1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
|
module T = Types
module V = Values
module C = Contexts
module Subst = Substitute
module L = Logging
module S = SynthesizeSymbolic
open Cps
open ValuesUtils
open TypesUtils
open InterpreterUtils
open InterpreterBorrowsCore
open InterpreterProjectors
(** The local logger *)
let log = InterpreterBorrowsCore.log
(** Auxiliary function to end borrows: lookup a borrow in the environment,
update it (by returning an updated environment where the borrow has been
replaced by [Bottom])) if we can end the borrow (for instance, it is not
an outer borrow...) or return the reason why we couldn't update the borrow.
[end_borrow] then simply performs a loop: as long as we need to end (outer)
borrows, we end them, before finally ending the borrow we wanted to end in the
first place.
Note that it is possible to end a borrow in an abstraction, without ending
the whole abstraction, if the corresponding loan is inside the abstraction
as well. The [allowed_abs] parameter controls whether we allow to end borrows
in an abstraction or not, and in which abstraction.
*)
let end_borrow_get_borrow (allowed_abs : V.AbstractionId.id option)
(l : V.BorrowId.id) (ctx : C.eval_ctx) :
(C.eval_ctx * g_borrow_content option, priority_borrows_or_abs) result =
(* We use a reference to communicate the kind of borrow we found, if we
* find one *)
let replaced_bc : g_borrow_content option ref = ref None in
let set_replaced_bc (bc : g_borrow_content) =
assert (Option.is_none !replaced_bc);
replaced_bc := Some bc
in
(* Raise an exception if:
* - there are outer borrows
* - if we are inside an abstraction
* - there are inner loans
* this exception is caught in a wrapper function *)
let raise_if_priority (outer : V.AbstractionId.id option * borrow_ids option)
(borrowed_value : V.typed_value option) =
(* First, look for outer borrows or abstraction *)
let outer_abs, outer_borrows = outer in
(match outer_abs with
| Some abs -> (
if
(* Check if we can end borrows inside this abstraction *)
Some abs <> allowed_abs
then raise (FoundPriority (OuterAbs abs))
else
match outer_borrows with
| Some borrows -> raise (FoundPriority (OuterBorrows borrows))
| None -> ())
| None -> (
match outer_borrows with
| Some borrows -> raise (FoundPriority (OuterBorrows borrows))
| None -> ()));
(* Then check if there are inner loans *)
match borrowed_value with
| None -> ()
| Some v -> (
match get_first_loan_in_value v with
| None -> ()
| Some c -> (
match c with
| V.SharedLoan (bids, _) ->
raise (FoundPriority (InnerLoans (Borrows bids)))
| V.MutLoan bid -> raise (FoundPriority (InnerLoans (Borrow bid)))))
in
(* The environment is used to keep track of the outer loans *)
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_Loan (outer : V.AbstractionId.id option * borrow_ids option)
lc =
match lc with
| V.MutLoan bid -> V.Loan (super#visit_MutLoan outer bid)
| V.SharedLoan (bids, v) ->
(* Update the outer borrows before diving into the shared value *)
let outer = update_outer_borrows outer (Borrows bids) in
V.Loan (super#visit_SharedLoan outer bids v)
(** We reimplement [visit_Loan] because we may have to update the
outer borrows *)
method! visit_Borrow outer bc =
match bc with
| SharedBorrow (_, l') | InactivatedMutBorrow (_, l') ->
(* Check if this is the borrow we are looking for *)
if l = l' then (
(* Check if there are outer borrows or if we are inside an abstraction *)
raise_if_priority outer None;
(* Register the update *)
set_replaced_bc (Concrete bc);
(* Update the value *)
V.Bottom)
else super#visit_Borrow outer bc
| V.MutBorrow (l', bv) ->
(* Check if this is the borrow we are looking for *)
if l = l' then (
(* Check if there are outer borrows or if we are inside an abstraction *)
raise_if_priority outer (Some bv);
(* Register the update *)
set_replaced_bc (Concrete bc);
(* Update the value *)
V.Bottom)
else
(* Update the outer borrows before diving into the borrowed value *)
let outer = update_outer_borrows outer (Borrow l') in
V.Borrow (super#visit_MutBorrow outer l' bv)
method! visit_ALoan outer lc =
(* Note that the children avalues are just other, independent loans,
* so we don't need to update the outer borrows when diving in.
* We keep track of the parents/children relationship only because we
* need it to properly instantiate the backward functions when generating
* the pure translation. *)
match lc with
| V.AMutLoan (_, _) ->
(* Nothing special to do *)
super#visit_ALoan outer lc
| V.ASharedLoan (bids, v, av) ->
(* Explore the shared value - we need to update the outer borrows *)
let souter = update_outer_borrows outer (Borrows bids) in
let v = super#visit_typed_value souter v in
(* Explore the child avalue - we keep the same outer borrows *)
let av = super#visit_typed_avalue outer av in
(* Reconstruct *)
V.ALoan (V.ASharedLoan (bids, v, av))
| V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
| V.AEndedSharedLoan _
(* The loan has ended, so no need to update the outer borrows *)
| V.AIgnoredMutLoan _ (* Nothing special to do *)
| V.AEndedIgnoredMutLoan
{ given_back = _; child = _; given_back_meta = _ }
(* Nothing special to do *)
| V.AIgnoredSharedLoan _ ->
(* Nothing special to do *)
super#visit_ALoan outer lc
(** We reimplement [visit_ALoan] because we may have to update the
outer borrows *)
method! visit_ABorrow outer bc =
match bc with
| V.AMutBorrow (_, bid, _) ->
(* Check if this is the borrow we are looking for *)
if bid = l then (
(* When ending a mut borrow, there are two cases:
* - in the general case, we have to end the whole abstraction
* (and thus raise an exception to signal that to the caller)
* - in some situations, the associated loan is inside the same
* abstraction as the borrow. In this situation, we can end
* the borrow without ending the whole abstraction, and we
* simply move the child avalue around.
*)
(* Check there are outer borrows, or if we need to end the whole
* abstraction *)
raise_if_priority outer None;
(* Register the update *)
set_replaced_bc (Abstract bc);
(* Update the value - note that we are necessarily in the second
* of the two cases described above.
* Also note that, as we are moving the borrowed value inside the
* abstraction (and not really giving the value back to the context)
* we do not insert [AEndedMutBorrow] but rather [ABottom] *)
V.ABottom)
else
(* Update the outer borrows before diving into the child avalue *)
let outer = update_outer_borrows outer (Borrow bid) in
super#visit_ABorrow outer bc
| V.ASharedBorrow bid ->
(* Check if this is the borrow we are looking for *)
if bid = l then (
(* Check there are outer borrows, or if we need to end the whole
* abstraction *)
raise_if_priority outer None;
(* Register the update *)
set_replaced_bc (Abstract bc);
(* Update the value - note that we are necessarily in the second
* of the two cases described above *)
V.ABottom)
else super#visit_ABorrow outer bc
| V.AIgnoredMutBorrow (_, _)
| V.AEndedMutBorrow _
| V.AEndedIgnoredMutBorrow
{ given_back_loans_proj = _; child = _; given_back_meta = _ }
| V.AEndedSharedBorrow ->
(* Nothing special to do *)
super#visit_ABorrow outer bc
| V.AProjSharedBorrow asb ->
(* Check if the borrow we are looking for is in the asb *)
if borrow_in_asb l asb then (
(* Check there are outer borrows, or if we need to end the whole
* abstraction *)
raise_if_priority outer None;
(* Register the update *)
set_replaced_bc (Abstract bc);
(* Update the value - note that we are necessarily in the second
* of the two cases described above *)
let asb = remove_borrow_from_asb l asb in
V.ABorrow (V.AProjSharedBorrow asb))
else (* Nothing special to do *)
super#visit_ABorrow outer bc
method! visit_abs outer abs =
(* Update the outer abs *)
let outer_abs, outer_borrows = outer in
assert (Option.is_none outer_abs);
assert (Option.is_none outer_borrows);
let outer = (Some abs.V.abs_id, None) in
super#visit_abs outer abs
end
in
(* Catch the exceptions - raised if there are outer borrows *)
try
let ctx = obj#visit_eval_ctx (None, None) ctx in
Ok (ctx, !replaced_bc)
with FoundPriority outers -> Error outers
(** Auxiliary function to end borrows. See [give_back].
When we end a mutable borrow, we need to "give back" the value it contained
to its original owner by reinserting it at the proper position.
Note that this function checks that there is exactly one loan to which we
give the value back.
TODO: this was not the case before, so some sanity checks are not useful anymore.
*)
let give_back_value (config : C.config) (bid : V.BorrowId.id)
(nv : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx =
(* Sanity check *)
assert (not (loans_in_value nv));
assert (not (bottom_in_value ctx.ended_regions nv));
(* Debug *)
log#ldebug
(lazy
("give_back_value:\n- bid: " ^ V.BorrowId.to_string bid ^ "\n- value: "
^ typed_value_to_string ctx nv
^ "\n- context:\n" ^ eval_ctx_to_string ctx ^ "\n"));
(* We use a reference to check that we updated exactly one loan *)
let replaced : bool ref = ref false in
let set_replaced () =
assert (not !replaced);
replaced := true
in
(* Whenever giving back symbolic values, they shouldn't contain already ended regions *)
let check_symbolic_no_ended = true in
(* We sometimes need to reborrow values while giving a value back due: prepare that *)
let allow_reborrows = true in
let fresh_reborrow, apply_registered_reborrows =
prepare_reborrows config allow_reborrows
in
(* The visitor to give back the values *)
let obj =
object (self)
inherit [_] C.map_eval_ctx as super
method! visit_typed_value opt_abs (v : V.typed_value) : V.typed_value =
match v.V.value with
| V.Loan lc ->
let value = self#visit_typed_Loan opt_abs v.V.ty lc in
({ v with V.value } : V.typed_value)
| _ -> super#visit_typed_value opt_abs v
(** This is a bit annoying, but as we need the type of the value we
are exploring, for sanity checks, we need to implement
[visit_typed_avalue] instead of
overriding [visit_ALoan] *)
method visit_typed_Loan opt_abs ty lc =
match lc with
| V.SharedLoan (bids, v) ->
(* We are giving back a value (i.e., the content of a *mutable*
* borrow): nothing special to do *)
V.Loan (super#visit_SharedLoan opt_abs bids v)
| V.MutLoan bid' ->
(* Check if this is the loan we are looking for *)
if bid' = bid then (
(* Sanity check *)
let expected_ty = ty in
if nv.V.ty <> expected_ty then (
log#serror
("give_back_value: improper type:\n- expected: "
^ ety_to_string ctx ty ^ "\n- received: "
^ ety_to_string ctx nv.V.ty);
failwith "Value given back doesn't have the proper type");
(* Replace *)
set_replaced ();
nv.V.value)
else V.Loan (super#visit_MutLoan opt_abs bid')
method! visit_typed_avalue opt_abs (av : V.typed_avalue) : V.typed_avalue
=
match av.V.value with
| V.ALoan lc ->
let value = self#visit_typed_ALoan opt_abs av.V.ty lc in
({ av with V.value } : V.typed_avalue)
| _ -> super#visit_typed_avalue opt_abs av
(** This is a bit annoying, but as we need the type of the avalue we
are exploring, in order to be able to project the value we give
back, we need to reimplement [visit_typed_avalue] instead of
[visit_ALoan] *)
method! visit_ABorrow (opt_abs : V.abs option) (bc : V.aborrow_content)
: V.avalue =
match bc with
| V.AIgnoredMutBorrow (bid', child) ->
if bid' = Some bid then
(* Insert a loans projector - note that if this case happens,
* it is necessarily because we ended a parent abstraction,
* and the given back value is thus a symbolic value *)
match nv.V.value with
| V.Symbolic sv ->
let abs = Option.get opt_abs in
(* Remember the given back value as a meta-value
* TODO: it is a bit annoying to have to deconstruct
* the value... Think about a more elegant way. *)
let given_back_meta = as_symbolic nv.value in
(* The loan projector *)
let given_back_loans_proj =
mk_aproj_loans_value_from_symbolic_value abs.regions sv
in
(* Continue giving back in the child value *)
let child = super#visit_typed_avalue opt_abs child in
(* Return *)
V.ABorrow
(V.AEndedIgnoredMutBorrow
{ given_back_loans_proj; child; given_back_meta })
| _ -> failwith "Unreachable"
else
(* Continue exploring *)
V.ABorrow (super#visit_AIgnoredMutBorrow opt_abs bid' child)
| _ ->
(* Continue exploring *)
super#visit_ABorrow opt_abs bc
(** We need to inspect ignored mutable borrows, to insert loan projectors
if necessary.
*)
method visit_typed_ALoan (opt_abs : V.abs option) (ty : T.rty)
(lc : V.aloan_content) : V.avalue =
(* Preparing a bit *)
let regions, ancestors_regions =
match opt_abs with
| None -> failwith "Unreachable"
| Some abs -> (abs.V.regions, abs.V.ancestors_regions)
in
(* Rk.: there is a small issue with the types of the aloan values.
* See the comment at the level of definition of [typed_avalue] *)
let borrowed_value_aty =
let _, ty, _ = ty_get_ref ty in
ty
in
match lc with
| V.AMutLoan (bid', child) ->
if bid' = bid then (
(* This is the loan we are looking for: apply the projection to
* the value we give back and replaced this mutable loan with
* an ended loan *)
(* Register the insertion *)
set_replaced ();
(* Remember the given back value as a meta-value *)
let given_back_meta = nv in
(* Apply the projection *)
let given_back =
apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
regions ancestors_regions nv borrowed_value_aty
in
(* Continue giving back in the child value *)
let child = super#visit_typed_avalue opt_abs child in
(* Return the new value *)
V.ALoan (V.AEndedMutLoan { child; given_back; given_back_meta }))
else (* Continue exploring *)
super#visit_ALoan opt_abs lc
| V.ASharedLoan (_, _, _) ->
(* We are giving back a value to a *mutable* loan: nothing special to do *)
super#visit_ALoan opt_abs lc
| V.AEndedMutLoan { child = _; given_back = _; given_back_meta = _ }
| V.AEndedSharedLoan (_, _) ->
(* Nothing special to do *)
super#visit_ALoan opt_abs lc
| V.AIgnoredMutLoan (bid', child) ->
(* This loan is ignored, but we may have to project on a subvalue
* of the value which is given back *)
if bid' = bid then
(* Remember the given back value as a meta-value *)
let given_back_meta = nv in
(* Note that we replace the ignored mut loan by an *ended* ignored
* mut loan. Also, this is not the loan we are looking for *per se*:
* we don't register the fact that we inserted the value somewhere
* (i.e., we don't call [set_replaced]) *)
let given_back =
apply_proj_borrows check_symbolic_no_ended ctx fresh_reborrow
regions ancestors_regions nv borrowed_value_aty
in
(* Continue giving back in the child value *)
let child = super#visit_typed_avalue opt_abs child in
V.ALoan
(V.AEndedIgnoredMutLoan { given_back; child; given_back_meta })
else super#visit_ALoan opt_abs lc
| V.AEndedIgnoredMutLoan
{ given_back = _; child = _; given_back_meta = _ }
| V.AIgnoredSharedLoan _ ->
(* Nothing special to do *)
super#visit_ALoan opt_abs lc
(** We are not specializing an already existing method, but adding a
new method (for projections, we need type information) *)
method! visit_Abs opt_abs abs =
(* We remember in which abstraction we are before diving -
* this is necessary for projecting values: we need to know
* over which regions to project *)
assert (Option.is_none opt_abs);
super#visit_Abs (Some abs) abs
end
in
(* Explore the environment *)
let ctx = obj#visit_eval_ctx None ctx in
(* Check we gave back to exactly one loan *)
assert !replaced;
(* Apply the reborrows *)
apply_registered_reborrows ctx
(** Give back a *modified* symbolic value. *)
let give_back_symbolic_value (_config : C.config)
(proj_regions : T.RegionId.Set.t) (proj_ty : T.rty) (sv : V.symbolic_value)
(nsv : V.symbolic_value) (ctx : C.eval_ctx) : C.eval_ctx =
(* Sanity checks *)
assert (sv.sv_id <> nsv.sv_id);
(match nsv.sv_kind with
| V.SynthInputGivenBack | V.SynthRetGivenBack | V.FunCallGivenBack -> ()
| V.FunCallRet | V.SynthInput -> failwith "Unrechable");
(* Store the given-back value as a meta-value for synthesis purposes *)
let mv = nsv in
(* Substitution function, to replace the borrow projectors over symbolic values *)
let subst (_abs : V.abs) local_given_back =
(* See the below comments: there is something wrong here *)
let _ = raise Errors.Unimplemented in
(* Compute the projection over the given back value *)
let child_proj =
match nsv.sv_kind with
| V.SynthRetGivenBack ->
(* The given back value comes from the return value of the function
* we are currently synthesizing (as it is given back, it means
* we ended one of the regions appearing in the signature: we are
* currently synthesizing one of the backward functions).
*
* As we don't allow borrow overwrites on returned value, we can
* (and MUST) forget the borrows *)
V.AIgnoredProjBorrows
| V.FunCallGivenBack ->
(* TODO: there is something wrong here.
* Consider this:
* ```
* abs0 {'a} { AProjLoans (s0 : &'a mut T) [] }
* abs1 {'b} { AProjBorrows (s0 : &'a mut T <: &'b mut T) }
* ```
*
* Upon ending abs1, we give back some fresh symbolic value `s1`,
* that we reinsert where the loan for `s0` is. However, the mutable
* borrow in the type `&'a mut T` was ended: we give back a value of
* type `T`! We thus *mustn't* introduce a projector here.
*)
V.AProjBorrows (nsv, sv.V.sv_ty)
| _ -> failwith "Unreachable"
in
V.AProjLoans (sv, (mv, child_proj) :: local_given_back)
in
update_intersecting_aproj_loans proj_regions proj_ty sv subst ctx
(** Auxiliary function to end borrows. See [give_back].
This function is similar to [give_back_value] but gives back an [avalue]
(coming from an abstraction).
It is used when ending a borrow inside an abstraction, when the corresponding
loan is inside the same abstraction (in which case we don't need to end the whole
abstraction).
REMARK: this function can't be used to give back the values borrowed by
end abstraction when ending this abstraction. When doing this, we need
to convert the [avalue] to a [value] by introducing the proper symbolic values.
*)
let give_back_avalue_to_same_abstraction (_config : C.config)
(bid : V.BorrowId.id) (mv : V.mvalue) (nv : V.typed_avalue)
(ctx : C.eval_ctx) : C.eval_ctx =
(* We use a reference to check that we updated exactly one loan *)
let replaced : bool ref = ref false in
let set_replaced () =
assert (not !replaced);
replaced := true
in
let obj =
object (self)
inherit [_] C.map_eval_ctx as super
method! visit_typed_avalue opt_abs (av : V.typed_avalue) : V.typed_avalue
=
match av.V.value with
| V.ALoan lc ->
let value = self#visit_typed_ALoan opt_abs av.V.ty lc in
({ av with V.value } : V.typed_avalue)
| _ -> super#visit_typed_avalue opt_abs av
(** This is a bit annoying, but as we need the type of the avalue we
are exploring, in order to be able to project the value we give
back, we need to reimplement [visit_typed_avalue] instead of
[visit_ALoan] *)
method visit_typed_ALoan (opt_abs : V.abs option) (ty : T.rty)
(lc : V.aloan_content) : V.avalue =
match lc with
| V.AMutLoan (bid', child) ->
if bid' = bid then (
(* Sanity check - about why we need to call [ty_get_ref]
* (and don't do the same thing as in [give_back_value])
* see the comment at the level of the definition of
* [typed_avalue] *)
let _, expected_ty, _ = ty_get_ref ty in
if nv.V.ty <> expected_ty then (
log#serror
("give_back_avalue_to_same_abstraction: improper type:\n\
- expected: " ^ rty_to_string ctx ty ^ "\n- received: "
^ rty_to_string ctx nv.V.ty);
failwith "Value given back doesn't have the proper type");
(* This is the loan we are looking for: apply the projection to
* the value we give back and replaced this mutable loan with
* an ended loan *)
(* Register the insertion *)
set_replaced ();
(* Return the new value *)
V.ALoan
(V.AEndedMutLoan
{ given_back = nv; child; given_back_meta = mv }))
else (* Continue exploring *)
super#visit_ALoan opt_abs lc
| V.ASharedLoan (_, _, _)
(* We are giving back a value to a *mutable* loan: nothing special to do *)
| V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
| V.AEndedSharedLoan (_, _) ->
(* Nothing special to do *)
super#visit_ALoan opt_abs lc
| V.AIgnoredMutLoan (bid', child) ->
(* This loan is ignored, but we may have to project on a subvalue
* of the value which is given back *)
if bid' = bid then (
(* Note that we replace the ignored mut loan by an *ended* ignored
* mut loan. Also, this is not the loan we are looking for *per se*:
* we don't register the fact that we inserted the value somewhere
* (i.e., we don't call [set_replaced]) *)
(* Sanity check *)
assert (nv.V.ty = ty);
V.ALoan
(V.AEndedIgnoredMutLoan
{ given_back = nv; child; given_back_meta = mv }))
else super#visit_ALoan opt_abs lc
| V.AEndedIgnoredMutLoan
{ given_back = _; child = _; given_back_meta = _ }
| V.AIgnoredSharedLoan _ ->
(* Nothing special to do *)
super#visit_ALoan opt_abs lc
(** We are not specializing an already existing method, but adding a
new method (for projections, we need type information) *)
end
in
(* Explore the environment *)
let ctx = obj#visit_eval_ctx None ctx in
(* Check we gave back to exactly one loan *)
assert !replaced;
(* Return *)
ctx
(** Auxiliary function to end borrows. See [give_back].
When we end a shared borrow, we need to remove the borrow id from the list
of borrows to the shared value.
Note that this function checks that there is exactly one shared loan that
we update.
TODO: this was not the case before, so some sanity checks are not useful anymore.
*)
let give_back_shared _config (bid : V.BorrowId.id) (ctx : C.eval_ctx) :
C.eval_ctx =
(* We use a reference to check that we updated exactly one loan *)
let replaced : bool ref = ref false in
let set_replaced () =
assert (not !replaced);
replaced := true
in
let obj =
object
inherit [_] C.map_eval_ctx as super
method! visit_Loan opt_abs lc =
match lc with
| V.SharedLoan (bids, shared_value) ->
if V.BorrowId.Set.mem bid bids then (
(* This is the loan we are looking for *)
set_replaced ();
(* If there remains exactly one borrow identifier, we need
* to end the loan. Otherwise, we just remove the current
* loan identifier *)
if V.BorrowId.Set.cardinal bids = 1 then shared_value.V.value
else
V.Loan
(V.SharedLoan (V.BorrowId.Set.remove bid bids, shared_value)))
else
(* Not the loan we are looking for: continue exploring *)
V.Loan (super#visit_SharedLoan opt_abs bids shared_value)
| V.MutLoan bid' ->
(* We are giving back a *shared* borrow: nothing special to do *)
V.Loan (super#visit_MutLoan opt_abs bid')
method! visit_ALoan opt_abs lc =
match lc with
| V.AMutLoan (bid, av) ->
(* Nothing special to do (we are giving back a *shared* borrow) *)
V.ALoan (super#visit_AMutLoan opt_abs bid av)
| V.ASharedLoan (bids, shared_value, child) ->
if V.BorrowId.Set.mem bid bids then (
(* This is the loan we are looking for *)
set_replaced ();
(* If there remains exactly one borrow identifier, we need
* to end the loan. Otherwise, we just remove the current
* loan identifier *)
if V.BorrowId.Set.cardinal bids = 1 then
V.ALoan (V.AEndedSharedLoan (shared_value, child))
else
V.ALoan
(V.ASharedLoan
(V.BorrowId.Set.remove bid bids, shared_value, child)))
else
(* Not the loan we are looking for: continue exploring *)
super#visit_ALoan opt_abs lc
| V.AEndedMutLoan { given_back = _; child = _; given_back_meta = _ }
(* Nothing special to do (the loan has ended) *)
| V.AEndedSharedLoan (_, _)
(* Nothing special to do (the loan has ended) *)
| V.AIgnoredMutLoan (_, _)
(* Nothing special to do (we are giving back a *shared* borrow) *)
| V.AEndedIgnoredMutLoan
{ given_back = _; child = _; given_back_meta = _ }
(* Nothing special to do *)
| V.AIgnoredSharedLoan _ ->
(* Nothing special to do *)
super#visit_ALoan opt_abs lc
end
in
(* Explore the environment *)
let ctx = obj#visit_eval_ctx None ctx in
(* Check we gave back to exactly one loan *)
assert !replaced;
(* Return *)
ctx
(** When copying values, we duplicate the shared borrows. This is tantamount
to reborrowing the shared value. The following function applies this change
to an environment by inserting a new borrow id in the set of borrows tracked
by a shared value, referenced by the [original_bid] argument.
*)
let reborrow_shared (original_bid : V.BorrowId.id) (new_bid : V.BorrowId.id)
(ctx : C.eval_ctx) : C.eval_ctx =
(* Keep track of changes *)
let r = ref false in
let set_ref () =
assert (not !r);
r := true
in
let obj =
object
inherit [_] C.map_env as super
method! visit_SharedLoan env bids sv =
(* Shared loan: check if the borrow id we are looking for is in the
set of borrow ids. If yes, insert the new borrow id, otherwise
explore inside the shared value *)
if V.BorrowId.Set.mem original_bid bids then (
set_ref ();
let bids' = V.BorrowId.Set.add new_bid bids in
V.SharedLoan (bids', sv))
else super#visit_SharedLoan env bids sv
method! visit_ASharedLoan env bids v av =
(* This case is similar to the [SharedLoan] case *)
if V.BorrowId.Set.mem original_bid bids then (
set_ref ();
let bids' = V.BorrowId.Set.add new_bid bids in
V.ASharedLoan (bids', v, av))
else super#visit_ASharedLoan env bids v av
end
in
let env = obj#visit_env () ctx.env in
(* Check that we reborrowed once *)
assert !r;
{ ctx with env }
(** Auxiliary function: see [end_borrow_in_env] *)
let give_back (config : C.config) (l : V.BorrowId.id) (bc : g_borrow_content)
(ctx : C.eval_ctx) : C.eval_ctx =
(* Debug *)
log#ldebug
(lazy
(let bc =
match bc with
| Concrete bc -> borrow_content_to_string ctx bc
| Abstract bc -> aborrow_content_to_string ctx bc
in
"give_back:\n- bid: " ^ V.BorrowId.to_string l ^ "\n- content: " ^ bc
^ "\n- context:\n" ^ eval_ctx_to_string ctx ^ "\n"));
(* This is used for sanity checks *)
let sanity_ek =
{ enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }
in
match bc with
| Concrete (V.MutBorrow (l', tv)) ->
(* Sanity check *)
assert (l' = l);
assert (not (loans_in_value tv));
(* Check that the corresponding loan is somewhere - purely a sanity check *)
assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
(* Update the context *)
give_back_value config l tv ctx
| Concrete (V.SharedBorrow (_, l') | V.InactivatedMutBorrow (_, l')) ->
(* Sanity check *)
assert (l' = l);
(* Check that the borrow is somewhere - purely a sanity check *)
assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
(* Update the context *)
give_back_shared config l ctx
| Abstract (V.AMutBorrow (mv, l', av)) ->
(* Sanity check *)
assert (l' = l);
(* Check that the corresponding loan is somewhere - purely a sanity check *)
assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
(* Update the context *)
give_back_avalue_to_same_abstraction config l mv av ctx
| Abstract (V.ASharedBorrow l') ->
(* Sanity check *)
assert (l' = l);
(* Check that the borrow is somewhere - purely a sanity check *)
assert (Option.is_some (lookup_loan_opt sanity_ek l ctx));
(* Update the context *)
give_back_shared config l ctx
| Abstract (V.AProjSharedBorrow asb) ->
(* Sanity check *)
assert (borrow_in_asb l asb);
(* Update the context *)
give_back_shared config l ctx
| Abstract
( V.AEndedMutBorrow _ | V.AIgnoredMutBorrow _ | V.AEndedIgnoredMutBorrow _
| V.AEndedSharedBorrow ) ->
failwith "Unreachable"
(** Convert an [avalue] to a [value].
This function is used when ending abstractions: whenever we end a borrow
in an abstraction, we converted the borrowed [avalue] to a fresh symbolic
[value], then give back this [value] to the context.
Note that some regions may have ended in the symbolic value we generate.
For instance, consider the following function signature:
```
fn f<'a>(x : &'a mut &'a mut u32);
```
When ending the abstraction, the value given back for the outer borrow
should be ⊥. In practice, we will give back a symbolic value which can't
be expanded (because expanding this symbolic value would require expanding
a reference whose region has already ended).
*)
let convert_avalue_to_given_back_value (abs_kind : V.abs_kind)
(av : V.typed_avalue) : V.symbolic_value =
let sv_kind =
match abs_kind with
| V.FunCall -> V.FunCallGivenBack
| V.SynthRet -> V.SynthRetGivenBack
| V.SynthInput -> V.SynthInputGivenBack
in
mk_fresh_symbolic_value sv_kind av.V.ty
(** End a borrow identified by its borrow id in a context.
Rk.: from now onwards, the functions are written in continuation passing style.
The reason is that when ending borrows we may end abstractions, which results
in synthesized code.
First lookup the borrow in the context and replace it with [Bottom].
Then, check that there is an associated loan in the context. When moving
values, before putting the value in its destination, we get an
intermediate state where some values are "outside" the context and thus
inaccessible. As [give_back_value] just performs a map for instance (TODO:
not the case anymore), we need to check independently that there is indeed a
loan ready to receive the value we give back (note that we also have other
invariants like: there is exacly one mutable loan associated to a mutable
borrow, etc. but they are more easily maintained).
Note that in theory, we shouldn't never reach a problematic state as the
one we describe above, because when we move a value we need to end all the
loans inside before moving it. Still, it is a very useful sanity check.
Finally, give the values back.
Of course, we end outer borrows before updating the target borrow if it
proves necessary: this is controled by the [io] parameter. If it is [Inner],
we allow ending inner borrows (without ending the outer borrows first),
otherwise we only allow ending outer borrows.
If a borrow is inside an abstraction, we need to end the whole abstraction,
at the exception of the case where the loan corresponding to the borrow is
inside the same abstraction. We control this with the [allowed_abs] parameter:
if it is not `None`, we allow ending a borrow if it is inside the given
abstraction. In practice, if the value is `Some abs_id`, we should have
checked that the corresponding loan is inside the abstraction given by
`abs_id` before. In practice, only [end_borrow] should call itself
with `allowed_abs = Some ...`, all the other calls should use `allowed_abs = None`:
if you look ath the implementation details, `end_borrow` performs
all tne necessary checks in case a borrow is inside an abstraction.
TODO: we should split this function in two: one function which doesn't
perform anything smart and is trusted, and another function for the
book-keeping.
*)
let rec end_borrow (config : C.config) (chain : borrow_or_abs_ids)
(allowed_abs : V.AbstractionId.id option) (l : V.BorrowId.id) : cm_fun =
fun cf ctx ->
(* Check that we don't loop *)
let chain0 = chain in
let chain = add_borrow_or_abs_id_to_chain "end_borrow: " (BorrowId l) chain in
log#ldebug
(lazy
("end borrow: " ^ V.BorrowId.to_string l ^ ":\n- original context:\n"
^ eval_ctx_to_string ctx));
(* Utility function for the sanity checks: check that the borrow disappeared
* from the context *)
let ctx0 = ctx in
let check_disappeared (ctx : C.eval_ctx) : unit =
let _ =
match lookup_borrow_opt ek_all l ctx with
| None -> () (* Ok *)
| Some _ ->
log#lerror
(lazy
("end borrow: " ^ V.BorrowId.to_string l
^ ": borrow didn't disappear:\n- original context:\n"
^ eval_ctx_to_string ctx0 ^ "\n\n- new context:\n"
^ eval_ctx_to_string ctx));
failwith "Borrow not eliminated"
in
match lookup_loan_opt ek_all l ctx with
| None -> () (* Ok *)
| Some _ ->
log#lerror
(lazy
("end borrow: " ^ V.BorrowId.to_string l
^ ": loan didn't disappear:\n- original context:\n"
^ eval_ctx_to_string ctx0 ^ "\n\n- new context:\n"
^ eval_ctx_to_string ctx));
failwith "Loan not eliminated"
in
let cf_check_disappeared : cm_fun = unit_to_cm_fun check_disappeared in
(* The complete sanity check: also check that after we ended a borrow,
* the invariant is preserved *)
let cf_check : cm_fun =
comp cf_check_disappeared (Invariants.cf_check_invariants config)
in
(* Start by getting the borrow *)
match end_borrow_get_borrow allowed_abs l ctx with
(* Two cases:
* - error: we found outer borrows or inner loans (end them first)
* - success: we didn't find outer borrows when updating (but maybe we actually
didn't find the borrow we were looking for...)
*)
| Error priority -> (
(* Debug *)
log#ldebug
(lazy
("end borrow: " ^ V.BorrowId.to_string l
^ ": found outer borrows/abs or inner loans:"
^ show_priority_borrows_or_abs priority));
(* End the priority borrows, abstraction, then try again to end the target
* borrow (if necessary) *)
match priority with
| OuterBorrows (Borrows bids) | InnerLoans (Borrows bids) ->
(* Note that we might get there with `allowed_abs <> None`: we might
* be trying to end a borrow inside an abstraction, but which is actually
* inside another borrow *)
let allowed_abs' = None in
(* End the outer borrows *)
let cc = end_borrows config chain allowed_abs' bids in
(* Retry to end the borrow *)
let cc = comp cc (end_borrow config chain0 allowed_abs l) in
(* Check and apply *)
comp cc cf_check cf ctx
| OuterBorrows (Borrow bid) | InnerLoans (Borrow bid) ->
let allowed_abs' = None in
(* End the outer borrow *)
let cc = end_borrow config chain allowed_abs' bid in
(* Retry to end the borrow *)
let cc = comp cc (end_borrow config chain0 allowed_abs l) in
(* Check and apply *)
comp cc cf_check cf ctx
| OuterAbs abs_id ->
(* The borrow is inside an asbtraction: check if the corresponding
* loan is inside the same abstraction. If this is the case, we end
* the borrow without ending the abstraction. If not, we need to
* end the whole abstraction *)
(* Note that we can lookup the loan anywhere *)
let ek =
{
enter_shared_loans = true;
enter_mut_borrows = true;
enter_abs = true;
}
in
let cf_end_abs : cm_fun =
match lookup_loan ek l ctx with
| AbsId loan_abs_id, _ ->
if loan_abs_id = abs_id then
(* Same abstraction! We can end the borrow *)
end_borrow config chain0 (Some abs_id) l
else
(* Not the same abstraction: we need to end the whole abstraction.
* By doing that we should have ended the target borrow (see the
* below sanity check) *)
end_abstraction config chain abs_id
| VarId _, _ ->
(* The loan is not inside the same abstraction (actually inside
* a non-abstraction value): we need to end the whole abstraction *)
end_abstraction config chain abs_id
in
(* Compose with a sanity check *)
comp cf_end_abs cf_check cf ctx)
| Ok (ctx, None) ->
log#ldebug (lazy "End borrow: borrow not found");
(* It is possible that we can't find a borrow in symbolic mode (ending
* an abstraction may end several borrows at once *)
assert (config.mode = SymbolicMode);
(* Do a sanity check and continue *)
cf_check cf ctx
(* We found a borrow: give it back (i.e., update the corresponding loan) *)
| Ok (ctx, Some bc) ->
(* Sanity check: the borrowed value shouldn't contain loans *)
(match bc with
| Concrete (V.MutBorrow (_, bv)) ->
assert (Option.is_none (get_first_loan_in_value bv))
| _ -> ());
(* Give back the value *)
let ctx = give_back config l bc ctx in
(* Do a sanity check and continue *)
cf_check cf ctx
and end_borrows (config : C.config) (chain : borrow_or_abs_ids)
(allowed_abs : V.AbstractionId.id option) (lset : V.BorrowId.Set.t) : cm_fun
=
fun cf ->
(* This is not necessary, but we prefer to reorder the borrow ids,
* so that we actually end from the smallest id to the highest id - just
* a matter of taste, and may make debugging easier *)
let ids = V.BorrowId.Set.fold (fun id ids -> id :: ids) lset [] in
List.fold_left (fun cf id -> end_borrow config chain allowed_abs id cf) cf ids
and end_abstraction (config : C.config) (chain : borrow_or_abs_ids)
(abs_id : V.AbstractionId.id) : cm_fun =
fun cf ctx ->
(* Check that we don't loop *)
let chain =
add_borrow_or_abs_id_to_chain "end_abstraction: " (AbsId abs_id) chain
in
(* Remember the original context for printing purposes *)
let ctx0 = ctx in
log#ldebug
(lazy
("end_abstraction: "
^ V.AbstractionId.to_string abs_id
^ "\n- original context:\n" ^ eval_ctx_to_string ctx0));
(* Lookup the abstraction *)
let abs = C.ctx_lookup_abs ctx abs_id in
(* End the parent abstractions first *)
let cc = end_abstractions config chain abs.parents in
let cc =
comp_unit cc (fun ctx ->
log#ldebug
(lazy
("end_abstraction: "
^ V.AbstractionId.to_string abs_id
^ "\n- context after parent abstractions ended:\n"
^ eval_ctx_to_string ctx)))
in
(* End the loans inside the abstraction *)
let cc = comp cc (end_abstraction_loans config chain abs_id) in
let cc =
comp_unit cc (fun ctx ->
log#ldebug
(lazy
("end_abstraction: "
^ V.AbstractionId.to_string abs_id
^ "\n- context after loans ended:\n" ^ eval_ctx_to_string ctx)))
in
(* End the abstraction itself by redistributing the borrows it contains *)
let cc = comp cc (end_abstraction_borrows config chain abs_id) in
(* End the regions owned by the abstraction - note that we don't need to
* relookup the abstraction: the set of regions in an abstraction never
* changes... *)
let cc =
comp_update cc (fun ctx ->
let ended_regions =
T.RegionId.Set.union ctx.ended_regions abs.V.regions
in
{ ctx with ended_regions })
in
(* Remove all the references to the id of the current abstraction, and remove
* the abstraction itself.
* **Rk.**: this is where we synthesize the updated symbolic AST *)
let cc = comp cc (end_abstraction_remove_from_context config abs_id) in
(* Debugging *)
let cc =
comp_unit cc (fun ctx ->
log#ldebug
(lazy
("end_abstraction: "
^ V.AbstractionId.to_string abs_id
^ "\n- original context:\n" ^ eval_ctx_to_string ctx0
^ "\n\n- new context:\n" ^ eval_ctx_to_string ctx)))
in
(* Sanity check: ending an abstraction must preserve the invariants *)
let cc = comp cc (Invariants.cf_check_invariants config) in
(* Apply the continuation *)
cc cf ctx
and end_abstractions (config : C.config) (chain : borrow_or_abs_ids)
(abs_ids : V.AbstractionId.Set.t) : cm_fun =
fun cf ->
(* This is not necessary, but we prefer to reorder the abstraction ids,
* so that we actually end from the smallest id to the highest id - just
* a matter of taste, and may make debugging easier *)
let abs_ids = V.AbstractionId.Set.fold (fun id ids -> id :: ids) abs_ids [] in
List.fold_left (fun cf id -> end_abstraction config chain id cf) cf abs_ids
and end_abstraction_loans (config : C.config) (chain : borrow_or_abs_ids)
(abs_id : V.AbstractionId.id) : cm_fun =
fun cf ctx ->
(* Lookup the abstraction *)
let abs = C.ctx_lookup_abs ctx abs_id in
(* End the first loan we find.
*
* We ignore the "ignored mut/shared loans": as we should have already ended
* the parent abstractions, they necessarily come from children. *)
let opt_loan = get_first_non_ignored_aloan_in_abstraction abs in
match opt_loan with
| None ->
(* No loans: nothing to update *)
cf ctx
| Some (BorrowIds bids) ->
(* There are loans: end the corresponding borrows, then recheck *)
let cc : cm_fun =
match bids with
| Borrow bid -> end_borrow config chain None bid
| Borrows bids -> end_borrows config chain None bids
in
(* Reexplore, looking for loans *)
let cc = comp cc (end_abstraction_loans config chain abs_id) in
(* Continue *)
cc cf ctx
| Some (SymbolicValue sv) ->
(* There is a proj_loans over a symbolic value: end the proj_borrows
* which intersect this proj_loans, then end the proj_loans itself *)
let cc = end_proj_loans_symbolic config chain abs_id abs.regions sv in
(* Reexplore, looking for loans *)
let cc = comp cc (end_abstraction_loans config chain abs_id) in
(* Continue *)
cc cf ctx
and end_abstraction_borrows (config : C.config) (chain : borrow_or_abs_ids)
(abs_id : V.AbstractionId.id) : cm_fun =
fun cf ctx ->
log#ldebug
(lazy
("end_abstraction_borrows: abs_id: " ^ V.AbstractionId.to_string abs_id));
(* Note that the abstraction mustn't contain any loans *)
(* We end the borrows, starting with the *inner* ones. This is important
when considering nested borrows which have the same lifetime.
TODO: is that really important? Initially, there was a concern about
whether we should give back ⊥ or not, but everything is handled by
the symbolic value expansion... Also, now we use the AEndedMutBorrow
values to store the children avalues (which was not the case before - we
initially replaced the ended mut borrows with ⊥).
*)
(* We explore in-depth and use exceptions. When exploring a borrow, if
* the exploration didn't trigger an exception, it means there are no
* inner borrows to end: we can thus trigger an exception for the current
* borrow. *)
let obj =
object
inherit [_] V.iter_abs as super
method! visit_aborrow_content env bc =
(* In-depth exploration *)
super#visit_aborrow_content env bc;
(* No exception was raise: we can raise an exception for the
* current borrow *)
match bc with
| V.AMutBorrow (_, _, _) | V.ASharedBorrow _ ->
(* Raise an exception *)
raise (FoundABorrowContent bc)
| V.AProjSharedBorrow asb ->
(* Raise an exception only if the asb contains borrows *)
if
List.exists
(fun x -> match x with V.AsbBorrow _ -> true | _ -> false)
asb
then raise (FoundABorrowContent bc)
else ()
| V.AEndedMutBorrow _ | V.AIgnoredMutBorrow _
| V.AEndedIgnoredMutBorrow _ | V.AEndedSharedBorrow ->
(* Nothing to do for ignored borrows *)
()
method! visit_aproj env sproj =
(match sproj with
| V.AProjLoans _ -> failwith "Unexpected"
| V.AProjBorrows (sv, proj_ty) ->
raise (FoundAProjBorrows (sv, proj_ty))
| V.AEndedProjLoans _ | V.AEndedProjBorrows _ | V.AIgnoredProjBorrows ->
());
super#visit_aproj env sproj
method! visit_borrow_content _ bc =
match bc with
| V.SharedBorrow (_, _) | V.MutBorrow (_, _) ->
raise (FoundBorrowContent bc)
| V.InactivatedMutBorrow _ -> failwith "Unreachable"
(** We may need to end borrows in "regular" values, because of shared values *)
end
in
(* Lookup the abstraction *)
let abs = C.ctx_lookup_abs ctx abs_id in
try
(* Explore the abstraction, looking for borrows *)
obj#visit_abs () abs;
(* No borrows: nothing to update *)
cf ctx
with
(* There are concrete (i.e., not symbolic) borrows: end them, then reexplore *)
| FoundABorrowContent bc ->
log#ldebug
(lazy
("end_abstraction_borrows: found aborrow content: "
^ aborrow_content_to_string ctx bc));
let ctx =
match bc with
| V.AMutBorrow (_mv, bid, av) ->
(* First, convert the avalue to a (fresh symbolic) value *)
let sv = convert_avalue_to_given_back_value abs.kind av in
(* Replace the mut borrow to register the fact that we ended
* it and store with it the freshly generated given back value *)
let ended_borrow = V.ABorrow (V.AEndedMutBorrow (sv, av)) in
let ctx = update_aborrow ek_all bid ended_borrow ctx in
(* Give the value back *)
let sv = mk_typed_value_from_symbolic_value sv in
give_back_value config bid sv ctx
| V.ASharedBorrow bid ->
(* Replace the shared borrow to account for the fact it ended *)
let ended_borrow = V.ABorrow V.AEndedSharedBorrow in
let ctx = update_aborrow ek_all bid ended_borrow ctx in
(* Give back *)
give_back_shared config bid ctx
| V.AProjSharedBorrow asb ->
(* Retrieve the borrow ids *)
let bids =
List.filter_map
(fun asb ->
match asb with
| V.AsbBorrow bid -> Some bid
| V.AsbProjReborrows (_, _) -> None)
asb
in
(* There should be at least one borrow identifier in the set, which we
* can use to identify the whole set *)
let repr_bid = List.hd bids in
(* Replace the shared borrow with Bottom *)
let ctx = update_aborrow ek_all repr_bid V.ABottom ctx in
(* Give back the shared borrows *)
let ctx =
List.fold_left
(fun ctx bid -> give_back_shared config bid ctx)
ctx bids
in
(* Continue *)
ctx
| V.AEndedMutBorrow _ | V.AIgnoredMutBorrow _
| V.AEndedIgnoredMutBorrow _ | V.AEndedSharedBorrow ->
failwith "Unexpected"
in
(* Reexplore *)
end_abstraction_borrows config chain abs_id cf ctx
(* There are symbolic borrows: end them, then reexplore *)
| FoundAProjBorrows (sv, proj_ty) ->
log#ldebug
(lazy
("end_abstraction_borrows: found aproj borrows: "
^ aproj_to_string ctx (V.AProjBorrows (sv, proj_ty))));
(* Generate a fresh symbolic value *)
let nsv = mk_fresh_symbolic_value V.FunCallGivenBack proj_ty in
(* Replace the proj_borrows - there should be exactly one *)
let ended_borrow = V.AEndedProjBorrows nsv in
let ctx = update_aproj_borrows abs.abs_id sv ended_borrow ctx in
(* Give back the symbolic value *)
let ctx =
give_back_symbolic_value config abs.regions proj_ty sv nsv ctx
in
(* Reexplore *)
end_abstraction_borrows config chain abs_id cf ctx
(* There are concrete (i.e., not symbolic) borrows in shared values: end them, then reexplore *)
| FoundBorrowContent bc ->
log#ldebug
(lazy
("end_abstraction_borrows: found borrow content: "
^ borrow_content_to_string ctx bc));
let ctx =
match bc with
| V.SharedBorrow (_, bid) -> (
(* Replace the shared borrow with bottom *)
match end_borrow_get_borrow (Some abs_id) bid ctx with
| Error _ -> failwith "Unreachable"
| Ok (ctx, _) ->
(* Give back *)
give_back_shared config bid ctx)
| V.MutBorrow (bid, v) -> (
(* Replace the mut borrow with bottom *)
match end_borrow_get_borrow (Some abs_id) bid ctx with
| Error _ -> failwith "Unreachable"
| Ok (ctx, _) ->
(* Give the value back - note that the mut borrow was below a
* shared borrow: the value is thus unchanged *)
give_back_value config bid v ctx)
| V.InactivatedMutBorrow _ -> failwith "Unreachable"
in
(* Reexplore *)
end_abstraction_borrows config chain abs_id cf ctx
(** Remove an abstraction from the context, as well as all its references *)
and end_abstraction_remove_from_context (_config : C.config)
(abs_id : V.AbstractionId.id) : cm_fun =
fun cf ctx ->
let rec remove_from_env (env : C.env) : C.env * V.abs option =
match env with
| [] -> failwith "Unreachable"
| C.Frame :: _ -> (env, None)
| Var (bv, v) :: env ->
let env, abs_opt = remove_from_env env in
(Var (bv, v) :: env, abs_opt)
| C.Abs abs :: env ->
if abs.abs_id = abs_id then (env, Some abs)
else
let env, abs_opt = remove_from_env env in
let parents = V.AbstractionId.Set.remove abs_id abs.parents in
(C.Abs { abs with V.parents } :: env, abs_opt)
in
let env, abs = remove_from_env ctx.C.env in
let ctx = { ctx with C.env } in
let abs = Option.get abs in
(* Apply the continuation *)
let expr = cf ctx in
(* Synthesize the symbolic AST *)
S.synthesize_end_abstraction abs expr
(** End a proj_loan over a symbolic value by ending the proj_borrows which
intersect this proj_loans.
Rk.:
- if this symbolic value is primitively copiable, then:
- either proj_borrows are only present in the concrete context
- or there is only one intersecting proj_borrow present in an
abstraction
- otherwise, this symbolic value is not primitively copiable:
- there may be proj_borrows_shared over this value
- if we put aside the proj_borrows_shared, there should be exactly one
intersecting proj_borrows, either in the concrete context or in an
abstraction
*)
and end_proj_loans_symbolic (config : C.config) (chain : borrow_or_abs_ids)
(abs_id : V.AbstractionId.id) (regions : T.RegionId.Set.t)
(sv : V.symbolic_value) : cm_fun =
fun cf ctx ->
(* Small helpers for sanity checks *)
let check ctx = no_aproj_over_symbolic_in_context sv ctx in
let cf_check (cf : m_fun) : m_fun =
fun ctx ->
check ctx;
cf ctx
in
(* Find the first proj_borrows which intersects the proj_loans *)
let explore_shared = true in
match lookup_intersecting_aproj_borrows_opt explore_shared regions sv ctx with
| None ->
(* We couldn't find any in the context: it means that the symbolic value
* is in the concrete environment (or that we dropped it, in which case
* it is completely absent). We thus simply need to replace the loans
* projector with an ended projector. *)
let ctx = update_aproj_loans_to_ended abs_id sv ctx in
(* Sanity check *)
check ctx;
(* Continue *)
cf ctx
| Some (SharedProjs projs) ->
(* We found projectors over shared values - split between the projectors
* which belong to the current abstraction and the others.
* The context looks like this:
* ```
* abs'0 {
* // The loan was initially like this:
* // `shared_loan lids (s <: ...) [s]`
* // but if we get there it means it was already ended:
* ended_shared_loan (s <: ...) [s]
* proj_shared_borrows [...; (s <: ...); ...]
* proj_shared_borrows [...; (s <: ...); ...]
* ...
* }
*
* abs'1 [
* proj_shared_borrows [...; (s <: ...); ...]
* ...
* }
*
* ...
*
* // No `s` outside of abstractions
*
* ```
*)
let _owned_projs, external_projs =
List.partition (fun (abs_id', _) -> abs_id' = abs_id) projs
in
(* End the external borrow projectors (end their abstractions) *)
let cf_end_external : cm_fun =
fun cf ctx ->
let abs_ids = List.map fst external_projs in
let abs_ids =
List.fold_left
(fun s id -> V.AbstractionId.Set.add id s)
V.AbstractionId.Set.empty abs_ids
in
(* End the abstractions and continue *)
end_abstractions config chain abs_ids cf ctx
in
(* End the internal borrows projectors and the loans projector *)
let cf_end_internal : cm_fun =
fun cf ctx ->
(* All the proj_borrows are owned: simply erase them *)
let ctx = remove_intersecting_aproj_borrows_shared regions sv ctx in
(* End the loan itself *)
let ctx = update_aproj_loans_to_ended abs_id sv ctx in
(* Sanity check *)
check ctx;
(* Continue *)
cf ctx
in
(* Compose and apply *)
let cc = comp cf_end_external cf_end_internal in
cc cf ctx
| Some (NonSharedProj (abs_id', _proj_ty)) ->
(* We found one projector of borrows in an abstraction: if it comes
* from this abstraction, we can end it directly, otherwise we need
* to end the abstraction where it came from first *)
if abs_id' = abs_id then (
(* Note that it happens when a function returns a `&mut ...` which gets
* expanded to `mut_borrow l s`, and we end the borrow `l` (so `s` gets
* reinjected in the parent abstraction without having been modified).
*
* The context looks like this:
* ```
* abs'0 {
* [s <: ...]
* (s <: ...)
* }
*
* // Note that `s` can't appear in other abstractions or in the
* // regular environment (because we forbid the duplication of
* // symbolic values which contain borrows).
* ```
*)
(* End the projector of borrows - TODO: not completely sure what to
* replace it with... Maybe we should introduce an ABottomProj? *)
let ctx = update_aproj_borrows abs_id sv V.AIgnoredProjBorrows ctx in
(* Sanity check: no other occurrence of an intersecting projector of borrows *)
assert (
Option.is_none
(lookup_intersecting_aproj_borrows_opt explore_shared regions sv ctx));
(* End the projector of loans *)
let ctx = update_aproj_loans_to_ended abs_id sv ctx in
(* Sanity check *)
check ctx;
(* Continue *)
cf ctx)
else
(* The borrows proj comes from a different abstraction: end it. *)
let cc = end_abstraction config chain abs_id' in
(* Retry ending the projector of loans *)
let cc =
comp cc (end_proj_loans_symbolic config chain abs_id regions sv)
in
(* Sanity check *)
let cc = comp cc cf_check in
(* Continue *)
cc cf ctx
let end_outer_borrow config : V.BorrowId.id -> cm_fun =
end_borrow config [] None
let end_outer_borrows config : V.BorrowId.Set.t -> cm_fun =
end_borrows config [] None
(** Helper function: see [activate_inactivated_mut_borrow].
This function updates the shared loan to a mutable loan (we then update
the borrow with another helper). Of course, the shared loan must contain
exactly one borrow id (the one we give as parameter), otherwise we can't
promote it. Also, the shared value mustn't contain any loan.
The returned value (previously shared) is checked:
- it mustn't contain loans
- it mustn't contain [Bottom]
- it mustn't contain inactivated borrows
TODO: this kind of checks should be put in an auxiliary helper, because
they are redundant
*)
let promote_shared_loan_to_mut_loan (l : V.BorrowId.id)
(cf : V.typed_value -> m_fun) : m_fun =
fun ctx ->
(* Lookup the shared loan *)
let ek =
{ enter_shared_loans = false; enter_mut_borrows = true; enter_abs = false }
in
match lookup_loan ek l ctx with
| _, Concrete (V.MutLoan _) ->
failwith "Expected a shared loan, found a mut loan"
| _, Concrete (V.SharedLoan (bids, sv)) ->
(* Check that there is only one borrow id (l) and update the loan *)
assert (V.BorrowId.Set.mem l bids && V.BorrowId.Set.cardinal bids = 1);
(* We need to check that there aren't any loans in the value:
we should have gotten rid of those already, but it is better
to do a sanity check. *)
assert (not (loans_in_value sv));
(* Check there isn't [Bottom] (this is actually an invariant *)
assert (not (bottom_in_value ctx.ended_regions sv));
(* Check there aren't inactivated borrows *)
assert (not (inactivated_in_value sv));
(* Update the loan content *)
let ctx = update_loan ek l (V.MutLoan l) ctx in
(* Continue *)
cf sv ctx
| _, Abstract _ ->
(* I don't think it is possible to have two-phase borrows involving borrows
* returned by abstractions. I'm not sure how we could handle that anyway. *)
failwith
"Can't promote a shared loan to a mutable loan if the loan is inside \
an abstraction"
(** Helper function: see [activate_inactivated_mut_borrow].
This function updates a shared borrow to a mutable borrow.
*)
let promote_inactivated_borrow_to_mut_borrow (l : V.BorrowId.id) (cf : m_fun)
(borrowed_value : V.typed_value) : m_fun =
fun ctx ->
(* Lookup the inactivated borrow - note that we don't go inside borrows/loans:
there can't be inactivated borrows inside other borrows/loans
*)
let ek =
{ enter_shared_loans = false; enter_mut_borrows = false; enter_abs = false }
in
let ctx =
match lookup_borrow ek l ctx with
| Concrete (V.SharedBorrow _ | V.MutBorrow (_, _)) ->
failwith "Expected an inactivated mutable borrow"
| Concrete (V.InactivatedMutBorrow _) ->
(* Update it *)
update_borrow ek l (V.MutBorrow (l, borrowed_value)) ctx
| Abstract _ ->
(* This can't happen for sure *)
failwith
"Can't promote a shared borrow to a mutable borrow if the borrow is \
inside an abstraction"
in
(* Continue *)
cf ctx
(** Promote an inactivated mut borrow to a mut borrow.
The borrow must point to a shared value which is borrowed exactly once.
*)
let rec activate_inactivated_mut_borrow (config : C.config) (l : V.BorrowId.id)
: cm_fun =
fun cf ctx ->
(* Lookup the value *)
let ek =
{ enter_shared_loans = false; enter_mut_borrows = true; enter_abs = false }
in
match lookup_loan ek l ctx with
| _, Concrete (V.MutLoan _) -> failwith "Unreachable"
| _, Concrete (V.SharedLoan (bids, sv)) -> (
(* If there are loans inside the value, end them. Note that there can't be
inactivated borrows inside the value.
If we perform an update, do a recursive call to lookup the updated value *)
match get_first_loan_in_value sv with
| Some lc ->
(* End the loans *)
let cc =
match lc with
| V.SharedLoan (bids, _) -> end_outer_borrows config bids
| V.MutLoan bid -> end_outer_borrow config bid
in
(* Recursive call *)
let cc = comp cc (activate_inactivated_mut_borrow config l) in
(* Continue *)
cc cf ctx
| None ->
(* No loan to end inside the value *)
(* Some sanity checks *)
log#ldebug
(lazy
("activate_inactivated_mut_borrow: resulting value:\n"
^ typed_value_to_string ctx sv));
assert (not (loans_in_value sv));
assert (not (bottom_in_value ctx.ended_regions sv));
assert (not (inactivated_in_value sv));
(* End the borrows which borrow from the value, at the exception of
the borrow we want to promote *)
let bids = V.BorrowId.Set.remove l bids in
let cc = end_outer_borrows config bids in
(* Promote the loan *)
let cc = comp cc (promote_shared_loan_to_mut_loan l) in
(* Promote the borrow - the value should have been checked by
[promote_shared_loan_to_mut_loan]
*)
let cc =
comp cc (fun cf borrowed_value ->
promote_inactivated_borrow_to_mut_borrow l cf borrowed_value)
in
(* Continue *)
cc cf ctx)
| _, Abstract _ ->
(* I don't think it is possible to have two-phase borrows involving borrows
* returned by abstractions. I'm not sure how we could handle that anyway. *)
failwith
"Can't activate an inactivated mutable borrow referencing a loan inside\n\
\ an abstraction"
|