summaryrefslogtreecommitdiff
path: root/src/InterpreterBorrows.ml
blob: ca1f87f1444ffa0bb4bd852163e3caefc2e80772 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
module T = Types
module V = Values
module C = Contexts
module Subst = Substitute
module L = Logging
open Utils
open ValuesUtils
open InterpreterUtils
open InterpreterBorrowsCore
open InterpreterProjectors

(** Auxiliary function to end borrows: lookup a borrow in the environment,
    update it (by returning an updated environment where the borrow has been
    replaced by [Bottom])) if we can end the borrow (for instance, it is not
    an outer borrow...) or return the reason why we couldn't update the borrow.

    [end_borrow] then simply performs a loop: as long as we need to end (outer)
    borrows, we end them, before finally ending the borrow we wanted to end in the
    first place.

    Note that it is possible to end a borrow in an abstraction, without ending
    the whole abstraction, if the corresponding loan is inside the abstraction
    as well. The [allowed_abs] parameter controls whether we allow to end borrows
    in an abstraction or not, and in which abstraction.
*)
let end_borrow_get_borrow (io : inner_outer)
    (allowed_abs : V.AbstractionId.id option) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) :
    (C.eval_ctx * g_borrow_content option, outer_borrows_or_abs) result =
  (* We use a reference to communicate the kind of borrow we found, if we
   * find one *)
  let replaced_bc : g_borrow_content option ref = ref None in
  let set_replaced_bc (bc : g_borrow_content) =
    assert (Option.is_none !replaced_bc);
    replaced_bc := Some bc
  in
  (* Raise an exception if there are outer borrows or if we are inside an
   * abstraction: this exception is caught in a wrapper function *)
  let raise_if_outer (outer : V.AbstractionId.id option * borrow_ids option) =
    let outer_abs, outer_borrows = outer in
    match outer_abs with
    | Some abs -> (
        if
          (* Check if we can end borrows inside this abstraction *)
          Some abs <> allowed_abs
        then raise (FoundOuter (OuterAbs abs))
        else
          match outer_borrows with
          | Some borrows -> raise (FoundOuter (OuterBorrows borrows))
          | None -> ())
    | None -> (
        match outer_borrows with
        | Some borrows -> raise (FoundOuter (OuterBorrows borrows))
        | None -> ())
  in

  (* The environment is used to keep track of the outer loans *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_Loan (outer : V.AbstractionId.id option * borrow_ids option)
          lc =
        match lc with
        | V.MutLoan bid -> V.Loan (super#visit_MutLoan outer bid)
        | V.SharedLoan (bids, v) ->
            (* Update the outer borrows before diving into the shared value *)
            let outer = update_outer_borrows io outer (Borrows bids) in
            V.Loan (super#visit_SharedLoan outer bids v)
      (** We reimplement [visit_Loan] because we may have to update the
          outer borrows *)

      method! visit_Borrow outer bc =
        match bc with
        | SharedBorrow l' | InactivatedMutBorrow l' ->
            (* Check if this is the borrow we are looking for *)
            if l = l' then (
              (* Check if there are outer borrows or if we are inside an abstraction *)
              raise_if_outer outer;
              (* Register the update *)
              set_replaced_bc (Concrete bc);
              (* Update the value *)
              V.Bottom)
            else super#visit_Borrow outer bc
        | V.MutBorrow (l', bv) ->
            (* Check if this is the borrow we are looking for *)
            if l = l' then (
              (* Check if there are outer borrows or if we are inside an abstraction *)
              raise_if_outer outer;
              (* Register the update *)
              set_replaced_bc (Concrete bc);
              (* Update the value *)
              V.Bottom)
            else
              (* Update the outer borrows before diving into the borrowed value *)
              let outer = update_outer_borrows io outer (Borrow l') in
              V.Borrow (super#visit_MutBorrow outer l' bv)

      method! visit_ALoan outer lc =
        (* Note that the children avalues are just other, independent loans,
         * so we don't need to update the outer borrows when diving in.
         * We keep track of the parents/children relationship only because we
         * need it to properly instantiate the backward functions when generating
         * the pure translation. *)
        match lc with
        | V.AMutLoan (bid, av) ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AMutLoan outer bid av)
        | V.ASharedLoan (bids, v, av) ->
            (* Explore the shared value - we need to update the outer borrows *)
            let souter = update_outer_borrows io outer (Borrows bids) in
            let v = super#visit_typed_value souter v in
            (* Explore the child avalue - we keep the same outer borrows *)
            let av = super#visit_typed_avalue outer av in
            (* Reconstruct *)
            V.ALoan (V.ASharedLoan (bids, v, av))
        | V.AEndedMutLoan { given_back; child } ->
            (* The loan has ended, so no need to update the outer borrows *)
            V.ALoan (super#visit_AEndedMutLoan outer given_back child)
        | V.AEndedSharedLoan (v, av) ->
            (* The loan has ended, so no need to update the outer borrows *)
            V.ALoan (super#visit_AEndedSharedLoan outer v av)
        | V.AIgnoredMutLoan (bid, av) ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AIgnoredMutLoan outer bid av)
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedIgnoredMutLoan outer given_back child)
        | V.AIgnoredSharedLoan av ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AIgnoredSharedLoan outer av)
      (** We reimplement [visit_ALoan] because we may have to update the
          outer borrows *)

      method! visit_ABorrow outer bc =
        match bc with
        | V.AMutBorrow (bid, av) ->
            (* Check if this is the borrow we are looking for *)
            if bid = l then (
              (* When ending a mut borrow, there are two cases:
               * - in the general case, we have to end the whole abstraction
               *   (and thus raise an exception to signal that to the caller)
               * - in some situations, the associated loan is inside the same
               *   abstraction as the borrow. In this situation, we can end
               *   the borrow without ending the whole abstraction, and we
               *   simply move the child avalue around.
               *)
              (* Check there are outer borrows, or if we need to end the whole
               * abstraction *)
              raise_if_outer outer;
              (* Register the update *)
              set_replaced_bc (Abstract bc);
              (* Update the value - note that we are necessarily in the second
               * of the two cases described above *)
              V.ABottom)
            else
              (* Update the outer borrows before diving into the child avalue *)
              let outer = update_outer_borrows io outer (Borrow bid) in
              V.ABorrow (super#visit_AMutBorrow outer bid av)
        | V.ASharedBorrow bid ->
            (* Check if this is the borrow we are looking for *)
            if bid = l then (
              (* Check there are outer borrows, or if we need to end the whole
               * abstraction *)
              raise_if_outer outer;
              (* Register the update *)
              set_replaced_bc (Abstract bc);
              (* Update the value - note that we are necessarily in the second
               * of the two cases described above *)
              V.ABottom)
            else V.ABorrow (super#visit_ASharedBorrow outer bid)
        | V.AIgnoredMutBorrow av ->
            (* Nothing special to do *)
            V.ABorrow (super#visit_AIgnoredMutBorrow outer av)
        | V.AProjSharedBorrow asb ->
            (* Check if the borrow we are looking for is in the asb *)
            if borrow_in_asb l asb then (
              (* Check there are outer borrows, or if we need to end the whole
               * abstraction *)
              raise_if_outer outer;
              (* Register the update *)
              set_replaced_bc (Abstract bc);
              (* Update the value - note that we are necessarily in the second
               * of the two cases described above *)
              let asb = remove_borrow_from_asb l asb in
              V.ABorrow (V.AProjSharedBorrow asb))
            else
              (* Nothing special to do *)
              V.ABorrow (super#visit_AProjSharedBorrow outer asb)

      method! visit_abs outer abs =
        (* Update the outer abs *)
        let outer_abs, outer_borrows = outer in
        assert (Option.is_none outer_abs);
        assert (Option.is_none outer_borrows);
        let outer = (Some abs.V.abs_id, None) in
        super#visit_abs outer abs
    end
  in
  (* Catch the exceptions - raised if there are outer borrows *)
  try
    let ctx = obj#visit_eval_ctx (None, None) ctx in
    Ok (ctx, !replaced_bc)
  with FoundOuter outers -> Error outers

(** Auxiliary function to end borrows. See [give_back].
    
    When we end a mutable borrow, we need to "give back" the value it contained
    to its original owner by reinserting it at the proper position.

    Note that this function checks that there is exactly one loan to which we
    give the value back.
    TODO: this was not the case before, so some sanity checks are not useful anymore.
 *)
let give_back_value (config : C.config) (bid : V.BorrowId.id)
    (nv : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we updated exactly one loan *)
  let replaced : bool ref = ref false in
  let set_replaced () =
    assert (not !replaced);
    replaced := true
  in
  (* Whenever giving back symbolic values, they shouldn't contain already ended regions *)
  let check_symbolic_no_ended = true in
  (* We sometimes need to reborrow values while giving a value back due: prepare that *)
  let allow_reborrows = true in
  let fresh_reborrow, apply_registered_reborrows =
    prepare_reborrows config allow_reborrows ctx
  in
  (* The visitor to give back the values *)
  let obj =
    object (self)
      inherit [_] C.map_eval_ctx as super

      method! visit_Loan opt_abs lc =
        match lc with
        | V.SharedLoan (bids, v) ->
            (* We are giving back a value (i.e., the content of a *mutable*
             * borrow): nothing special to do *)
            V.Loan (super#visit_SharedLoan opt_abs bids v)
        | V.MutLoan bid' ->
            (* Check if this is the loan we are looking for *)
            if bid' = bid then (
              set_replaced ();
              nv.V.value)
            else V.Loan (super#visit_MutLoan opt_abs bid')

      method! visit_typed_avalue opt_abs (av : V.typed_avalue) : V.typed_avalue
          =
        match av.V.value with
        | V.ALoan lc ->
            let value = self#visit_typed_ALoan opt_abs av.V.ty lc in
            ({ av with V.value } : V.typed_avalue)
        | _ -> super#visit_typed_avalue opt_abs av
      (** This is a bit annoying, but as we need the type of the avalue we
          are exploring, in order to be able to project the value we give
          back, we need to reimplement [visit_typed_avalue] instead of
          [visit_ALoan] *)

      method visit_typed_ALoan (opt_abs : V.abs option) (ty : T.rty)
          (lc : V.aloan_content) : V.avalue =
        (* Preparing a bit *)
        let regions =
          match opt_abs with
          | None -> failwith "Unreachable"
          | Some abs -> abs.V.regions
        in
        match lc with
        | V.AMutLoan (bid', child) ->
            if bid' = bid then (
              (* This is the loan we are looking for: apply the projection to
               * the value we give back and replaced this mutable loan with
               * an ended loan *)
              (* Register the insertion *)
              set_replaced ();
              (* Apply the projection *)
              let given_back =
                apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
                  regions nv ty
              in
              (* Return the new value *)
              V.ALoan (V.AEndedMutLoan { given_back; child }))
            else
              (* Continue exploring *)
              V.ALoan (super#visit_AMutLoan opt_abs bid' child)
        | V.ASharedLoan (bids, v, av) ->
            (* We are giving back a value to a *mutable* loan: nothing special to do *)
            V.ALoan (super#visit_ASharedLoan opt_abs bids v av)
        | V.AEndedMutLoan { given_back; child } ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedMutLoan opt_abs given_back child)
        | V.AEndedSharedLoan (v, av) ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedSharedLoan opt_abs v av)
        | V.AIgnoredMutLoan (bid', child) ->
            (* This loan is ignored, but we may have to project on a subvalue
             * of the value which is given back *)
            if bid' = bid then
              (* Note that we replace the ignored mut loan by an *ended* ignored
               * mut loan. Also, this is not the loan we are looking for *per se*:
               * we don't register the fact that we inserted the value somewhere
               * (i.e., we don't call [set_replaced]) *)
              let given_back =
                apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
                  regions nv ty
              in
              V.ALoan (V.AEndedIgnoredMutLoan { given_back; child })
            else V.ALoan (super#visit_AIgnoredMutLoan opt_abs bid' child)
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedIgnoredMutLoan opt_abs given_back child)
        | V.AIgnoredSharedLoan av ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AIgnoredSharedLoan opt_abs av)
      (** We are not specializing an already existing method, but adding a
          new method (for projections, we need type information) *)

      method! visit_Abs opt_abs abs =
        (* We remember in which abstraction we are before diving -
         * this is necessary for projecting values: we need to know
         * over which regions to project *)
        assert (Option.is_none opt_abs);
        super#visit_Abs (Some abs) abs
    end
  in

  (* Explore the environment *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check we gave back to exactly one loan *)
  assert !replaced;
  (* Apply the reborrows *)
  apply_registered_reborrows ctx

(** Auxiliary function to end borrows. See [give_back].

    This function is similar to [give_back_value] but gives back an [avalue]
    (coming from an abstraction).

    It is used when ending a borrow inside an abstraction, when the corresponding
    loan is inside the same abstraction (in which case we don't need to end the whole
    abstraction).
    
    REMARK: this function can't be used to give back the values borrowed by
    end abstraction when ending this abstraction. When doing this, we need
    to convert the [avalue] to a [value] by introducing the proper symbolic values.
 *)
let give_back_avalue (_config : C.config) (bid : V.BorrowId.id)
    (nv : V.typed_avalue) (ctx : C.eval_ctx) : C.eval_ctx =
  (* We use a reference to check that we updated exactly one loan *)
  let replaced : bool ref = ref false in
  let set_replaced () =
    assert (not !replaced);
    replaced := true
  in
  let obj =
    object (self)
      inherit [_] C.map_eval_ctx as super

      method! visit_typed_avalue opt_abs (av : V.typed_avalue) : V.typed_avalue
          =
        match av.V.value with
        | V.ALoan lc ->
            let value = self#visit_typed_ALoan opt_abs av.V.ty lc in
            ({ av with V.value } : V.typed_avalue)
        | _ -> super#visit_typed_avalue opt_abs av
      (** This is a bit annoying, but as we need the type of the avalue we
          are exploring, in order to be able to project the value we give
          back, we need to reimplement [visit_typed_avalue] instead of
          [visit_ALoan] *)

      method visit_typed_ALoan (opt_abs : V.abs option) (ty : T.rty)
          (lc : V.aloan_content) : V.avalue =
        match lc with
        | V.AMutLoan (bid', child) ->
            if bid' = bid then (
              (* This is the loan we are looking for: apply the projection to
               * the value we give back and replaced this mutable loan with
               * an ended loan *)
              (* Register the insertion *)
              set_replaced ();
              (* Sanity check *)
              assert (nv.V.ty = ty);
              (* Return the new value *)
              V.ALoan (V.AEndedMutLoan { given_back = nv; child }))
            else
              (* Continue exploring *)
              V.ALoan (super#visit_AMutLoan opt_abs bid' child)
        | V.ASharedLoan (bids, v, av) ->
            (* We are giving back a value to a *mutable* loan: nothing special to do *)
            V.ALoan (super#visit_ASharedLoan opt_abs bids v av)
        | V.AEndedMutLoan { given_back; child } ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedMutLoan opt_abs given_back child)
        | V.AEndedSharedLoan (v, av) ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedSharedLoan opt_abs v av)
        | V.AIgnoredMutLoan (bid', child) ->
            (* This loan is ignored, but we may have to project on a subvalue
             * of the value which is given back *)
            if bid' = bid then (
              (* Note that we replace the ignored mut loan by an *ended* ignored
               * mut loan. Also, this is not the loan we are looking for *per se*:
               * we don't register the fact that we inserted the value somewhere
               * (i.e., we don't call [set_replaced]) *)
              (* Sanity check *)
              assert (nv.V.ty = ty);
              V.ALoan (V.AEndedIgnoredMutLoan { given_back = nv; child }))
            else V.ALoan (super#visit_AIgnoredMutLoan opt_abs bid' child)
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedIgnoredMutLoan opt_abs given_back child)
        | V.AIgnoredSharedLoan av ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AIgnoredSharedLoan opt_abs av)
      (** We are not specializing an already existing method, but adding a
          new method (for projections, we need type information) *)
    end
  in

  (* Explore the environment *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check we gave back to exactly one loan *)
  assert !replaced;
  (* Return *)
  ctx

(** Auxiliary function to end borrows. See [give_back].
    
    When we end a shared borrow, we need to remove the borrow id from the list
    of borrows to the shared value.

    Note that this function checks that there is exactly one shared loan that
    we update.
    TODO: this was not the case before, so some sanity checks are not useful anymore.
 *)
let give_back_shared _config (bid : V.BorrowId.id) (ctx : C.eval_ctx) :
    C.eval_ctx =
  (* We use a reference to check that we updated exactly one loan *)
  let replaced : bool ref = ref false in
  let set_replaced () =
    assert (not !replaced);
    replaced := true
  in
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_Loan opt_abs lc =
        match lc with
        | V.SharedLoan (bids, shared_value) ->
            if V.BorrowId.Set.mem bid bids then (
              (* This is the loan we are looking for *)
              set_replaced ();
              (* If there remains exactly one borrow identifier, we need
               * to end the loan. Otherwise, we just remove the current
               * loan identifier *)
              if V.BorrowId.Set.cardinal bids = 1 then shared_value.V.value
              else
                V.Loan
                  (V.SharedLoan (V.BorrowId.Set.remove bid bids, shared_value)))
            else
              (* Not the loan we are looking for: continue exploring *)
              V.Loan (super#visit_SharedLoan opt_abs bids shared_value)
        | V.MutLoan bid' ->
            (* We are giving back a *shared* borrow: nothing special to do *)
            V.Loan (super#visit_MutLoan opt_abs bid')

      method! visit_ALoan opt_abs lc =
        match lc with
        | V.AMutLoan (bid, av) ->
            (* Nothing special to do (we are giving back a *shared* borrow) *)
            V.ALoan (super#visit_AMutLoan opt_abs bid av)
        | V.ASharedLoan (bids, shared_value, child) ->
            if V.BorrowId.Set.mem bid bids then (
              (* This is the loan we are looking for *)
              set_replaced ();
              (* If there remains exactly one borrow identifier, we need
               * to end the loan. Otherwise, we just remove the current
               * loan identifier *)
              if V.BorrowId.Set.cardinal bids = 1 then
                V.ALoan (V.AEndedSharedLoan (shared_value, child))
              else
                V.ALoan
                  (V.ASharedLoan
                     (V.BorrowId.Set.remove bid bids, shared_value, child)))
            else
              (* Not the loan we are looking for: continue exploring *)
              V.ALoan (super#visit_ASharedLoan opt_abs bids shared_value child)
        | V.AEndedMutLoan { given_back; child } ->
            (* Nothing special to do (the loan has ended) *)
            V.ALoan (super#visit_AEndedMutLoan opt_abs given_back child)
        | V.AEndedSharedLoan (v, av) ->
            (* Nothing special to do (the loan has ended) *)
            V.ALoan (super#visit_AEndedSharedLoan opt_abs v av)
        | V.AIgnoredMutLoan (bid, av) ->
            (* Nothing special to do (we are giving back a *shared* borrow) *)
            V.ALoan (super#visit_AIgnoredMutLoan opt_abs bid av)
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AEndedIgnoredMutLoan opt_abs given_back child)
        | V.AIgnoredSharedLoan av ->
            (* Nothing special to do *)
            V.ALoan (super#visit_AIgnoredSharedLoan opt_abs av)
    end
  in

  (* Explore the environment *)
  let ctx = obj#visit_eval_ctx None ctx in
  (* Check we gave back to exactly one loan *)
  assert !replaced;
  (* Return *)
  ctx

(** When copying values, we duplicate the shared borrows. This is tantamount
    to reborrowing the shared value. The following function applies this change
    to an environment by inserting a new borrow id in the set of borrows tracked
    by a shared value, referenced by the [original_bid] argument.
 *)
let reborrow_shared (original_bid : V.BorrowId.id) (new_bid : V.BorrowId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Keep track of changes *)
  let r = ref false in
  let set_ref () =
    assert (not !r);
    r := true
  in

  let obj =
    object
      inherit [_] C.map_env as super

      method! visit_SharedLoan env bids sv =
        (* Shared loan: check if the borrow id we are looking for is in the
           set of borrow ids. If yes, insert the new borrow id, otherwise
           explore inside the shared value *)
        if V.BorrowId.Set.mem original_bid bids then (
          set_ref ();
          let bids' = V.BorrowId.Set.add new_bid bids in
          V.SharedLoan (bids', sv))
        else super#visit_SharedLoan env bids sv

      method! visit_ASharedLoan env bids v av =
        (* This case is similar to the [SharedLoan] case *)
        if V.BorrowId.Set.mem original_bid bids then (
          set_ref ();
          let bids' = V.BorrowId.Set.add new_bid bids in
          V.ASharedLoan (bids', v, av))
        else super#visit_ASharedLoan env bids v av
    end
  in

  let env = obj#visit_env () ctx.env in
  (* Check that we reborrowed once *)
  assert !r;
  { ctx with env }

(** Auxiliary function: see [end_borrow_in_env] *)
let give_back (config : C.config) (l : V.BorrowId.id) (bc : g_borrow_content)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* This is used for sanity checks *)
  let sanity_ek =
    { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }
  in
  match bc with
  | Concrete (V.MutBorrow (l', tv)) ->
      (* Sanity check *)
      assert (l' = l);
      (* Check that the corresponding loan is somewhere - purely a sanity check *)
      assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
      (* Update the context *)
      give_back_value config l tv ctx
  | Concrete (V.SharedBorrow l' | V.InactivatedMutBorrow l') ->
      (* Sanity check *)
      assert (l' = l);
      (* Check that the borrow is somewhere - purely a sanity check *)
      assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
      (* Update the context *)
      give_back_shared config l ctx
  | Abstract (V.AMutBorrow (l', av)) ->
      (* Sanity check *)
      assert (l' = l);
      (* Check that the corresponding loan is somewhere - purely a sanity check *)
      assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
      (* Update the context *)
      give_back_avalue config l av ctx
  | Abstract (V.ASharedBorrow l') ->
      (* Sanity check *)
      assert (l' = l);
      (* Check that the borrow is somewhere - purely a sanity check *)
      assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
      (* Update the context *)
      give_back_shared config l ctx
  | Abstract (V.AProjSharedBorrow asb) ->
      (* Sanity check *)
      assert (borrow_in_asb l asb);
      (* Update the context *)
      give_back_shared config l ctx
  | Abstract (V.AIgnoredMutBorrow _) -> failwith "Unreachable"

(** Convert an [avalue] to a [value].

    This function is used when ending abstractions: whenever we end a borrow
    in an abstraction, we converted the borrowed [avalue] to a fresh symbolic
    [value], then give back this [value] to the context.
 
    Note that some regions may have ended in the symbolic value we generate.
    For instance, consider the following function signature:
    ```
    fn f<'a>(x : &'a mut &'a mut u32);
    ```
    When ending the abstraction, the value given back for the outer borrow
    should be ⊥. In practice, we will give back a symbolic value which can't
    be expanded (because expanding this symbolic value would require expanding
    a reference whose region has already ended).
 *)
let convert_avalue_to_value (av : V.typed_avalue) (ctx : C.eval_ctx) :
    C.eval_ctx * V.typed_value =
  (* Convert the type *)
  let ty = Subst.erase_regions av.V.ty in
  (* Generate the fresh a symbolic value *)
  let ctx, sv_id = C.fresh_symbolic_value_id ctx in
  let svalue : V.symbolic_value = { V.sv_id; sv_ty = av.V.ty } in
  let value : V.symbolic_proj_comp =
    (* Note that the set of ended regions is empty: we shouldn't have to take
     * into account any ended regions at this point, otherwise we would be in
     * the first case where we should return ⊥ *)
    { V.svalue; V.rset_ended = T.RegionId.Set.empty }
  in
  let value = V.Symbolic value in
  (ctx, { V.value; V.ty })

(** End a borrow identified by its borrow id in a context
    
    First lookup the borrow in the context and replace it with [Bottom].
    Then, check that there is an associated loan in the context. When moving
    values, before putting the value in its destination, we get an
    intermediate state where some values are "outside" the context and thus
    inaccessible. As [give_back_value] just performs a map for instance (TODO:
    not the case anymore), we need to check independently that there is indeed a
    loan ready to receive the value we give back (note that we also have other
    invariants like: there is exacly one mutable loan associated to a mutable
    borrow, etc. but they are more easily maintained).
    Note that in theory, we shouldn't never reach a problematic state as the
    one we describe above, because when we move a value we need to end all the
    loans inside before moving it. Still, it is a very useful sanity check.
    Finally, give the values back.

    Of course, we end outer borrows before updating the target borrow if it
    proves necessary: this is controled by the [io] parameter. If it is [Inner],
    we allow ending inner borrows (without ending the outer borrows first),
    otherwise we only allow ending outer borrows.
    If a borrow is inside an abstraction, we need to end the whole abstraction,
    at the exception of the case where the loan corresponding to the borrow is
    inside the same abstraction. We control this with the [allowed_abs] parameter:
    if it is not `None`, we allow ending a borrow if it is inside the given
    abstraction. In practice, if the value is `Some abs_id`, we should have
    checked that the corresponding loan is inside the abstraction given by
    `abs_id` before. In practice, only [end_borrow] should call itself
    with `allowed_abs = Some ...`, all the other calls should use `allowed_abs = None`:
    if you look ath the implementation details, `end_borrow` performs
    all tne necessary checks in case a borrow is inside an abstraction.
 *)
let rec end_borrow (config : C.config) (io : inner_outer)
    (allowed_abs : V.AbstractionId.id option) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  match end_borrow_get_borrow io allowed_abs l ctx with
  (* Two cases:
   * - error: we found outer borrows (end them first)
   * - success: we didn't find outer borrows when updating (but maybe we actually
       didn't find the borrow we were looking for...)
   *)
  | Error outer -> (
      (* End the outer borrows, abstraction, then try again to end the target
       * borrow (if necessary) *)
      match outer with
      | OuterBorrows (Borrows bids) ->
          (* Note that when ending outer borrows, we use io=Outer. However,
           * we shouldn't need to end outer borrows if io=Inner, so we just
           * add the following assertion *)
          assert (io = Outer);
          (* Note that we might get there with `allowed_abs <> None`: we might
           * be trying to end a borrow inside an abstraction, but which is actually
           * inside another borrow *)
          let allowed_abs' = None in
          let ctx = end_borrows config io allowed_abs' bids ctx in
          (* Retry to end the borrow *)
          end_borrow config io allowed_abs l ctx
      | OuterBorrows (Borrow bid) ->
          (* See the comments for the previous case *)
          assert (io = Outer);
          let allowed_abs' = None in
          let ctx = end_borrow config io allowed_abs' bid ctx in
          (* Retry to end the borrow *)
          end_borrow config io allowed_abs l ctx
      | OuterAbs abs_id -> (
          (* The borrow is inside an asbtraction: check if the corresponding
           * loan is inside the same abstraction. If this is the case, we end
           * the borrow without ending the abstraction. If not, we need to
           * end the whole abstraction *)
          (* Note that we can lookup the loan anywhere *)
          let ek =
            {
              enter_shared_loans = true;
              enter_mut_borrows = true;
              enter_abs = true;
            }
          in
          match lookup_loan ek l ctx with
          | AbsId loan_abs_id, _ ->
              if loan_abs_id = abs_id then (
                (* Same abstraction! We can end the borrow *)
                let ctx = end_borrow config io (Some abs_id) l ctx in
                (* Sanity check *)
                assert (Option.is_none (lookup_borrow_opt ek l ctx));
                ctx)
              else
                (* Not the same abstraction: we need to end the whole abstraction.
                 * By doing that we should have ended the target borrow (see the
                 * below sanity check) *)
                let ctx = end_abstraction config abs_id ctx in
                (* Sanity check: we ended the target borrow *)
                assert (Option.is_none (lookup_borrow_opt ek l ctx));
                ctx
          | VarId _, _ ->
              (* The loan is not inside the same abstraction (actually inside
               * a non-abstraction value): we need to end the whole abstraction *)
              let ctx = end_abstraction config abs_id ctx in
              (* Sanity check: we ended the target borrow *)
              assert (Option.is_none (lookup_borrow_opt ek l ctx));
              ctx))
  | Ok (ctx, None) ->
      (* It is possible that we can't find a borrow in symbolic mode (ending
       * an abstraction may end several borrows at once *)
      assert (config.mode = SymbolicMode);
      ctx
  (* We found a borrow: give the value back (i.e., update the corresponding loan) *)
  | Ok (ctx, Some bc) -> give_back config l bc ctx

and end_borrows (config : C.config) (io : inner_outer)
    (allowed_abs : V.AbstractionId.id option) (lset : V.BorrowId.Set.t)
    (ctx : C.eval_ctx) : C.eval_ctx =
  V.BorrowId.Set.fold
    (fun id ctx -> end_borrow config io allowed_abs id ctx)
    lset ctx

and end_abstraction (config : C.config) (abs_id : V.AbstractionId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the abstraction *)
  let abs = C.ctx_lookup_abs ctx abs_id in
  (* End the parent abstractions first *)
  let ctx = end_abstractions config abs.parents ctx in
  (* End the loans inside the abstraction *)
  let ctx = end_abstraction_loans config abs_id ctx in
  (* End the abstraction itself by redistributing the borrows it contains *)
  let ctx = end_abstraction_borrows config abs_id ctx in
  (* End the regions owned by the abstraction *)
  let ctx = end_abstraction_regions config abs_id ctx in
  (* Remove all the references to the id of the current abstraction, and remove
   * the abstraction itself *)
  end_abstraction_remove_from_context config abs_id ctx

and end_abstractions (config : C.config) (abs_ids : V.AbstractionId.set_t)
    (ctx : C.eval_ctx) : C.eval_ctx =
  V.AbstractionId.Set.fold
    (fun id ctx -> end_abstraction config id ctx)
    abs_ids ctx

and end_abstraction_loans (config : C.config) (abs_id : V.AbstractionId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the abstraction *)
  let abs = C.ctx_lookup_abs ctx abs_id in
  (* End the first loan we find *)
  let obj =
    object
      inherit [_] V.iter_abs as super

      method! visit_aloan_content env lc =
        match lc with
        | V.AMutLoan (bid, _) -> raise (FoundBorrowIds (Borrow bid))
        | V.ASharedLoan (bids, _, _) -> raise (FoundBorrowIds (Borrows bids))
        | V.AEndedMutLoan { given_back; child } ->
            super#visit_AEndedMutLoan env given_back child
        | V.AEndedSharedLoan (v, av) -> super#visit_AEndedSharedLoan env v av
        | V.AIgnoredMutLoan (bid, av) ->
            (* Note that this loan can't come from a parent abstraction, because
             * we should have ended them already) *)
            super#visit_AIgnoredMutLoan env bid av
        | V.AEndedIgnoredMutLoan { given_back; child } ->
            super#visit_AEndedIgnoredMutLoan env given_back child
        | V.AIgnoredSharedLoan av -> super#visit_AIgnoredSharedLoan env av
    end
  in
  try
    (* Check if there are loans *)
    obj#visit_abs () abs;
    (* No loans: nothing to update *)
    ctx
  with (* There are loans: end them, then recheck *)
  | FoundBorrowIds bids ->
    let ctx =
      match bids with
      | Borrow bid -> end_outer_borrow config bid ctx
      | Borrows bids -> end_outer_borrows config bids ctx
    in
    (* Recheck *)
    end_abstraction_loans config abs_id ctx

and end_abstraction_borrows (config : C.config) (abs_id : V.AbstractionId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Note that the abstraction mustn't contain any loans *)
  (* We end the borrows, starting with the *inner* ones. This is important
     when considering nested borrows which have the same lifetime.

     For instance:
     ```
     x -> mut_loan l1
     px -> mut_loan l0
     abs0 { a_mut_borrow l0 (a_mut_borrow l1 (U32 3)) }
     ```

     becomes (`U32 3` doesn't contain ⊥, so we give back a symbolic value):
     ```
     x -> @s0
     px -> mut_loan l0
     abs0 { a_mut_borrow l0 ⊥ }
     ```

     then (the borrowed value contains ⊥, we give back ⊥):
     ```
     x -> @s0
     px -> ⊥
     abs0 { ⊥ }
     ```
  *)
  (* We explore in-depth and use exceptions. When exploring a borrow, if
   * the exploration didn't trigger an exception, it means there are no
   * inner borrows to end: we can thus trigger an exception for the current
   * borrow. *)
  let obj =
    object
      inherit [_] V.iter_abs as super

      method! visit_aborrow_content env bc =
        (* In-depth exploration *)
        super#visit_aborrow_content env bc;
        (* No exception was raise: we can raise an exception for the
         * current borrow *)
        match bc with
        | V.AMutBorrow (_, _) | V.ASharedBorrow _ ->
            (* Raise an exception *)
            raise (FoundABorrowContent bc)
        | V.AProjSharedBorrow asb ->
            (* Raise an exception only if the asb contains borrows *)
            if
              List.exists
                (fun x -> match x with V.AsbBorrow _ -> true | _ -> false)
                asb
            then raise (FoundABorrowContent bc)
            else ()
        | V.AIgnoredMutBorrow _ ->
            (* Nothing to do for ignored borrows *)
            ()
    end
  in
  (* Lookup the abstraction *)
  let abs = C.ctx_lookup_abs ctx abs_id in
  try
    (* Explore the abstraction, looking for borrows *)
    obj#visit_abs () abs;
    (* No borrows: nothing to update *)
    ctx
  with
  (* There are borrows: end them, then reexplore *)
  | FoundABorrowContent bc ->
    (* First, replace the borrow by ⊥ *)
    let bid =
      match bc with
      | V.AMutBorrow (bid, _) | V.ASharedBorrow bid -> bid
      | V.AProjSharedBorrow asb -> (
          (* There should be at least one borrow identifier in the set, which we
           * can use to identify the whole set *)
          match
            List.find
              (fun x -> match x with V.AsbBorrow _ -> true | _ -> false)
              asb
          with
          | V.AsbBorrow bid -> bid
          | _ -> failwith "Unexpected")
      | V.AIgnoredMutBorrow _ -> failwith "Unexpected"
    in
    let ctx = update_aborrow ek_all bid V.ABottom ctx in
    (* Then give back the value *)
    let ctx =
      match bc with
      | V.AMutBorrow (bid, av) ->
          (* First, convert the avalue to a (fresh symbolic) value *)
          let ctx, v = convert_avalue_to_value av ctx in
          give_back_value config bid v ctx
      | V.ASharedBorrow bid -> give_back_shared config bid ctx
      | V.AProjSharedBorrow _ ->
          (* Nothing to do *)
          ctx
      | V.AIgnoredMutBorrow _ -> failwith "Unexpected"
    in
    (* Reexplore *)
    end_abstraction_borrows config abs_id ctx

(** Update the symbolic values in a context to register the regions in the
    abstraction we are ending as already ended.
    Note that this function also checks that no symbolic value in an abstraction
    contains regions which we are ending.
    Of course, we ignore the abstraction we are currently ending...
 *)
and end_abstraction_regions (_config : C.config) (abs_id : V.AbstractionId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the abstraction to retrieve the set of owned regions *)
  let abs = C.ctx_lookup_abs ctx abs_id in
  let ended_regions = abs.V.regions in
  (* Update all the symbolic values in the context *)
  let obj =
    object
      inherit [_] C.map_eval_ctx as super

      method! visit_Symbolic _ sproj =
        let sproj =
          {
            sproj with
            V.rset_ended = T.RegionId.Set.union sproj.V.rset_ended ended_regions;
          }
        in
        V.Symbolic sproj

      method! visit_aproj (abs_regions : T.RegionId.set_t option) aproj =
        (* Sanity check *)
        (match aproj with
        | V.AProjLoans _ -> ()
        | V.AProjBorrows (sv, ty) -> (
            match abs_regions with
            | None -> failwith "Unexpected"
            | Some abs_regions ->
                assert (
                  not
                    (projections_intersect sv.V.sv_ty ended_regions ty
                       abs_regions))));
        (* Return - nothing to update *)
        aproj

      method! visit_abs (regions : T.RegionId.set_t option) abs =
        if abs.V.abs_id = abs_id then abs
        else (
          assert (Option.is_none regions);
          (* Check that we don't project over already ended regions *)
          assert (T.RegionId.Set.disjoint ended_regions abs.V.regions);
          (* Remember the set of regions owned by the abstraction *)
          let regions = Some abs.V.regions in
          super#visit_abs regions abs)
      (** Whenever we dive in an abstraction, we need to keep track of the
          set of regions owned by the abstraction.
          Also: we don't dive in the abstraction we are currently ending... *)
    end
  in
  (* Update the context *)
  obj#visit_eval_ctx None ctx

(** Remove an abstraction from the context, as well as all its references *)
and end_abstraction_remove_from_context (_config : C.config)
    (abs_id : V.AbstractionId.id) (ctx : C.eval_ctx) : C.eval_ctx =
  let map_env_elem (ev : C.env_elem) : C.env_elem option =
    match ev with
    | C.Var (_, _) | C.Frame -> Some ev
    | C.Abs abs ->
        if abs.abs_id = abs_id then None
        else
          let parents = V.AbstractionId.Set.remove abs_id abs.parents in
          Some (C.Abs { abs with V.parents })
  in
  let env = List.filter_map map_env_elem ctx.C.env in
  { ctx with C.env }

and end_outer_borrow config = end_borrow config Outer None

and end_outer_borrows config = end_borrows config Outer None

and end_inner_borrow config = end_borrow config Inner None

and end_inner_borrows config = end_borrows config Inner None

(** Helper function: see [activate_inactivated_mut_borrow].

    This function updates the shared loan to a mutable loan (we then update
    the borrow with another helper). Of course, the shared loan must contain
    exactly one borrow id (the one we give as parameter), otherwise we can't
    promote it. Also, the shared value mustn't contain any loan.

    The returned value (previously shared) is checked:
    - it mustn't contain loans
    - it mustn't contain [Bottom]
    - it mustn't contain inactivated borrows
    TODO: this kind of checks should be put in an auxiliary helper, because
    they are redundant
 *)
let promote_shared_loan_to_mut_loan (l : V.BorrowId.id) (ctx : C.eval_ctx) :
    C.eval_ctx * V.typed_value =
  (* Lookup the shared loan *)
  let ek =
    { enter_shared_loans = false; enter_mut_borrows = true; enter_abs = false }
  in
  match lookup_loan ek l ctx with
  | _, Concrete (V.MutLoan _) ->
      failwith "Expected a shared loan, found a mut loan"
  | _, Concrete (V.SharedLoan (bids, sv)) ->
      (* Check that there is only one borrow id (l) and update the loan *)
      assert (V.BorrowId.Set.mem l bids && V.BorrowId.Set.cardinal bids = 1);
      (* We need to check that there aren't any loans in the value:
         we should have gotten rid of those already, but it is better
         to do a sanity check. *)
      assert (not (loans_in_value sv));
      (* Check there isn't [Bottom] (this is actually an invariant *)
      assert (not (bottom_in_value sv));
      (* Check there aren't inactivated borrows *)
      assert (not (inactivated_in_value sv));
      (* Update the loan content *)
      let ctx = update_loan ek l (V.MutLoan l) ctx in
      (* Return *)
      (ctx, sv)
  | _, Abstract _ ->
      (* I don't think it is possible to have two-phase borrows involving borrows
       * returned by abstractions. I'm not sure how we could handle that anyway. *)
      failwith
        "Can't promote a shared loan to a mutable loan if the loan is inside \
         an abstraction"

(** Helper function: see [activate_inactivated_mut_borrow].

    This function updates a shared borrow to a mutable borrow.
 *)
let promote_inactivated_borrow_to_mut_borrow (l : V.BorrowId.id)
    (borrowed_value : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the inactivated borrow - note that we don't go inside borrows/loans:
     there can't be inactivated borrows inside other borrows/loans
  *)
  let ek =
    { enter_shared_loans = false; enter_mut_borrows = false; enter_abs = false }
  in
  match lookup_borrow ek l ctx with
  | Concrete (V.SharedBorrow _ | V.MutBorrow (_, _)) ->
      failwith "Expected an inactivated mutable borrow"
  | Concrete (V.InactivatedMutBorrow _) ->
      (* Update it *)
      update_borrow ek l (V.MutBorrow (l, borrowed_value)) ctx
  | Abstract _ ->
      (* This can't happen for sure *)
      failwith
        "Can't promote a shared borrow to a mutable borrow if the borrow is \
         inside an abstraction"

(** Promote an inactivated mut borrow to a mut borrow.

    The borrow must point to a shared value which is borrowed exactly once.
 *)
let rec activate_inactivated_mut_borrow (config : C.config) (io : inner_outer)
    (l : V.BorrowId.id) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the value *)
  let ek =
    { enter_shared_loans = false; enter_mut_borrows = true; enter_abs = false }
  in
  match lookup_loan ek l ctx with
  | _, Concrete (V.MutLoan _) -> failwith "Unreachable"
  | _, Concrete (V.SharedLoan (bids, sv)) -> (
      (* If there are loans inside the value, end them. Note that there can't be
         inactivated borrows inside the value.
         If we perform an update, do a recursive call to lookup the updated value *)
      match get_first_loan_in_value sv with
      | Some lc ->
          (* End the loans *)
          let ctx =
            match lc with
            | V.SharedLoan (bids, _) -> end_outer_borrows config bids ctx
            | V.MutLoan bid -> end_outer_borrow config bid ctx
          in
          (* Recursive call *)
          activate_inactivated_mut_borrow config io l ctx
      | None ->
          (* No loan to end inside the value *)
          (* Some sanity checks *)
          L.log#ldebug
            (lazy
              ("activate_inactivated_mut_borrow: resulting value:\n"
             ^ V.show_typed_value sv));
          assert (not (loans_in_value sv));
          assert (not (bottom_in_value sv));
          assert (not (inactivated_in_value sv));
          (* End the borrows which borrow from the value, at the exception of
             the borrow we want to promote *)
          let bids = V.BorrowId.Set.remove l bids in
          let allowed_abs = None in
          let ctx = end_borrows config io allowed_abs bids ctx in
          (* Promote the loan *)
          let ctx, borrowed_value = promote_shared_loan_to_mut_loan l ctx in
          (* Promote the borrow - the value should have been checked by
             [promote_shared_loan_to_mut_loan]
          *)
          promote_inactivated_borrow_to_mut_borrow l borrowed_value ctx)
  | _, Abstract _ ->
      (* I don't think it is possible to have two-phase borrows involving borrows
       * returned by abstractions. I'm not sure how we could handle that anyway. *)
      failwith
        "Can't activate an inactivated mutable borrow referencing a loan inside\n\
        \         an abstraction"