
            (* Nothing specific to do *)
            super#visit_InactivatedMutBorrow env bid
        | V.MutBorrow (bid, mv) ->
            (* Control the dive *)
            if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else ()

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Check if this is the loan we are looking for, and control the dive *)
            if V.BorrowId.Set.mem l bids then
              raise (FoundGLoanContent (Concrete lc))
            else if ek.enter_shared_loans then
              super#visit_SharedLoan env bids sv
            else ()
        | V.MutLoan bid ->
            (* Check if this is the loan we are looking for *)
            if bid = l then raise (FoundGLoanContent (Concrete lc))
            else super#visit_MutLoan env bid
      (** We reimplement [visit_Loan] (rather than the more precise functions
          [visit_SharedLoan], etc.) on purpose: as we have an exhaustive match
          below, we are more resilient to definition updates (the compiler
          is our friend).
      *)

      method! visit_aloan_content env lc =
        match lc with
        | V.AMutLoan (bid, av) ->
            if bid = l then raise (FoundGLoanContent (Abstract lc))
            else super#visit_AMutLoan env bid av
        | V.ASharedLoan (bids, v, av) ->
            if V.BorrowId.Set.mem l bids then
              raise (FoundGLoanContent (Abstract lc))
            else super#visit_ASharedLoan env bids v av
        | V.AEndedMutLoan { given_back; child } ->
            super#visit_AEndedMutLoan env given_back child
        | V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av
        | V.AIgnoredMutLoan (bid, av) -> super#visit_AIgnoredMutLoan env bid av
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            super#visit_AEndedIgnoredMutLoan env given_back child
        | V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av
      (** Note that we don't control diving inside the abstractions: if we
          allow to dive inside abstractions, we allow to go anywhere
          (because there are no use cases requiring finer control) *)

      method! visit_Var env bv v =
        assert (Option.is_none !abs_or_var);
        abs_or_var :=
          Some
            (VarId (match bv with Some bv -> Some bv.C.index | None -> None));
        super#visit_Var env bv v;
        abs_or_var := None

      method! visit_Abs env abs =
        assert (Option.is_none !abs_or_var);
        if ek.enter_abs then (
          abs_or_var := Some (AbsId abs.V.abs_id);
          super#visit_Abs env abs;
          abs_or_var := None)
        else ()
    end
  in
  (* We use exceptions *)
  try
    obj#visit_eval_ctx () ctx;
    None
  with FoundGLoanContent lc -> (
    match !abs_or_var with
    | Some abs_or_var -> Some (abs_or_var, lc)
    | None -> failwith "Inconsistent state")

(** Lookup a loan content.

    The loan is referred to by a borrow id.
    Raises an exception if no loan was found.
 *)
let lookup_loan (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx) :
    abs_or_var_id * g_loan_content =
  match lookup_loan_opt ek l ctx with
  | None -> failwith "Unreachable"
  | Some res -> res

(** Update a loan content.

    The loan is referred to by a borrow id.

    This is a helper function: it might break invariants.
 *)
let update_loan (ek : exploration_kind) (l : V.BorrowId.id)
    (nlc : V.loan_content) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one loan: when updating
   * inside values, we check we don't update more than one loan. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.loan_content =
    assert (not !r);
    r := true;
    nlc
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow _ | V.InactivatedMutBorrow _ ->
            (* Nothing specific to do *)
            super#visit_borrow_content env bc
        | V.MutBorrow (bid, mv) ->
            (* Control the dive into mutable borrows *)
            if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else V.MutBorrow (bid, mv)

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Shared loan: check if this is the loan we are looking for, and
               control the dive. *)
            if V.BorrowId.Set.mem l bids then update ()
            else if ek.enter_shared_loans then
              super#visit_SharedLoan env bids sv
            else V.SharedLoan (bids, sv)
        | V.MutLoan bid ->
            (* Mut loan: checks if this is the loan we are looking for *)
            if bid = l then update () else super#visit_MutLoan env bid
      (** We reimplement [visit_loan_content] (rather than one of the sub-
          functions) on purpose: exhaustive matches are good for maintenance *)

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
      (** Note that once inside the abstractions, we don't control diving
          (there are no use cases requiring finer control).
          Also, as we give back a [loan_content] (and not an [aloan_content])
          we don't need to do reimplement the visit functions for the values
          inside the abstractions (rk.: there may be "concrete" values inside
          abstractions, so there is a utility in diving inside). *)
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one loan *)
  assert !r;
  ctx

(** Update a abstraction loan content.

    The loan is referred to by a borrow id.

    This is a helper function: it might break invariants.
 *)
let update_aloan (ek : exploration_kind) (l : V.BorrowId.id)
    (nlc : V.aloan_content) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one loan: when updating
   * inside values, we check we don't update more than one loan. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.aloan_content =
    assert (not !r);
    r := true;
    nlc
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_aloan_content env lc =
        match lc with
        | V.AMutLoan (bid, av) ->
            if bid = l then update () else super#visit_AMutLoan env bid av
        | V.ASharedLoan (bids, v, av) ->
            if V.BorrowId.Set.mem l bids then update ()
            else super#visit_ASharedLoan env bids v av
        | V.AEndedMutLoan { given_back; child } ->
            super#visit_AEndedMutLoan env given_back child
        | V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av
        | V.AIgnoredMutLoan (bid, av) -> super#visit_AIgnoredMutLoan env bid av
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            super#visit_AEndedIgnoredMutLoan env given_back child
        | V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
      (** Note that once inside the abstractions, we don't control diving
          (there are no use cases requiring finer control). *)
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one loan *)
  assert !r;
  ctx

(** Lookup a borrow content from a borrow id. *)
let lookup_borrow_opt (ek : exploration_kind) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) : g_borrow_content option =
  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.MutBorrow (bid, mv) ->
            (* Check the borrow id and control the dive *)
            if bid = l then raise (FoundGBorrowContent (Concrete bc))
            else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else ()
        | V.SharedBorrow bid ->
            (* Check the borrow id *)
            if bid = l then raise (FoundGBorrowContent (Concrete bc)) else ()
        | V.InactivatedMutBorrow bid ->
            (* Check the borrow id *)
            if bid = l then raise (FoundGBorrowContent (Concrete bc)) else ()

      method! visit_loan_content env lc =
        match lc with
        | V.MutLoan bid ->
            (* Nothing special to do *) super#visit_MutLoan env bid
        | V.SharedLoan (bids, sv) ->
            (* Control the dive *)
            if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
            else ()

      method! visit_aborrow_content env bc =
        match bc with
        | V.AMutBorrow (bid, av) ->
            if bid = l then raise (FoundGBorrowContent (Abstract bc))
            else super#visit_AMutBorrow env bid av
        | V.ASharedBorrow bid ->
            if bid = l then raise (FoundGBorrowContent (Abstract bc))
            else super#visit_ASharedBorrow env bid
        | V.AIgnoredMutBorrow (opt_bid, av) ->
            super#visit_AIgnoredMutBorrow env opt_bid av
        | V.AEndedIgnoredMutBorrow { given_back_loans_proj; child } ->
            super#visit_AEndedIgnoredMutBorrow env given_back_loans_proj child
        | V.AProjSharedBorrow asb ->
            if borrow_in_asb l asb then
              raise (FoundGBorrowContent (Abstract bc))
            else ()

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else ()
    end
  in
  (* We use exceptions *)
  try
    obj#visit_eval_ctx () ctx;
    None
  with FoundGBorrowContent lc -> Some lc

(** Lookup a borrow content from a borrow id.

    Raise an exception if no loan was found
*)
let lookup_borrow (ek : exploration_kind) (l : V.BorrowId.id) (ctx : C.eval_ctx)
    : g_borrow_content =
  match lookup_borrow_opt ek l ctx with
  | None -> failwith "Unreachable"
  | Some lc -> lc

(** Update a borrow content.

    The borrow is referred to by a borrow id.

    This is a helper function: it might break invariants.   
 *)
let update_borrow (ek : exploration_kind) (l : V.BorrowId.id)
    (nbc : V.borrow_content) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one borrow: when updating
   * inside values, we check we don't update more than one borrow. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.borrow_content =
    assert (not !r);
    r := true;
    nbc
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_borrow_content env bc =
        match bc with
        | V.MutBorrow (bid, mv) ->
            (* Check the id and control dive *)
            if bid = l then update ()
            else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else V.MutBorrow (bid, mv)
        | V.SharedBorrow bid ->
            (* Check the id *)
            if bid = l then update () else super#visit_SharedBorrow env bid
        | V.InactivatedMutBorrow bid ->
            (* Check the id *)
            if bid = l then update ()
            else super#visit_InactivatedMutBorrow env bid

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Control the dive *)
            if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
            else V.SharedLoan (bids, sv)
        | V.MutLoan bid ->
            (* Nothing specific to do *)
            super#visit_MutLoan env bid

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one borrow *)
  assert !r;
  ctx

(** Update an abstraction borrow content.

    The borrow is referred to by a borrow id.

    This is a helper function: it might break invariants.     
 *)
let update_aborrow (ek : exploration_kind) (l : V.BorrowId.id) (nv : V.avalue)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we update exactly one borrow: when updating
   * inside values, we check we don't update more than one borrow. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let update () : V.avalue =
    assert (not !r);
    r := true;
    nv
  in

  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_ABorrow env bc =
        match bc with
        | V.AMutBorrow (bid, av) ->
            if bid = l then update ()
            else V.ABorrow (super#visit_AMutBorrow env bid av)
        | V.ASharedBorrow bid ->
            if bid = l then update ()
            else V.ABorrow (super#visit_ASharedBorrow env bid)
        | V.AIgnoredMutBorrow (opt_bid, av) ->
            V.ABorrow (super#visit_AIgnoredMutBorrow env opt_bid av)
        | V.AEndedIgnoredMutBorrow { given_back_loans_proj; child } ->
            V.ABorrow
              (super#visit_AEndedIgnoredMutBorrow env given_back_loans_proj
                 child)
        | V.AProjSharedBorrow asb ->
            if borrow_in_asb l asb then update ()
            else V.ABorrow (super#visit_AProjSharedBorrow env asb)

      method! visit_abs env abs =
        if ek.enter_abs then super#visit_abs env abs else abs
    end
  in

  let ctx = obj#visit_eval_ctx () ctx in
  (* Check that we updated at least one borrow *)
  assert !r;
  ctx

(** Auxiliary function: see its usage in [end_borrow_get_borrow_in_value] *)
let update_outer_borrows (outer : V.AbstractionId.id option * borrow_ids option)
    (x : borrow_ids) : V.AbstractionId.id option * borrow_ids option =
  let abs, opt = outer in
  (abs, update_if_none opt x)

(** Return the first loan we find in a value *)
let get_first_loan_in_value (v : V.typed_value) : V.loan_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_loan_content _ lc = raise (FoundLoanContent lc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with FoundLoanContent lc -> Some lc

(** Return the first borrow we find in a value *)
let get_first_borrow_in_value (v : V.typed_value) : V.borrow_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_borrow_content _ bc = raise (FoundBorrowContent bc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with FoundBorrowContent bc -> Some bc

(** Return the first loan or borrow content we find in a value (starting with
    the outer ones).
    
    [with_borrows]:
    - if true: return the first loan or borrow we find
    - if false: return the first loan we find, do not dive into borrowed values
 *)
let get_first_outer_loan_or_borrow_in_value (with_borrows : bool)
    (v : V.typed_value) : loan_or_borrow_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_borrow_content _ bc =
        if with_borrows then raise (FoundBorrowContent bc) else ()

      method! visit_loan_content _ lc = raise (FoundLoanContent lc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with
  | FoundLoanContent lc -> Some (LoanContent lc)
  | FoundBorrowContent bc -> Some (BorrowContent bc)

type gproj_borrows =
  | AProjBorrows of V.AbstractionId.id * V.symbolic_value
  | ProjBorrows of V.symbolic_value

let proj_borrows_intersects_proj_loans
    (proj_borrows : T.RegionId.Set.t * V.symbolic_value * T.rty)
    (proj_loans : T.RegionId.Set.t * V.symbolic_value) : bool =
  let b_regions, b_sv, b_ty = proj_borrows in
  let l_regions, l_sv = proj_loans in
  if same_symbolic_id b_sv l_sv then
    projections_intersect l_sv.V.sv_ty l_regions b_ty b_regions
  else false

let proj_loans_intersect (proj_loans : T.RegionId.Set.t * V.symbolic_value)
    (proj_loans' : T.RegionId.Set.t * V.symbolic_value) : bool =
  let regions, sv = proj_loans in
  let regions', sv' = proj_loans' in
  if same_symbolic_id sv sv' then
    projections_intersect sv.V.sv_ty regions sv'.V.sv_ty regions'
  else false

(** Result of looking up aproj_borrows which intersect a given aproj_loans in
    the context.

    Note that because we we force the expansion of primitively copyable values
    before giving them to abstractions, we only have the following possibilities:
    - no aproj_borrows, in which case the symbolic value was either dropped
      or is in the context
    - exactly one aproj_borrows over a non-shared value
    - potentially several aproj_borrows over shared values
    
    The result contains the ids of the abstractions in which the projectors were
    found, as well as the projection types used in those abstractions.
*)
type looked_up_aproj_borrows =
  | NonSharedProj of V.AbstractionId.id * T.rty
  | SharedProjs of (V.AbstractionId.id * T.rty) list

(** Lookup the aproj_borrows (including aproj_shared_borrows) over a
    symbolic value which intersect a given set of regions.
        
    [lookup_shared]: if `true` also explore projectors over shared values,
    otherwise ignore.
*)
let lookup_intersecting_aproj_borrows_opt (lookup_shared : bool)
    (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) :
    looked_up_aproj_borrows option =
  let found : looked_up_aproj_borrows option ref = ref None in
  let set_non_shared ((id, ty) : V.AbstractionId.id * T.rty) : unit =
    match !found with
    | None -> found := Some (NonSharedProj (id, ty))
    | Some _ -> failwith "Unreachable"
  in
  let add_shared (x : V.AbstractionId.id * T.rty) : unit =
    match !found with
    | None -> found := Some (SharedProjs [ x ])
    | Some (SharedProjs pl) -> found := Some (SharedProjs (x :: pl))
    | Some (NonSharedProj _) -> failwith "Unreachable"
  in
  let check_add_proj_borrows (is_shared : bool) abs sv' proj_ty =
    if
      proj_borrows_intersects_proj_loans
        (abs.V.regions, sv', proj_ty)
        (regions, sv)
    then
      let x = (abs.abs_id, proj_ty) in
      if is_shared then add_shared x else set_non_shared x
    else ()
  in
  let obj =
    object
      inherit [_] C.iter_eval_ctx as super

      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_abstract_shared_borrows abs asb =
        (* Sanity check *)
        (match !found with
        | Some (NonSharedProj _) -> failwith "Unreachable"
        | _ -> ());
        (* Explore *)
        if lookup_shared then
          let abs = Option.get abs in
          let check asb =
            match asb with
            | V.AsbBorrow _ -> ()
            | V.AsbProjReborrows (sv', proj_ty) ->
                let is_shared = true in
                check_add_proj_borrows is_shared abs sv' proj_ty
          in
          List.iter check asb
        else ()

      method! visit_aproj abs sproj =
        (let abs = Option.get abs in
         match sproj with
         | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows
         | AIgnoredProjBorrows ->
             ()
         | AProjBorrows (sv', proj_rty) ->
             let is_shared = false in
             check_add_proj_borrows is_shared abs sv' proj_rty);
        super#visit_aproj abs sproj
    end
  in
  (* Visit *)
  obj#visit_eval_ctx None ctx;
  (* Return *)
  !found

(** Lookup the aproj_borrows (not aproj_borrows_shared!) over a symbolic
    value which intersects a given set of regions.
    
    Note that there should be **at most one** (one reason is that we force
    the expansion of primitively copyable values before giving them to
    abstractions).
    
    Returns the id of the owning abstraction, and the projection type used in
    this abstraction.
*)
let lookup_intersecting_aproj_borrows_not_shared_opt
    (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) :
    (V.AbstractionId.id * T.rty) option =
  let lookup_shared = false in
  match lookup_intersecting_aproj_borrows_opt lookup_shared regions sv ctx with
  | None -> None
  | Some (NonSharedProj (abs_id, rty)) -> Some (abs_id, rty)
  | _ -> failwith "Unexpected"

(** Similar to [lookup_intersecting_aproj_borrows_opt], but updates the
    values.
 *)
let update_intersecting_aproj_borrows (can_update_shared : bool)
    (update_shared : V.AbstractionId.id -> T.rty -> V.abstract_shared_borrows)
    (update_non_shared : V.AbstractionId.id -> T.rty -> V.aproj)
    (regions : T.RegionId.Set.t) (sv : V.symbolic_value) (ctx : C.eval_ctx) :
    C.eval_ctx =
  (* Small helpers for sanity checks *)
  let shared = ref None in
  let add_shared () =
    match !shared with None -> shared := Some true | Some b -> assert b
  in
  let set_non_shared () =
    match !shared with
    | None -> shared := Some false
    | Some _ -> failwith "Found unexpected intersecting proj_borrows"
  in
  let check_proj_borrows is_shared abs sv' proj_ty =
    if
      proj_borrows_intersects_proj_loans
        (abs.V.regions, sv', proj_ty)
        (regions, sv)
    then (
      if is_shared then add_shared () else set_non_shared ();
      true)
    else false
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_abstract_shared_borrows abs asb =
        (* Sanity check *)
        (match !shared with Some b -> assert b | _ -> ());
        (* Explore *)
        if can_update_shared then
          let abs = Option.get abs in
          let update (asb : V.abstract_shared_borrow) :
              V.abstract_shared_borrows =
            match asb with
            | V.AsbBorrow _ -> [ asb ]
            | V.AsbProjReborrows (sv', proj_ty) ->
                let is_shared = true in
                if check_proj_borrows is_shared abs sv' proj_ty then
                  update_shared abs.abs_id proj_ty
                else [ asb ]
          in
          List.concat (List.map update asb)
        else asb

      method! visit_aproj abs sproj =
        match sproj with
        | AProjLoans _ | AEndedProjLoans _ | AEndedProjBorrows
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjBorrows (sv', proj_rty) ->
            let abs = Option.get abs in
            let is_shared = true in
            if check_proj_borrows is_shared abs sv' proj_rty then
              update_non_shared abs.abs_id proj_rty
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check that we updated the context at least once *)
  assert (Option.is_some !shared);
  (* Return *)
  ctx

(** Simply calls [update_intersecting_aproj_borrows] to update a
    proj_borrows over a non-shared value.
    
    We check that we update exactly one proj_borrows.
 *)
let update_intersecting_aproj_borrows_non_shared (regions : T.RegionId.Set.t)
    (sv : V.symbolic_value) (nv : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers *)
  let can_update_shared = false in
  let update_shared _ _ = failwith "Unexpected" in
  let updated = ref false in
  let update_non_shared _ _ =
    assert (not !updated);
    updated := true;
    nv
  in
  (* Update *)
  let ctx =
    update_intersecting_aproj_borrows can_update_shared update_shared
      update_non_shared regions sv ctx
  in
  (* Check that we updated at least once *)
  assert !updated;
  (* Return *)
  ctx

(** Simply calls [update_intersecting_aproj_borrows] to remove the
    proj_borrows over shared values.
 *)
let remove_intersecting_aproj_borrows_shared (regions : T.RegionId.Set.t)
    (sv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers *)
  let can_update_shared = true in
  let update_shared _ _ = [] in
  let update_non_shared _ _ = failwith "Unexpected" in
  (* Update *)
  update_intersecting_aproj_borrows can_update_shared update_shared
    update_non_shared regions sv ctx

(*
(** Updates the proj_loans intersecting some projection.

    Note that in practice, when we update a proj_loans, we always update exactly
    one aproj_loans, in a specific abstraction.
    
    We make this function more general, by checking projection intersections
    (rather than simply checking the abstraction and symbolic value ids)
    for sanity checking: we check whether we need to update a loan based
    on intersection criteria, but also check at the same time that we update
    *exactly one* projector.
 *)
let update_intersecting_aproj_loans (regions : T.RegionId.Set.t)
    (sv : V.symbolic_value) (nv : V.aproj) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers for sanity checks *)
  let updated = ref false in
  let update () : V.aproj =
    assert (not !updated);
    updated := true;
    nv
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_aproj abs sproj =
        match sproj with
        | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows ->
            super#visit_aproj abs sproj
        | AProjLoans sv' ->
            let abs = Option.get abs in
            if proj_loans_intersect (regions, sv) (abs.regions, sv') then
              update ()
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check that we updated the context at least once *)
  assert !updated;
  (* Return *)
  ctx
 *)

(** Substitute the proj_loans based an a symbolic id *)
let substitute_aproj_loans_with_id (sv : V.symbolic_value)
    (subst : T.RegionId.Set.t -> V.aproj) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Small helpers for sanity checks *)
  let updated = ref false in
  let update regions : V.aproj =
    updated := true;
    subst regions
  in
  (* The visitor *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_abs _ abs = super#visit_abs (Some abs) abs

      method! visit_aproj abs sproj =
        match sproj with
        | AProjBorrows _ | AEndedProjLoans _ | AEndedProjBorrows
        | AIgnoredProjBorrows ->
            super#visit_aproj abs sproj
        | AProjLoans sv' ->
            let abs = Option.get abs in
            if same_symbolic_id sv sv' then update abs.regions
            else super#visit_aproj (Some abs) sproj
    end
  in
  (* Apply *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check that we updated the context at least once *)
  assert !updated;
  (* Return *)
  ctx