summaryrefslogtreecommitdiff
path: root/src/Interpreter.ml
blob: 560cf58b4f7ea64c200efea1cc66a2569a5c04e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
module T = Types
module V = Values
open Scalars
module E = Expressions
open Errors
module C = Contexts
module Subst = Substitute
module A = CfimAst
module L = Logging
open TypesUtils
open ValuesUtils

(* TODO: check that the value types are correct when evaluating *)
(* TODO: for debugging purposes, we might want to put use eval_ctx everywhere
   (rather than only env) *)

(* TODO: it would be good to find a "core", which implements the rules (like
   "end_borrow") and on top of which we build more complex functions which
   chose in which order to apply the rules, etc. This way we would make very
   explicit where we need to insert sanity checks, what the preconditions are,
   where invariants might be broken, etc.
*)

(* TODO: intensively test with PLT-redex *)

(** Some utilities *)

let eval_ctx_to_string = Print.Contexts.eval_ctx_to_string

let ety_to_string = Print.EvalCtxCfimAst.ety_to_string

let typed_value_to_string = Print.EvalCtxCfimAst.typed_value_to_string

let place_to_string = Print.EvalCtxCfimAst.place_to_string

let operand_to_string = Print.EvalCtxCfimAst.operand_to_string

let statement_to_string ctx =
  Print.EvalCtxCfimAst.statement_to_string ctx "" "  "

(* TODO: move *)
let mk_var (index : V.VarId.id) (name : string option) (var_ty : T.ety) : A.var
    =
  { A.index; name; var_ty }

(** Small helper *)
let mk_place_from_var_id (var_id : V.VarId.id) : E.place =
  { var_id; projection = [] }

(** TODO: change the name *)
type eval_error = Panic

type 'a eval_result = ('a, eval_error) result

type exploration_kind = {
  enter_shared_loans : bool;
  enter_mut_borrows : bool;
  enter_abs : bool;
}
(** This record controls how some generic helper lookup/update
    functions behave, by restraining the kind of therms they can enter.
*)

exception Found
(** Utility exception

    When looking for something while exploring a term, it can be easier to
    just throw an exception to signal we found what we were looking for.
 *)

exception FoundBorrowContent of V.borrow_content
(** Utility exception *)

exception FoundLoanContent of V.loan_content
(** Utility exception *)

(** Check if a value contains a borrow *)
let borrows_in_value (v : V.typed_value) : bool =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_borrow_content _env _ = raise Found
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    false
  with Found -> true

(** Check if a value contains inactivated mutable borrows *)
let inactivated_in_value (v : V.typed_value) : bool =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_InactivatedMutBorrow _env _ = raise Found
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    false
  with Found -> true

(** Check if a value contains a loan *)
let loans_in_value (v : V.typed_value) : bool =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_loan_content _env _ = raise Found
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    false
  with Found -> true

(** Lookup a loan content.

    The loan is referred to by a borrow id.
 *)
let lookup_loan_opt (ek : exploration_kind) (l : V.BorrowId.id) (env : C.env) :
    V.loan_content option =
  let obj =
    object
      inherit [_] C.iter_env_concrete as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow bid ->
            (* Nothing specific to do *)
            super#visit_SharedBorrow env bid
        | V.InactivatedMutBorrow bid ->
            (* Nothing specific to do *)
            super#visit_InactivatedMutBorrow env bid
        | V.MutBorrow (bid, mv) ->
            (* Control the dive *)
            if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else ()

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Check if this is the loan we are looking for, and control the dive *)
            if V.BorrowId.Set.mem l bids then
              raise (FoundLoanContent (V.SharedLoan (bids, sv)))
            else if ek.enter_shared_loans then
              super#visit_SharedLoan env bids sv
            else ()
        | V.MutLoan bid ->
            (* Check if this is the loan we are looking for *)
            if bid = l then raise (FoundLoanContent (V.MutLoan bid))
            else super#visit_MutLoan env bid
      (** We reimplement [visit_Loan] (rather than the more precise functions
          [visit_SharedLoan], etc.) on purpose: as we have an exhaustive match
          below, we are more resilient to definition updates (the compiler
          is our friend).
       *)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_env () env;
    None
  with FoundLoanContent lc -> Some lc

(** Lookup a loan content.

    The loan is referred to by a borrow id.
    Raises an exception if no loan was found.
 *)
let lookup_loan (ek : exploration_kind) (l : V.BorrowId.id) (env : C.env) :
    V.loan_content =
  match lookup_loan_opt ek l env with
  | None -> failwith "Unreachable"
  | Some lc -> lc

(** Update a loan content.

    The loan is referred to by a borrow id.

    This is a helper function: it might break invariants.
 *)
let update_loan (ek : exploration_kind) (l : V.BorrowId.id)
    (nlc : V.loan_content) (env : C.env) : C.env =
  (* We use a reference to check that we update exactly one loan: when updating
   * inside values, we check we don't update more than one loan. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let set_ref r =
    assert (not !r);
    r := true
  in

  let obj =
    object
      inherit [_] C.map_env_concrete as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow _ | V.InactivatedMutBorrow _ ->
            (* Nothing specific to do *)
            super#visit_borrow_content env bc
        | V.MutBorrow (bid, mv) ->
            (* Control the dive into mutable borrows *)
            if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else V.MutBorrow (bid, mv)

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Shared loan: check if this is the loan we are looking for, and
               control the dive. *)
            if V.BorrowId.Set.mem l bids then (
              set_ref env;
              nlc)
            else if ek.enter_shared_loans then
              super#visit_SharedLoan env bids sv
            else V.SharedLoan (bids, sv)
        | V.MutLoan bid ->
            (* Mut loan: checks if this is the loan we are looking for *)
            if bid = l then (
              set_ref env;
              nlc)
            else super#visit_MutLoan env bid
      (** We reimplement [visit_loan_content] (rather than one of the sub-
          functions) on purpose: exhaustive matches are good for maintenance *)
    end
  in

  let env = obj#visit_env r env in
  (* Check that we updated at least one loan *)
  assert !r;
  env

(** Lookup a borrow content from a borrow id. *)
let lookup_borrow_opt (ek : exploration_kind) (l : V.BorrowId.id) (env : C.env)
    : V.borrow_content option =
  let obj =
    object
      inherit [_] C.iter_env_concrete as super

      method! visit_borrow_content env bc =
        match bc with
        | V.MutBorrow (bid, mv) ->
            (* Check the borrow id and control the dive *)
            if bid = l then raise (FoundBorrowContent (V.MutBorrow (bid, mv)))
            else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else ()
        | V.SharedBorrow bid ->
            (* Check the borrow id *)
            if bid = l then raise (FoundBorrowContent (V.SharedBorrow bid))
            else ()
        | V.InactivatedMutBorrow bid ->
            (* Check the borrow id *)
            if bid = l then
              raise (FoundBorrowContent (V.InactivatedMutBorrow bid))
            else ()

      method! visit_loan_content env lc =
        match lc with
        | V.MutLoan bid ->
            (* Nothing special to do *) super#visit_MutLoan env bid
        | V.SharedLoan (bids, sv) ->
            (* Control the dive *)
            if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
            else ()
    end
  in
  (* We use exceptions *)
  try
    obj#visit_env () env;
    None
  with FoundBorrowContent lc -> Some lc

(** Lookup a borrow content from a borrow id.

    Raise an exception if no loan was found
*)
let lookup_borrow (ek : exploration_kind) (l : V.BorrowId.id) (env : C.env) :
    V.borrow_content =
  match lookup_borrow_opt ek l env with
  | None -> failwith "Unreachable"
  | Some lc -> lc

(** Update a borrow content.

    The borrow is referred to by a borrow id.

    This is a helper function: it might break invariants.     
 *)
let update_borrow (ek : exploration_kind) (l : V.BorrowId.id)
    (nbc : V.borrow_content) (env : C.env) : C.env =
  (* We use a reference to check that we update exactly one borrow: when updating
   * inside values, we check we don't update more than one borrow. Then, upon
   * returning we check that we updated at least once. *)
  let r = ref false in
  let set_ref r =
    assert (not !r);
    r := true
  in

  let obj =
    object
      inherit [_] C.map_env_concrete as super

      method! visit_borrow_content env bc =
        match bc with
        | V.MutBorrow (bid, mv) ->
            (* Check the id and control dive *)
            if bid = l then (
              set_ref env;
              nbc)
            else if ek.enter_mut_borrows then super#visit_MutBorrow env bid mv
            else V.MutBorrow (bid, mv)
        | V.SharedBorrow bid ->
            (* Check the id *)
            if bid = l then (
              set_ref env;
              nbc)
            else super#visit_SharedBorrow env bid
        | V.InactivatedMutBorrow bid ->
            (* Check the id *)
            if bid = l then (
              set_ref env;
              nbc)
            else super#visit_InactivatedMutBorrow env bid

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, sv) ->
            (* Control the dive *)
            if ek.enter_shared_loans then super#visit_SharedLoan env bids sv
            else V.SharedLoan (bids, sv)
        | V.MutLoan bid ->
            (* Nothing specific to do *)
            super#visit_MutLoan env bid
    end
  in

  let env = obj#visit_env r env in
  (* Check that we updated at least one borrow *)
  assert !r;
  env

(** The following type identifies the relative position of expressions (in
    particular borrows) in other expressions.
    
    For instance, it is used to control [end_borrow]: we usually only allow
    to end "outer" borrows, unless we perform a drop.
*)
type inner_outer = Inner | Outer

type borrow_ids = Borrows of V.BorrowId.Set.t | Borrow of V.BorrowId.id

let update_if_none opt x = match opt with None -> Some x | _ -> opt

(** Auxiliary function: see its usage in [end_borrow_get_borrow_in_value] *)
let update_outer_borrows (io : inner_outer) opt x =
  match io with
  | Inner ->
      (* If we can end inner borrows, we don't keep track of the outer borrows *)
      None
  | Outer -> update_if_none opt x

(** Return the first loan we find in a value *)
let get_first_loan_in_value (v : V.typed_value) : V.loan_content option =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_loan_content _ lc = raise (FoundLoanContent lc)
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    None
  with FoundLoanContent lc -> Some lc

(** Check if a value contains ⊥ *)
let bottom_in_value (v : V.typed_value) : bool =
  let obj =
    object
      inherit [_] V.iter_typed_value

      method! visit_Bottom _ = raise Found
    end
  in
  (* We use exceptions *)
  try
    obj#visit_typed_value () v;
    false
  with Found -> true

exception FoundOuter of borrow_ids
(** Utility exception *)

(** Auxiliary function to end borrows: lookup a borrow in the environment,
    update it (by returning an updated environment where the borrow has been
    replaced by [Bottom])) if we can end the borrow (for instance, it is not
    an outer borrow...) or return the reason why we couldn't update the borrow.

    [end_borrow] then simply performs a loop: as long as we need to end (outer)
    borrows, we end them, before finally ending the borrow we wanted to end in the
    first place.
*)
let end_borrow_get_borrow_in_env (io : inner_outer) (l : V.BorrowId.id)
    (env : C.env) : (C.env * V.borrow_content option, borrow_ids) result =
  (* We use a reference to communicate the kind of borrow we found, if we
   * find one *)
  let replaced_bc : V.borrow_content option ref = ref None in
  let set_replaced_bc bc =
    assert (Option.is_none !replaced_bc);
    replaced_bc := Some bc
  in
  (* Raise an exception if there are outer borrows: this exception is caught
   * in a wrapper function *)
  let raise_if_outer outer_borrows =
    match outer_borrows with
    | Some borrows -> raise (FoundOuter borrows)
    | None -> ()
  in

  (* The environment is used to keep track of the outer loans *)
  let obj =
    object
      inherit [_] C.map_env_concrete as super

      method! visit_Loan outer_borrows lc =
        match lc with
        | V.MutLoan bid -> V.Loan (super#visit_MutLoan outer_borrows bid)
        | V.SharedLoan (bids, v) ->
            (* Update the outer borrows before diving into the shared value *)
            let outer_borrows =
              update_outer_borrows io outer_borrows (Borrows bids)
            in
            V.Loan (super#visit_SharedLoan outer_borrows bids v)
      (** We reimplement [visit_Loan] because we may have to update the
             outer borrows *)

      method! visit_Borrow outer_borrows bc =
        match bc with
        | SharedBorrow l' | InactivatedMutBorrow l' ->
            (* Check if this is the borrow we are looking for *)
            if l = l' then (
              (* Check if there are outer borrows *)
              raise_if_outer outer_borrows;
              (* Register the update *)
              set_replaced_bc bc;
              (* Update the value *)
              V.Bottom)
            else super#visit_Borrow outer_borrows bc
        | V.MutBorrow (l', bv) ->
            (* Check if this is the borrow we are looking for *)
            if l = l' then (
              (* Check if there are outer borrows *)
              raise_if_outer outer_borrows;
              (* Register the update *)
              set_replaced_bc bc;
              (* Update the value *)
              V.Bottom)
            else
              (* Update the outer borrows before diving into the borrowed value *)
              let outer_borrows =
                update_outer_borrows io outer_borrows (Borrow l')
              in
              V.Borrow (super#visit_MutBorrow outer_borrows l' bv)
    end
  in
  (* Catch the exceptions - raised if there are outer borrows *)
  try
    let env = obj#visit_env None env in
    Ok (env, !replaced_bc)
  with FoundOuter outers -> Error outers

(** See [give_back_value]. *)
let rec give_back_value_to_value config bid (v : V.typed_value)
    (destv : V.typed_value) : V.typed_value =
  match destv.V.value with
  | V.Concrete _ | V.Bottom | V.Symbolic _ -> destv
  | V.Adt av ->
      let field_values =
        List.map (give_back_value_to_value config bid v) av.field_values
      in
      { destv with value = Adt { av with field_values } }
  | V.Borrow bc ->
      (* We may need to insert the value inside a borrowed value *)
      let bc' =
        match bc with
        | V.SharedBorrow _ | V.InactivatedMutBorrow _ -> bc
        | V.MutBorrow (bid', destv') ->
            MutBorrow (bid', give_back_value_to_value config bid v destv')
      in
      { destv with value = V.Borrow bc' }
  | V.Loan lc -> (
      match lc with
      | V.SharedLoan (_, _) -> destv
      | V.MutLoan bid' ->
          if bid' = bid then v
          else { destv with value = V.Loan (V.MutLoan bid') })

(** See [give_back_value]. *)
let give_back_value_to_abs (_config : C.config) _bid _v _abs : V.abs =
  (* TODO *)
  raise Unimplemented

(** See [give_back_shared]. *)
let rec give_back_shared_to_value (config : C.config) bid
    (destv : V.typed_value) : V.typed_value =
  match destv.V.value with
  | V.Concrete _ | V.Bottom | V.Symbolic _ -> destv
  | V.Adt av ->
      let field_values =
        List.map (give_back_shared_to_value config bid) av.field_values
      in
      { destv with value = Adt { av with field_values } }
  | V.Borrow bc ->
      (* We may need to insert the value inside a borrowed value *)
      let bc' =
        match bc with
        | V.SharedBorrow _ | V.InactivatedMutBorrow _ -> bc
        | V.MutBorrow (bid', destv') ->
            MutBorrow (bid', give_back_shared_to_value config bid destv')
      in
      { destv with value = V.Borrow bc' }
  | V.Loan lc -> (
      match lc with
      | V.SharedLoan (bids, shared_value) ->
          if V.BorrowId.Set.mem bid bids then
            if V.BorrowId.Set.cardinal bids = 1 then shared_value
            else
              {
                destv with
                value =
                  V.Loan
                    (V.SharedLoan (V.BorrowId.Set.remove bid bids, shared_value));
              }
          else
            {
              destv with
              value =
                V.Loan
                  (V.SharedLoan
                     (bids, give_back_shared_to_value config bid shared_value));
            }
      | V.MutLoan _ -> destv)

(** See [give_back_shared]. *)
let give_back_shared_to_abs _config _bid _abs : V.abs =
  (* TODO *)
  raise Unimplemented

(** Auxiliary function to end borrows.
    
    When we end a mutable borrow, we need to "give back" the value it contained
    to its original owner by reinserting it at the proper position.

    Note that this function doesn't check that there is actually a loan somewhere
    to which we can give the value: if this has to be checked, the check must
    be independently done before.
 *)
let give_back_value (config : C.config) (bid : V.BorrowId.id)
    (v : V.typed_value) (env : C.env) : C.env =
  let give_back_value_to_env_elem ev : C.env_elem =
    match ev with
    | C.Var (vid, destv) ->
        C.Var (vid, give_back_value_to_value config bid v destv)
    | C.Abs abs ->
        assert (config.mode = SymbolicMode);
        C.Abs (give_back_value_to_abs config bid v abs)
    | C.Frame -> C.Frame
  in
  List.map give_back_value_to_env_elem env

(** Auxiliary function to end borrows.
    
    When we end a shared borrow, we need to remove the borrow id from the list
    of borrows to the shared value.

    Note that this function doesn't check that there is actually a loan somewhere
    from which to remove the shared borrow id: if this has to be checked, the
    check must be independently done before.
 *)
let give_back_shared config (bid : V.BorrowId.id) (env : C.env) : C.env =
  let give_back_shared_to_env_elem ev : C.env_elem =
    match ev with
    | C.Var (vid, destv) ->
        C.Var (vid, give_back_shared_to_value config bid destv)
    | C.Abs abs ->
        assert (config.mode = SymbolicMode);
        C.Abs (give_back_shared_to_abs config bid abs)
    | C.Frame -> C.Frame
  in
  List.map give_back_shared_to_env_elem env

(** When copying values, we duplicate the shared borrows. This is tantamount
    to reborrowing the shared value. The following function applies this change
    to an environment by inserting a new borrow id in the set of borrows tracked
    by a shared value, referenced by the [original_bid] argument.
 *)
let reborrow_shared (original_bid : V.BorrowId.id) (new_bid : V.BorrowId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Keep track of changes *)
  let r = ref false in
  let set_ref () =
    assert (not !r);
    r := true
  in

  let obj =
    object
      inherit [_] C.map_env_concrete as super

      method! visit_SharedLoan env bids sv =
        (* Shared loan: check if the borrow id we are looking for is in the
           set of borrow ids. If yes, insert the new borrow id, otherwise
           explore inside the shared value *)
        if V.BorrowId.Set.mem original_bid bids then (
          set_ref ();
          let bids' = V.BorrowId.Set.add new_bid bids in
          V.SharedLoan (bids', sv))
        else super#visit_SharedLoan env bids sv
    end
  in

  let env = obj#visit_env () ctx.env in
  (* Check that we reborrowed once *)
  assert !r;
  { ctx with env }

(** End a borrow identified by its borrow id in an environment
    
    First lookup the borrow in the environment and replace it with [Bottom].
    Then, check that there is an associated loan in the environment. When moving
    values, before putting putting the value in its destination, we get an
    intermediate state where some values are "outside" the environment and thus
    inaccessible. As [give_back_value] just performs a map for instance, we
    need to check independently that there is indeed a loan ready to receive
    the value we give back (note that we also have other invariants like: there
    is exacly one mutable loan associated to a mutable borrow, etc. but they
    are more easily maintained). Note that in theory, we shouldn't never reach a
    problematic state as the one we describe above, because when we move a value
    we need to end all the loans inside before moving it. Still, it is a very
    useful sanity check.
    Finally, give the values back.

    Of course, we end outer borrows before updating the target borrow if it
    proves necessary: this is controled by the [io] parameter. If it is [Inner],
    we allow ending inner borrows (without ending the outer borrows first),
    otherwise we only allow ending outer borrows.
 *)
let rec end_borrow_in_env (config : C.config) (io : inner_outer)
    (l : V.BorrowId.id) (env : C.env) : C.env =
  (* This is used for sanity checks *)
  let sanity_ek =
    { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }
  in
  match end_borrow_get_borrow_in_env io l env with
  (* Two cases:
   * - error: we found outer borrows (end them first)
   * - success: we didn't find outer borrows when updating (but maybe we actually
       didn't find the borrow we were looking for...)
   *)
  | Error outer_borrows ->
      (* End the outer borrows *)
      let env =
        match outer_borrows with
        | Borrows bids -> end_borrows_in_env config io bids env
        | Borrow bid -> end_borrow_in_env config io bid env
      in
      (* Retry to end the borrow *)
      end_borrow_in_env config io l env
  | Ok (env, None) ->
      (* It is possible that we can't find a borrow in symbolic mode (ending
       * an abstraction may end several borrows at once *)
      assert (config.mode = SymbolicMode);
      env
  (* We found a borrow: give the value back (i.e., update the corresponding loan) *)
  | Ok (env, Some bc) -> (
      match bc with
      | V.MutBorrow (_, tv) ->
          (* Check that the corresponding loan is somewhere - purely a sanity check *)
          assert (Option.is_some (lookup_loan_opt sanity_ek l env));
          give_back_value config l tv env
      | V.SharedBorrow l' | V.InactivatedMutBorrow l' ->
          assert (l' = l);
          (* Sanity check *)
          (* Check that the borrow is somewhere - purely a sanity check *)
          assert (Option.is_some (lookup_loan_opt sanity_ek l env));
          give_back_shared config l env)

and end_borrows_in_env (config : C.config) (io : inner_outer)
    (lset : V.BorrowId.Set.t) (env : C.env) : C.env =
  V.BorrowId.Set.fold
    (fun id env -> end_borrow_in_env config io id env)
    lset env

(** Same as [end_borrow_in_env], but operating on evaluation contexts *)
let end_borrow (config : C.config) (io : inner_outer) (l : V.BorrowId.id)
    (ctx : C.eval_ctx) : C.eval_ctx =
  L.log#ldebug
    (lazy
      ("end_borrow " ^ V.BorrowId.to_string l ^ ": context before:\n"
     ^ eval_ctx_to_string ctx));
  let env = end_borrow_in_env config io l ctx.env in
  let ctx = { ctx with env } in
  L.log#ldebug
    (lazy
      ("end_borrow " ^ V.BorrowId.to_string l ^ ": context after:\n"
     ^ eval_ctx_to_string ctx));
  ctx

(** Same as [end_borrows_in_env], but operating on evaluation contexts *)
let end_borrows (config : C.config) (io : inner_outer) (lset : V.BorrowId.Set.t)
    (ctx : C.eval_ctx) : C.eval_ctx =
  L.log#ldebug
    (lazy
      ("end_borrows "
      ^ V.BorrowId.set_to_string lset
      ^ ": context before:\n" ^ eval_ctx_to_string ctx));
  let env = end_borrows_in_env config io lset ctx.env in
  let ctx = { ctx with env } in
  L.log#ldebug
    (lazy
      ("end_borrows "
      ^ V.BorrowId.set_to_string lset
      ^ ": context after:\n" ^ eval_ctx_to_string ctx));
  ctx

let end_outer_borrow config = end_borrow config Outer

let end_outer_borrows config = end_borrows config Outer

let end_inner_borrow config = end_borrow config Inner

let end_inner_borrows config = end_borrows config Inner

(** Helper function: see [activate_inactivated_mut_borrow].

    This function updates the shared loan to a mutable loan (we then update
    the borrow with another helper). Of course, the shared loan must contain
    exactly one borrow id (the one we give as parameter), otherwise we can't
    promote it. Also, the shared value mustn't contain any loan.

    The returned value (previously shared) is checked:
    - it mustn't contain loans
    - it mustn't contain [Bottom]
    - it mustn't contain inactivated borrows
    TODO: this kind of checks should be put in an auxiliary helper, because
    they are redundant
 *)
let promote_shared_loan_to_mut_loan (l : V.BorrowId.id) (ctx : C.eval_ctx) :
    C.eval_ctx * V.typed_value =
  (* Lookup the shared loan *)
  let ek =
    { enter_shared_loans = false; enter_mut_borrows = true; enter_abs = false }
  in
  match lookup_loan ek l ctx.env with
  | V.MutLoan _ -> failwith "Expected a shared loan, found a mut loan"
  | V.SharedLoan (bids, sv) ->
      (* Check that there is only one borrow id (l) and update the loan *)
      assert (V.BorrowId.Set.mem l bids && V.BorrowId.Set.cardinal bids = 1);
      (* We need to check that there aren't any loans in the value:
         we should have gotten rid of those already, but it is better
         to do a sanity check. *)
      assert (not (loans_in_value sv));
      (* Check there isn't [Bottom] (this is actually an invariant *)
      assert (not (bottom_in_value sv));
      (* Check there aren't inactivated borrows *)
      assert (not (inactivated_in_value sv));
      (* Update the loan content *)
      let env = update_loan ek l (V.MutLoan l) ctx.env in
      let ctx = { ctx with env } in
      (* Return *)
      (ctx, sv)

(** Helper function: see [activate_inactivated_mut_borrow].

    This function updates a shared borrow to a mutable borrow.
 *)
let promote_inactivated_borrow_to_mut_borrow (l : V.BorrowId.id)
    (borrowed_value : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the inactivated borrow - note that we don't go inside borrows/loans:
     there can't be inactivated borrows inside other borrows/loans
  *)
  let ek =
    { enter_shared_loans = false; enter_mut_borrows = false; enter_abs = false }
  in
  match lookup_borrow ek l ctx.env with
  | V.SharedBorrow _ | V.MutBorrow (_, _) ->
      failwith "Expected an inactivated mutable borrow"
  | V.InactivatedMutBorrow _ ->
      (* Update it *)
      let env = update_borrow ek l (V.MutBorrow (l, borrowed_value)) ctx.env in
      { ctx with env }

(** Promote an inactivated mut borrow to a mut borrow.

    The borrow must point to a shared value which is borrowed exactly once.
 *)
let rec activate_inactivated_mut_borrow (config : C.config) (io : inner_outer)
    (l : V.BorrowId.id) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Lookup the value *)
  let ek =
    { enter_shared_loans = false; enter_mut_borrows = true; enter_abs = false }
  in
  match lookup_loan ek l ctx.env with
  | V.MutLoan _ -> failwith "Unreachable"
  | V.SharedLoan (bids, sv) -> (
      (* If there are loans inside the value, end them. Note that there can't be
         inactivated borrows inside the value.
         If we perform an update, do a recursive call to lookup the updated value *)
      match get_first_loan_in_value sv with
      | Some lc ->
          (* End the loans *)
          let ctx =
            match lc with
            | V.SharedLoan (bids, _) -> end_outer_borrows config bids ctx
            | V.MutLoan bid -> end_outer_borrow config bid ctx
          in
          (* Recursive call *)
          activate_inactivated_mut_borrow config io l ctx
      | None ->
          (* No loan to end inside the value *)
          (* Some sanity checks *)
          L.log#ldebug
            (lazy
              ("activate_inactivated_mut_borrow: resulting value:\n"
             ^ V.show_typed_value sv));
          assert (not (loans_in_value sv));
          assert (not (bottom_in_value sv));
          assert (not (inactivated_in_value sv));
          (* End the borrows which borrow from the value, at the exception of
             the borrow we want to promote *)
          let bids = V.BorrowId.Set.remove l bids in
          let ctx = end_borrows config io bids ctx in
          (* Promote the loan *)
          let ctx, borrowed_value = promote_shared_loan_to_mut_loan l ctx in
          (* Promote the borrow - the value should have been checked by
             [promote_shared_loan_to_mut_loan]
          *)
          promote_inactivated_borrow_to_mut_borrow l borrowed_value ctx)

(** Paths *)

(** When we fail reading from or writing to a path, it might be because we
    need to update the environment by ending borrows, expanding symbolic
    values, etc. The following type is used to convey this information.
    
    TODO: compare with borrow_lres?
*)
type path_fail_kind =
  | FailSharedLoan of V.BorrowId.Set.t
      (** Failure because we couldn't go inside a shared loan *)
  | FailMutLoan of V.BorrowId.id
      (** Failure because we couldn't go inside a mutable loan *)
  | FailInactivatedMutBorrow of V.BorrowId.id
      (** Failure because we couldn't go inside an inactivated mutable borrow
          (which should get activated) *)
  | FailSymbolic of (E.projection_elem * V.symbolic_proj_comp)
      (** Failure because we need to enter a symbolic value (and thus need to expand it) *)
  (* TODO: Remove the parentheses *)
  | FailBottom of (int * E.projection_elem * T.ety)
      (** Failure because we need to enter an any value - we can expand Bottom
          values if they are left values. We return the number of elements which
          were remaining in the path when we reached the error - this allows to
          properly update the Bottom value, if needs be.
       *)
  | FailBorrow of V.borrow_content
      (** We got stuck because we couldn't enter a borrow *)

(** Result of evaluating a path (reading from a path/writing to a path)
    
    Note that when we fail, we return information used to update the
    environment, as well as the 
*)
type 'a path_access_result = ('a, path_fail_kind) result
(** The result of reading from/writing to a place *)

type updated_read_value = { read : V.typed_value; updated : V.typed_value }

type projection_access = {
  enter_shared_loans : bool;
  enter_mut_borrows : bool;
  lookup_shared_borrows : bool;
}

(** Generic function to access (read/write) the value at the end of a projection.

    We return the (eventually) updated value, the value we read at the end of
    the place and the (eventually) updated environment.
 *)
let rec access_projection (access : projection_access) (env : C.env)
    (* Function to (eventually) update the value we find *)
      (update : V.typed_value -> V.typed_value) (p : E.projection)
    (v : V.typed_value) : (C.env * updated_read_value) path_access_result =
  (* For looking up/updating shared loans *)
  let ek : exploration_kind =
    { enter_shared_loans = true; enter_mut_borrows = true; enter_abs = true }
  in
  match p with
  | [] ->
      let nv = update v in
      (* Type checking *)
      if nv.ty <> v.ty then (
        L.log#lerror
          (lazy
            ("Not the same type:\n- nv.ty: " ^ T.show_ety nv.ty ^ "\n- v.ty: "
           ^ T.show_ety v.ty));
        failwith
          "Assertion failed: new value doesn't have the same type as its \
           destination");
      Ok (env, { read = v; updated = nv })
  | pe :: p' -> (
      (* Match on the projection element and the value *)
      match (pe, v.V.value, v.V.ty) with
      (* Field projection - ADTs *)
      | ( Field (ProjAdt (def_id, opt_variant_id), field_id),
          V.Adt adt,
          T.Adt (T.AdtId def_id', _, _) ) -> (
          assert (def_id = def_id');
          (* Check that the projection is consistent with the current value *)
          (match (opt_variant_id, adt.variant_id) with
          | None, None -> ()
          | Some vid, Some vid' -> if vid <> vid' then failwith "Unreachable"
          | _ -> failwith "Unreachable");
          (* Actually project *)
          let fv = T.FieldId.nth adt.field_values field_id in
          match access_projection access env update p' fv with
          | Error err -> Error err
          | Ok (env, res) ->
              (* Update the field value *)
              let nvalues =
                T.FieldId.update_nth adt.field_values field_id res.updated
              in
              let nadt = V.Adt { adt with V.field_values = nvalues } in
              let updated = { v with value = nadt } in
              Ok (env, { res with updated }))
      (* Tuples *)
      | Field (ProjTuple arity, field_id), V.Adt adt, T.Adt (T.Tuple, _, _) -> (
          assert (arity = List.length adt.field_values);
          let fv = T.FieldId.nth adt.field_values field_id in
          (* Project *)
          match access_projection access env update p' fv with
          | Error err -> Error err
          | Ok (env, res) ->
              (* Update the field value *)
              let nvalues =
                T.FieldId.update_nth adt.field_values field_id res.updated
              in
              let ntuple = V.Adt { adt with field_values = nvalues } in
              let updated = { v with value = ntuple } in
              Ok (env, { res with updated })
          (* If we reach Bottom, it may mean we need to expand an uninitialized
           * enumeration value *))
      | Field (ProjAdt (_, _), _), V.Bottom, _ ->
          Error (FailBottom (1 + List.length p', pe, v.ty))
      | Field (ProjTuple _, _), V.Bottom, _ ->
          Error (FailBottom (1 + List.length p', pe, v.ty))
      (* Symbolic value: needs to be expanded *)
      | _, Symbolic sp, _ ->
          (* Expand the symbolic value *)
          Error (FailSymbolic (pe, sp))
      (* Box dereferencement *)
      | ( DerefBox,
          Adt { variant_id = None; field_values = [ bv ] },
          T.Adt (T.Assumed T.Box, _, _) ) -> (
          (* We allow moving inside of boxes. In practice, this kind of
           * manipulations should happen only inside unsage code, so
           * it shouldn't happen due to user code, and we leverage it
           * when implementing box dereferencement for the concrete
           * interpreter *)
          match access_projection access env update p' bv with
          | Error err -> Error err
          | Ok (env, res) ->
              let nv =
                {
                  v with
                  value =
                    V.Adt { variant_id = None; field_values = [ res.updated ] };
                }
              in
              Ok (env, { res with updated = nv }))
      (* Borrows *)
      | Deref, V.Borrow bc, _ -> (
          match bc with
          | V.SharedBorrow bid ->
              (* Lookup the loan content, and explore from there *)
              if access.lookup_shared_borrows then
                match lookup_loan ek bid env with
                | V.MutLoan _ -> failwith "Expected a shared loan"
                | V.SharedLoan (bids, sv) -> (
                    (* Explore the shared value *)
                    match access_projection access env update p' sv with
                    | Error err -> Error err
                    | Ok (env, res) ->
                        (* Update the shared loan with the new value returned
                           by [access_projection] *)
                        let env =
                          update_loan ek bid
                            (V.SharedLoan (bids, res.updated))
                            env
                        in
                        (* Return - note that we don't need to update the borrow itself *)
                        Ok (env, { res with updated = v }))
              else Error (FailBorrow bc)
          | V.InactivatedMutBorrow bid -> Error (FailInactivatedMutBorrow bid)
          | V.MutBorrow (bid, bv) ->
              if access.enter_mut_borrows then
                match access_projection access env update p' bv with
                | Error err -> Error err
                | Ok (env, res) ->
                    let nv =
                      {
                        v with
                        value = V.Borrow (V.MutBorrow (bid, res.updated));
                      }
                    in
                    Ok (env, { res with updated = nv })
              else Error (FailBorrow bc))
      | _, V.Loan lc, _ -> (
          match lc with
          | V.MutLoan bid -> Error (FailMutLoan bid)
          | V.SharedLoan (bids, sv) ->
              (* If we can enter shared loan, we ignore the loan. Pay attention
                 to the fact that we need to reexplore the *whole* place (i.e,
                 we mustn't ignore the current projection element *)
              if access.enter_shared_loans then
                match access_projection access env update (pe :: p') sv with
                | Error err -> Error err
                | Ok (env, res) ->
                    let nv =
                      {
                        v with
                        value = V.Loan (V.SharedLoan (bids, res.updated));
                      }
                    in
                    Ok (env, { res with updated = nv })
              else Error (FailSharedLoan bids))
      | (_, (V.Concrete _ | V.Adt _ | V.Bottom | V.Borrow _), _) as r ->
          let pe, v, ty = r in
          let pe = "- pe: " ^ E.show_projection_elem pe in
          let v = "- v:\n" ^ V.show_value v in
          let ty = "- ty:\n" ^ T.show_ety ty in
          L.log#serror ("Inconsistent projection:\n" ^ pe ^ "\n" ^ v ^ "\n" ^ ty);
          failwith "Inconsistent projection")

(** Generic function to access (read/write) the value at a given place.

    We return the value we read at the place and the (eventually) updated
    environment, if we managed to access the place, or the precise reason
    why we failed.
 *)
let access_place (access : projection_access)
    (* Function to (eventually) update the value we find *)
      (update : V.typed_value -> V.typed_value) (p : E.place) (env : C.env) :
    (C.env * V.typed_value) path_access_result =
  (* Lookup the variable's value *)
  let value = C.env_lookup_var_value env p.var_id in
  (* Apply the projection *)
  match access_projection access env update p.projection value with
  | Error err -> Error err
  | Ok (env, res) ->
      (* Update the value *)
      let env = C.env_update_var_value env p.var_id res.updated in
      (* Return *)
      Ok (env, res.read)

type access_kind =
  | Read  (** We can go inside borrows and loans *)
  | Write  (** Don't enter shared borrows or shared loans *)
  | Move  (** Don't enter borrows or loans *)

let access_kind_to_projection_access (access : access_kind) : projection_access
    =
  match access with
  | Read ->
      {
        enter_shared_loans = true;
        enter_mut_borrows = true;
        lookup_shared_borrows = true;
      }
  | Write ->
      {
        enter_shared_loans = false;
        enter_mut_borrows = true;
        lookup_shared_borrows = false;
      }
  | Move ->
      {
        enter_shared_loans = false;
        enter_mut_borrows = false;
        lookup_shared_borrows = false;
      }

(** Read the value at a given place *)
let read_place (config : C.config) (access : access_kind) (p : E.place)
    (ctx : C.eval_ctx) : V.typed_value path_access_result =
  let access = access_kind_to_projection_access access in
  (* The update function is the identity *)
  let update v = v in
  match access_place access update p ctx.env with
  | Error err -> Error err
  | Ok (env1, read_value) ->
      (* Note that we ignore the new environment: it should be the same as the
         original one.
      *)
      if config.check_invariants then
        if env1 <> ctx.env then (
          let msg =
            "Unexpected environment update:\nNew environment:\n"
            ^ C.show_env env1 ^ "\n\nOld environment:\n" ^ C.show_env ctx.env
          in
          L.log#serror msg;
          failwith "Unexpected environment update");
      Ok read_value

let read_place_unwrap (config : C.config) (access : access_kind) (p : E.place)
    (ctx : C.eval_ctx) : V.typed_value =
  match read_place config access p ctx with
  | Error _ -> failwith "Unreachable"
  | Ok v -> v

(** Update the value at a given place *)
let write_place (_config : C.config) (access : access_kind) (p : E.place)
    (nv : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx path_access_result =
  let access = access_kind_to_projection_access access in
  (* The update function substitutes the value with the new value *)
  let update _ = nv in
  match access_place access update p ctx.env with
  | Error err -> Error err
  | Ok (env, _) ->
      (* We ignore the read value *)
      Ok { ctx with env }

let write_place_unwrap (config : C.config) (access : access_kind) (p : E.place)
    (nv : V.typed_value) (ctx : C.eval_ctx) : C.eval_ctx =
  match write_place config access p nv ctx with
  | Error _ -> failwith "Unreachable"
  | Ok ctx -> ctx

(** Compute an expanded ADT bottom value *)
let compute_expanded_bottom_adt_value (tyctx : T.type_def list)
    (def_id : T.TypeDefId.id) (opt_variant_id : T.VariantId.id option)
    (regions : T.erased_region list) (types : T.ety list) : V.typed_value =
  (* Lookup the definition and check if it is an enumeration - it
     should be an enumeration if and only if the projection element
     is a field projection with *some* variant id. Retrieve the list
     of fields at the same time. *)
  let def = T.TypeDefId.nth tyctx def_id in
  assert (List.length regions = List.length def.T.region_params);
  (* Compute the field types *)
  let field_types =
    Subst.type_def_get_instantiated_field_type def opt_variant_id types
  in
  (* Initialize the expanded value *)
  let fields =
    List.map
      (fun ty : V.typed_value -> ({ V.value = V.Bottom; ty } : V.typed_value))
      field_types
  in
  let av = V.Adt { variant_id = opt_variant_id; field_values = fields } in
  let ty = T.Adt (T.AdtId def_id, regions, types) in
  { V.value = av; V.ty }

(** Compute an expanded tuple bottom value *)
let compute_expanded_bottom_tuple_value (field_types : T.ety list) :
    V.typed_value =
  (* Generate the field values *)
  let fields =
    List.map (fun ty : V.typed_value -> { V.value = Bottom; ty }) field_types
  in
  let v = V.Adt { variant_id = None; field_values = fields } in
  let ty = T.Adt (T.Tuple, [], field_types) in
  { V.value = v; V.ty }

(** Auxiliary helper to expand [Bottom] values.

    During compilation, rustc desaggregates the ADT initializations. The
    consequence is that the following rust code:
    ```
    let x = Cons a b;
    ```

    Looks like this in MIR:
    ```
    (x as Cons).0 = a;
    (x as Cons).1 = b;
    set_discriminant(x, 0); // If `Cons` is the variant of index 0
    ```

    The consequence is that we may sometimes need to write fields to values
    which are currently [Bottom]. When doing this, we first expand the value
    to, say, [Cons Bottom Bottom] (note that field projection contains information
    about which variant we should project to, which is why we *can* set the
    variant index when writing one of its fields).
*)
let expand_bottom_value_from_projection (config : C.config)
    (access : access_kind) (p : E.place) (remaining_pes : int)
    (pe : E.projection_elem) (ty : T.ety) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Debugging *)
  L.log#ldebug
    (lazy
      ("expand_bottom_value_from_projection:\n" ^ "pe: "
     ^ E.show_projection_elem pe ^ "\n" ^ "ty: " ^ T.show_ety ty));
  (* Prepare the update: we need to take the proper prefix of the place
     during whose evaluation we got stuck *)
  let projection' =
    fst
      (Utilities.list_split_at p.projection
         (List.length p.projection - remaining_pes))
  in
  let p' = { p with projection = projection' } in
  (* Compute the expanded value.
     The type of the [Bottom] value should be a tuple or an ADT.
     Note that the projection element we got stuck at should be a
     field projection, and gives the variant id if the [Bottom] value
     is an enumeration value.
     Also, the expanded value should be the proper ADT variant or a tuple
     with the proper arity, with all the fields initialized to [Bottom]
  *)
  let nv =
    match (pe, ty) with
    (* "Regular" ADTs *)
    | ( Field (ProjAdt (def_id, opt_variant_id), _),
        T.Adt (T.AdtId def_id', regions, types) ) ->
        assert (def_id = def_id');
        compute_expanded_bottom_adt_value ctx.type_context def_id opt_variant_id
          regions types
    (* Tuples *)
    | Field (ProjTuple arity, _), T.Adt (T.Tuple, [], tys) ->
        assert (arity = List.length tys);
        (* Generate the field values *)
        compute_expanded_bottom_tuple_value tys
    | _ ->
        failwith
          ("Unreachable: " ^ E.show_projection_elem pe ^ ", " ^ T.show_ety ty)
  in
  (* Update the context by inserting the expanded value at the proper place *)
  match write_place config access p' nv ctx with
  | Ok ctx -> ctx
  | Error _ -> failwith "Unreachable"

(** Update the environment to be able to read a place.

    When reading a place, we may be stuck along the way because some value
    is borrowed, we reach a symbolic value, etc. In this situation [read_place]
    fails while returning precise information about the failure. This function
    uses this information to update the environment (by ending borrows,
    expanding symbolic values) until we manage to fully read the place.
 *)
let rec update_ctx_along_read_place (config : C.config) (access : access_kind)
    (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Attempt to read the place: if it fails, update the environment and retry *)
  match read_place config access p ctx with
  | Ok _ -> ctx
  | Error err ->
      let ctx =
        match err with
        | FailSharedLoan bids -> end_outer_borrows config bids ctx
        | FailMutLoan bid -> end_outer_borrow config bid ctx
        | FailInactivatedMutBorrow bid ->
            activate_inactivated_mut_borrow config Outer bid ctx
        | FailSymbolic (_pe, _sp) ->
            (* Expand the symbolic value *)
            raise Unimplemented
        | FailBottom (_, _, _) ->
            (* We can't expand [Bottom] values while reading them *)
            failwith "Found [Bottom] while reading a place"
        | FailBorrow _ -> failwith "Could not read a borrow"
      in
      update_ctx_along_read_place config access p ctx

(** Update the environment to be able to write to a place.

    See [update_env_alond_read_place].
*)
let rec update_ctx_along_write_place (config : C.config) (access : access_kind)
    (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Attempt to *read* (yes, "read": we check the access to the place, and
     write to it later) the place: if it fails, update the environment and retry *)
  match read_place config access p ctx with
  | Ok _ -> ctx
  | Error err ->
      let ctx =
        match err with
        | FailSharedLoan bids -> end_outer_borrows config bids ctx
        | FailMutLoan bid -> end_outer_borrow config bid ctx
        | FailInactivatedMutBorrow bid ->
            activate_inactivated_mut_borrow config Outer bid ctx
        | FailSymbolic (_pe, _sp) ->
            (* Expand the symbolic value *)
            raise Unimplemented
        | FailBottom (remaining_pes, pe, ty) ->
            (* Expand the [Bottom] value *)
            expand_bottom_value_from_projection config access p remaining_pes pe
              ty ctx
        | FailBorrow _ -> failwith "Could not write to a borrow"
      in
      update_ctx_along_write_place config access p ctx

exception UpdateCtx of C.eval_ctx
(** Small utility used to break control-flow *)

(** End the loans at a given place: read the value, if it contains a loan,
    end this loan, repeat.

    This is used when reading, borrowing, writing to a value. We typically
    first call [update_ctx_along_read_place] or [update_ctx_along_write_place]
    to get access to the value, then call this function to "prepare" the value:
    when moving values, we can't move a value which contains loans and thus need
    to end them, etc.
 *)
let rec end_loans_at_place (config : C.config) (access : access_kind)
    (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx =
  (* Iterator to explore a value and update the context whenever we find
   * loans.
   * We use exceptions to make it handy: whenever we update the
   * context, we raise an exception wrapping the updated context.
   * *)
  let obj =
    object
      inherit [_] V.iter_typed_value as super

      method! visit_borrow_content env bc =
        match bc with
        | V.SharedBorrow _ | V.MutBorrow (_, _) ->
            (* Nothing special to do *) super#visit_borrow_content env bc
        | V.InactivatedMutBorrow bid ->
            (* We need to activate inactivated borrows *)
            let ctx = activate_inactivated_mut_borrow config Inner bid ctx in
            raise (UpdateCtx ctx)

      method! visit_loan_content env lc =
        match lc with
        | V.SharedLoan (bids, v) -> (
            (* End the loans if we need a modification access, otherwise dive into
               the shared value *)
            match access with
            | Read -> super#visit_SharedLoan env bids v
            | Write | Move ->
                let ctx = end_outer_borrows config bids ctx in
                raise (UpdateCtx ctx))
        | V.MutLoan bid ->
            (* We always need to end mutable borrows *)
            let ctx = end_outer_borrow config bid ctx in
            raise (UpdateCtx ctx)
    end
  in

  (* First, retrieve the value *)
  match read_place config access p ctx with
  | Error _ -> failwith "Unreachable"
  | Ok v -> (
      (* Inspect the value and update the context while doing so.
         If the context gets updated: perform a recursive call (many things
         may have been updated in the context: we need to re-read the value
         at place [p] - and this value may actually not be accessible
         anymore...)
      *)
      try
        obj#visit_typed_value () v;
        (* No context update required: return the current context *)
        ctx
      with UpdateCtx ctx ->
        (* The context was updated: do a recursive call to reinspect the value *)
        end_loans_at_place config access p ctx)

(** Drop (end) all the loans and borrows at a given place, which should be
    seen as an l-value (we will write to it later, but need to drop the borrows
    before writing).

    We start by only dropping the borrows, then we end the loans. The reason
    is that some loan we find may be borrowed by another part of the subvalue.
    In order to correctly handle the "outer borrow" priority (we should end
    the outer borrows first) which is not really applied here (we are preparing
    the value for override: we can end the borrows inside, without ending the
    borrows we traversed to actually access the value) we first end the borrows
    we find in the place, to make sure all the "local" loans are taken care of.
    Then, if we find a loan, it means it is "externally" borrowed (the associated
    borrow is not in a subvalue of the place under inspection).
    Also note that whenever we end a loan, we might propagate back a value inside
    the place under inspection: we must re-end all the borrows we find there,
    before reconsidering loans.

    Repeat:
    - read the value at a given place
    - as long as we find a loan or a borrow, end it

    This is used to drop values (when we need to write to a place, we first
    drop the value there to properly propagate back values which are not/can't
    be borrowed anymore).
 *)
let rec drop_borrows_loans_at_lplace (config : C.config) (p : E.place)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Iterator to explore a value and update the context whenever we find
     borrows/loans.
     We use exceptions to make it handy: whenever we update the
     context, we raise an exception wrapping the updated context.

     Note that we can end the borrows which are inside the value (while the
     value itself might be inside a borrow/loan: we are thus ending inner
     borrows). Because a loan inside the value may be linked to a borrow
     somewhere else *also inside* the value (it's possible with adts),
     we first end all the borrows we find - by using [Inner] to allow
     ending inner borrows - then end all the loans we find. It is really
     important to do this in two steps: the borrow linked to a loan may
     be inside the value at place p, in which case this borrow may be
     an inner borrow that we *can* end, but it may also be outside this
     value, in which case we need to end all the outer borrows first...
     Also, whenever the context is updated, we need to re-inspect
     the value at place p *in two steps* again (end borrows, then end
     loans).
  *)
  let obj =
    object
      inherit [_] V.iter_typed_value as super

      method! visit_borrow_content end_loans bc =
        (* Sanity check: we should have ended all the borrows before starting
           to end loans *)
        assert (not end_loans);

        (* We need to end all borrows. Note that we ignore the outer borrows
           when ending the borrows we find here (we call [end_inner_borrow(s)]:
           the value at place p might be below a borrow/loan). Note however
           that if we restrain ourselves at the value at place p, the borrow we
           found here can be considered as an outer borrow.
        *)
        match bc with
        | V.SharedBorrow bid | V.MutBorrow (bid, _) ->
            raise (UpdateCtx (end_inner_borrow config bid ctx))
        | V.InactivatedMutBorrow bid ->
            (* We need to activate ithe nactivated borrow - later, we will
             * actually end it - Rk.: we could actually end it straight away
             * (this is not really important) *)
            let ctx = activate_inactivated_mut_borrow config Inner bid ctx in
            raise (UpdateCtx ctx)

      method! visit_loan_content end_loans lc =
        if
          (* If we can, end the loans, otherwise ignore: keep for later *)
          end_loans
        then
          (* We need to end all loans. Note that as all the borrows inside
             the value at place p should already have ended, the borrows
             associated to the loans we find here should be borrows from
             outside this value: we need to call [end_outer_borrow(s)]
             (we can't ignore outer borrows this time).
          *)
          match lc with
          | V.SharedLoan (bids, _) ->
              raise (UpdateCtx (end_outer_borrows config bids ctx))
          | V.MutLoan bid -> raise (UpdateCtx (end_outer_borrow config bid ctx))
        else super#visit_loan_content end_loans lc
    end
  in

  (* We do something similar to [end_loans_at_place].
     First, retrieve the value *)
  match read_place config Write p ctx with
  | Error _ -> failwith "Unreachable"
  | Ok v -> (
      (* Inspect the value and update the context while doing so.
         If the context gets updated: perform a recursive call (many things
         may have been updated in the context: first we need to retrieve the
         proper updated value - and this value may actually not be accessible
         anymore
      *)
      try
        (* Inspect the value: end the borrows only *)
        obj#visit_typed_value false v;
        (* Inspect the value: end the loans *)
        obj#visit_typed_value true v;
        (* No context update required: return the current context *)
        ctx
      with UpdateCtx ctx -> drop_borrows_loans_at_lplace config p ctx)

(** Copy a value, and return the resulting value.

    Note that copying values might update the context. For instance, when
    copying shared borrows, we need to insert new shared borrows in the context.
 *)
let rec copy_value (config : C.config) (ctx : C.eval_ctx) (v : V.typed_value) :
    C.eval_ctx * V.typed_value =
  (* Remark: at some point we rewrote this function to use iterators, but then
   * we reverted the changes: the result was less clear actually. In particular,
   * the fact that we have exhaustive matches below makes very obvious the cases
   * in which we need to fail *)
  match v.V.value with
  | V.Concrete _ -> (ctx, v)
  | V.Adt av ->
      (* Sanity check *)
      (match v.V.ty with
      | T.Adt (T.Assumed _, _, _) -> failwith "Can't copy an assumed value"
      | T.Adt ((T.AdtId _ | T.Tuple), _, _) -> () (* Ok *)
      | _ -> failwith "Unreachable");
      let ctx, fields =
        List.fold_left_map (copy_value config) ctx av.field_values
      in
      (ctx, { v with V.value = V.Adt { av with field_values = fields } })
  | V.Bottom -> failwith "Can't copy ⊥"
  | V.Borrow bc -> (
      (* We can only copy shared borrows *)
      match bc with
      | SharedBorrow bid ->
          (* We need to create a new borrow id for the copied borrow, and
           * update the context accordingly *)
          let ctx, bid' = C.fresh_borrow_id ctx in
          let ctx = reborrow_shared bid bid' ctx in
          (ctx, { v with V.value = V.Borrow (SharedBorrow bid') })
      | MutBorrow (_, _) -> failwith "Can't copy a mutable borrow"
      | V.InactivatedMutBorrow _ ->
          failwith "Can't copy an inactivated mut borrow")
  | V.Loan lc -> (
      (* We can only copy shared loans *)
      match lc with
      | V.MutLoan _ -> failwith "Can't copy a mutable loan"
      | V.SharedLoan (_, sv) ->
          (* We don't copy the shared loan: only the shared value inside *)
          copy_value config ctx sv)
  | V.Symbolic _sp ->
      (* TODO: check that the value is copyable *)
      raise Unimplemented

(** Convert a constant operand value to a typed value *)
let constant_value_to_typed_value (ctx : C.eval_ctx) (ty : T.ety)
    (cv : E.operand_constant_value) : V.typed_value =
  (* Check the type while converting *)
  match (ty, cv) with
  (* Unit *)
  | T.Adt (T.Tuple, [], []), Unit -> mk_unit_value
  (* Adt with one variant and no fields *)
  | T.Adt (T.AdtId def_id, [], []), ConstantAdt def_id' ->
      assert (def_id = def_id');
      (* Check that the adt definition only has one variant with no fields,
         compute the variant id at the same time. *)
      let def = T.TypeDefId.nth ctx.type_context def_id in
      assert (List.length def.region_params = 0);
      assert (List.length def.type_params = 0);
      let variant_id =
        match def.kind with
        | Struct fields ->
            assert (List.length fields = 0);
            None
        | Enum variants ->
            assert (List.length variants = 1);
            let variant_id = T.VariantId.zero in
            let variant = T.VariantId.nth variants variant_id in
            assert (List.length variant.fields = 0);
            Some variant_id
      in
      let value = V.Adt { variant_id; field_values = [] } in
      { value; ty }
  (* Scalar, boolean... *)
  | T.Bool, ConstantValue (Bool v) -> { V.value = V.Concrete (Bool v); ty }
  | T.Char, ConstantValue (Char v) -> { V.value = V.Concrete (Char v); ty }
  | T.Str, ConstantValue (String v) -> { V.value = V.Concrete (String v); ty }
  | T.Integer int_ty, ConstantValue (V.Scalar v) ->
      (* Check the type and the ranges *)
      assert (int_ty == v.int_ty);
      assert (check_scalar_value_in_range v);
      { V.value = V.Concrete (V.Scalar v); ty }
  (* Remaining cases (invalid) - listing as much as we can on purpose
     (allows to catch errors at compilation if the definitions change) *)
  | _, Unit | _, ConstantAdt _ | _, ConstantValue _ ->
      failwith "Improperly typed constant value"

(** Small utility *)
let prepare_rplace (config : C.config) (access : access_kind) (p : E.place)
    (ctx : C.eval_ctx) : C.eval_ctx * V.typed_value =
  let ctx = update_ctx_along_read_place config access p ctx in
  let ctx = end_loans_at_place config access p ctx in
  let v = read_place_unwrap config access p ctx in
  (ctx, v)

(** Evaluate an operand. *)
let eval_operand (config : C.config) (ctx : C.eval_ctx) (op : E.operand) :
    C.eval_ctx * V.typed_value =
  (* Debug *)
  L.log#ldebug
    (lazy
      ("eval_operand:\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n\n- op:\n"
     ^ operand_to_string ctx op ^ "\n"));
  (* Evaluate *)
  match op with
  | Expressions.Constant (ty, cv) ->
      let v = constant_value_to_typed_value ctx ty cv in
      (ctx, v)
  | Expressions.Copy p ->
      (* Access the value *)
      let access = Read in
      let ctx, v = prepare_rplace config access p ctx in
      (* Copy the value *)
      L.log#ldebug (lazy ("Value to copy:\n" ^ typed_value_to_string ctx v));
      assert (not (bottom_in_value v));
      copy_value config ctx v
  | Expressions.Move p -> (
      (* Access the value *)
      let access = Move in
      let ctx, v = prepare_rplace config access p ctx in
      (* Move the value *)
      L.log#ldebug (lazy ("Value to move:\n" ^ typed_value_to_string ctx v));
      assert (not (bottom_in_value v));
      let bottom : V.typed_value = { V.value = Bottom; ty = v.ty } in
      match write_place config access p bottom ctx with
      | Error _ -> failwith "Unreachable"
      | Ok ctx -> (ctx, v))

(** Evaluate several operands. *)
let eval_operands (config : C.config) (ctx : C.eval_ctx) (ops : E.operand list)
    : C.eval_ctx * V.typed_value list =
  List.fold_left_map (fun ctx op -> eval_operand config ctx op) ctx ops

let eval_two_operands (config : C.config) (ctx : C.eval_ctx) (op1 : E.operand)
    (op2 : E.operand) : C.eval_ctx * V.typed_value * V.typed_value =
  match eval_operands config ctx [ op1; op2 ] with
  | ctx, [ v1; v2 ] -> (ctx, v1, v2)
  | _ -> failwith "Unreachable"

let eval_unary_op (config : C.config) (ctx : C.eval_ctx) (unop : E.unop)
    (op : E.operand) : (C.eval_ctx * V.typed_value) eval_result =
  (* Evaluate the operand *)
  let ctx, v = eval_operand config ctx op in
  (* Apply the unop *)
  match (unop, v.V.value) with
  | E.Not, V.Concrete (Bool b) ->
      Ok (ctx, { v with V.value = V.Concrete (Bool (not b)) })
  | E.Neg, V.Concrete (V.Scalar sv) -> (
      let i = Z.neg sv.V.value in
      match mk_scalar sv.int_ty i with
      | Error _ -> Error Panic
      | Ok sv -> Ok (ctx, { v with V.value = V.Concrete (V.Scalar sv) }))
  | (E.Not | E.Neg), Symbolic _ -> raise Unimplemented (* TODO *)
  | _ -> failwith "Invalid value for unop"

let eval_binary_op (config : C.config) (ctx : C.eval_ctx) (binop : E.binop)
    (op1 : E.operand) (op2 : E.operand) :
    (C.eval_ctx * V.typed_value) eval_result =
  (* Evaluate the operands *)
  let ctx, v1, v2 = eval_two_operands config ctx op1 op2 in
  if
    (* Binary operations only apply on integer values, but when we check for
     * equality *)
    binop = Eq || binop = Ne
  then (
    (* Equality/inequality check is primitive only on primitive types *)
    assert (v1.ty = v2.ty);
    let b = v1 = v2 in
    Ok (ctx, { V.value = V.Concrete (Bool b); ty = T.Bool }))
  else
    match (v1.V.value, v2.V.value) with
    | V.Concrete (V.Scalar sv1), V.Concrete (V.Scalar sv2) -> (
        let res =
          (* There are binops which require the two operands to have the same
             type, and binops for which it is not the case.
             There are also binops which return booleans, and binops which
             return integers.
          *)
          match binop with
          | E.Lt | E.Le | E.Ge | E.Gt ->
              (* The two operands must have the same type and the result is a boolean *)
              assert (sv1.int_ty = sv2.int_ty);
              let b =
                match binop with
                | E.Lt -> Z.lt sv1.V.value sv2.V.value
                | E.Le -> Z.leq sv1.V.value sv2.V.value
                | E.Ge -> Z.geq sv1.V.value sv2.V.value
                | E.Gt -> Z.gt sv1.V.value sv2.V.value
                | E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
                | E.BitOr | E.Shl | E.Shr | E.Ne | E.Eq ->
                    failwith "Unreachable"
              in
              Ok
                ({ V.value = V.Concrete (Bool b); ty = T.Bool } : V.typed_value)
          | E.Div | E.Rem | E.Add | E.Sub | E.Mul | E.BitXor | E.BitAnd
          | E.BitOr -> (
              (* The two operands must have the same type and the result is an integer *)
              assert (sv1.int_ty = sv2.int_ty);
              let res =
                match binop with
                | E.Div ->
                    if sv2.V.value = Z.zero then Error ()
                    else mk_scalar sv1.int_ty (Z.div sv1.V.value sv2.V.value)
                | E.Rem ->
                    (* See [https://github.com/ocaml/Zarith/blob/master/z.mli] *)
                    if sv2.V.value = Z.zero then Error ()
                    else mk_scalar sv1.int_ty (Z.rem sv1.V.value sv2.V.value)
                | E.Add -> mk_scalar sv1.int_ty (Z.add sv1.V.value sv2.V.value)
                | E.Sub -> mk_scalar sv1.int_ty (Z.sub sv1.V.value sv2.V.value)
                | E.Mul -> mk_scalar sv1.int_ty (Z.mul sv1.V.value sv2.V.value)
                | E.BitXor -> raise Unimplemented
                | E.BitAnd -> raise Unimplemented
                | E.BitOr -> raise Unimplemented
                | E.Lt | E.Le | E.Ge | E.Gt | E.Shl | E.Shr | E.Ne | E.Eq ->
                    failwith "Unreachable"
              in
              match res with
              | Error err -> Error err
              | Ok sv ->
                  Ok
                    {
                      V.value = V.Concrete (V.Scalar sv);
                      ty = Integer sv1.int_ty;
                    })
          | E.Shl | E.Shr -> raise Unimplemented
          | E.Ne | E.Eq -> failwith "Unreachable"
        in
        match res with Error _ -> Error Panic | Ok v -> Ok (ctx, v))
    | _ -> failwith "Invalid inputs for binop"

(** Evaluate an rvalue in a given context: return the updated context and
    the computed value
*)
let eval_rvalue (config : C.config) (ctx : C.eval_ctx) (rvalue : E.rvalue) :
    (C.eval_ctx * V.typed_value) eval_result =
  match rvalue with
  | E.Use op -> Ok (eval_operand config ctx op)
  | E.Ref (p, bkind) -> (
      match bkind with
      | E.Shared | E.TwoPhaseMut ->
          (* Access the value *)
          let access = if bkind = E.Shared then Read else Write in
          let ctx, v = prepare_rplace config access p ctx in
          (* Compute the rvalue - simply a shared borrow with a fresh id *)
          let ctx, bid = C.fresh_borrow_id ctx in
          (* Note that the reference is *mutable* if we do a two-phase borrow *)
          let rv_ty =
            T.Ref (T.Erased, v.ty, if bkind = E.Shared then Shared else Mut)
          in
          let bc =
            if bkind = E.Shared then V.SharedBorrow bid
            else V.InactivatedMutBorrow bid
          in
          let rv : V.typed_value = { V.value = V.Borrow bc; ty = rv_ty } in
          (* Compute the value with which to replace the value at place p *)
          let nv =
            match v.V.value with
            | V.Loan (V.SharedLoan (bids, sv)) ->
                (* Shared loan: insert the new borrow id *)
                let bids1 = V.BorrowId.Set.add bid bids in
                { v with V.value = V.Loan (V.SharedLoan (bids1, sv)) }
            | _ ->
                (* Not a shared loan: add a wrapper *)
                let v' =
                  V.Loan (V.SharedLoan (V.BorrowId.Set.singleton bid, v))
                in
                { v with V.value = v' }
          in
          (* Update the value in the context *)
          let ctx = write_place_unwrap config access p nv ctx in
          (* Return *)
          Ok (ctx, rv)
      | E.Mut ->
          (* Access the value *)
          let access = Write in
          let ctx, v = prepare_rplace config access p ctx in
          (* Compute the rvalue - wrap the value in a mutable borrow with a fresh id *)
          let ctx, bid = C.fresh_borrow_id ctx in
          let rv_ty = T.Ref (T.Erased, v.ty, Mut) in
          let rv : V.typed_value =
            { V.value = V.Borrow (V.MutBorrow (bid, v)); ty = rv_ty }
          in
          (* Compute the value with which to replace the value at place p *)
          let nv = { v with V.value = V.Loan (V.MutLoan bid) } in
          (* Update the value in the context *)
          let ctx = write_place_unwrap config access p nv ctx in
          (* Return *)
          Ok (ctx, rv))
  | E.UnaryOp (unop, op) -> eval_unary_op config ctx unop op
  | E.BinaryOp (binop, op1, op2) -> eval_binary_op config ctx binop op1 op2
  | E.Discriminant p -> (
      (* Note that discriminant values have type `isize` *)
      (* Access the value *)
      let access = Read in
      let ctx, v = prepare_rplace config access p ctx in
      match v.V.value with
      | Adt av -> (
          match av.variant_id with
          | None ->
              failwith
                "Invalid input for `discriminant`: structure instead of enum"
          | Some variant_id -> (
              let id = Z.of_int (T.VariantId.to_int variant_id) in
              match mk_scalar Isize id with
              | Error _ ->
                  failwith "Disciminant id out of range"
                  (* Should really never happen *)
              | Ok sv ->
                  Ok
                    ( ctx,
                      { V.value = V.Concrete (V.Scalar sv); ty = Integer Isize }
                    )))
      | _ -> failwith "Invalid input for `discriminant`")
  | E.Aggregate (aggregate_kind, ops) -> (
      (* Evaluate the operands *)
      let ctx, values = eval_operands config ctx ops in
      (* Match on the aggregate kind *)
      match aggregate_kind with
      | E.AggregatedTuple ->
          let tys = List.map (fun (v : V.typed_value) -> v.V.ty) values in
          let v = V.Adt { variant_id = None; field_values = values } in
          let ty = T.Adt (T.Tuple, [], tys) in
          Ok (ctx, { V.value = v; ty })
      | E.AggregatedAdt (def_id, opt_variant_id, regions, types) ->
          (* Sanity checks *)
          let type_def = C.ctx_lookup_type_def ctx def_id in
          assert (List.length type_def.region_params = List.length regions);
          let expected_field_types =
            Subst.ctx_adt_get_instantiated_field_types ctx def_id opt_variant_id
              types
          in
          assert (
            expected_field_types
            = List.map (fun (v : V.typed_value) -> v.V.ty) values);
          (* Construct the value *)
          let av : V.adt_value =
            { V.variant_id = opt_variant_id; V.field_values = values }
          in
          let aty = T.Adt (T.AdtId def_id, regions, types) in
          Ok (ctx, { V.value = Adt av; ty = aty }))

(** Result of evaluating a statement *)
type statement_eval_res = Unit | Break of int | Continue of int | Return

(** Small utility.
    
    Prepare a place which is to be used as the destination of an assignment:
    update the environment along the paths, end the borrows and loans at
    this place, etc.

    Return the updated context and the (updated) value at the end of the
    place. This value should not contain any loan or borrow (and we check
    it is the case). Note that it is very likely to contain [Bottom] values.
 *)
let prepare_lplace (config : C.config) (p : E.place) (ctx : C.eval_ctx) :
    C.eval_ctx * V.typed_value =
  (* TODO *)
  let access = Write in
  let ctx = update_ctx_along_write_place config access p ctx in
  (* End the borrows and loans, starting with the borrows *)
  let ctx = drop_borrows_loans_at_lplace config p ctx in
  (* Read the value and check it *)
  let v = read_place_unwrap config access p ctx in
  (* Sanity checks *)
  assert (not (loans_in_value v));
  assert (not (borrows_in_value v));
  (* Return *)
  (ctx, v)

(** Read the value at a given place.
    As long as it is a loan, end the loan.
    This function doesn't perform a recursive exploration:
    it won't dive into the value to end all the inner
    loans (contrary to [drop_borrows_loans_at_lplace] for
    instance).
 *)
let rec end_loan_exactly_at_place (config : C.config) (access : access_kind)
    (p : E.place) (ctx : C.eval_ctx) : C.eval_ctx =
  let v = read_place_unwrap config access p ctx in
  match v.V.value with
  | V.Loan (V.SharedLoan (bids, _)) ->
      let ctx = end_borrows config Outer bids ctx in
      end_loan_exactly_at_place config access p ctx
  | V.Loan (V.MutLoan bid) ->
      let ctx = end_borrow config Outer bid ctx in
      end_loan_exactly_at_place config access p ctx
  | _ -> ctx

(** Updates the discriminant of a value at a given place.

    There are two situations:
    - either the discriminant is already the proper one (in which case we
      don't do anything)
    - or it is not the proper one (because the variant is not the proper
      one, or the value is actually [Bottom] - this happens when
      initializing ADT values), in which case we replace the value with
      a variant with all its fields set to [Bottom].
      For instance, something like: `Cons Bottom Bottom`.
 *)
let set_discriminant (config : C.config) (ctx : C.eval_ctx) (p : E.place)
    (variant_id : T.VariantId.id) :
    (C.eval_ctx * statement_eval_res) eval_result =
  (* Access the value *)
  let access = Write in
  let ctx = update_ctx_along_read_place config access p ctx in
  let ctx = end_loan_exactly_at_place config access p ctx in
  let v = read_place_unwrap config access p ctx in
  (* Update the value *)
  match (v.V.ty, v.V.value) with
  | T.Adt (T.AdtId def_id, regions, types), V.Adt av -> (
      (* There are two situations:
         - either the discriminant is already the proper one (in which case we
           don't do anything)
         - or it is not the proper one, in which case we replace the value with
           a variant with all its fields set to [Bottom]
      *)
      match av.variant_id with
      | None -> failwith "Found a struct value while expected an enum"
      | Some variant_id' ->
          if variant_id' = variant_id then (* Nothing to do *)
            Ok (ctx, Unit)
          else
            (* Replace the value *)
            let bottom_v =
              compute_expanded_bottom_adt_value ctx.type_context def_id
                (Some variant_id) regions types
            in
            let ctx = write_place_unwrap config access p bottom_v ctx in
            Ok (ctx, Unit))
  | T.Adt (T.AdtId def_id, regions, types), V.Bottom ->
      let bottom_v =
        compute_expanded_bottom_adt_value ctx.type_context def_id
          (Some variant_id) regions types
      in
      let ctx = write_place_unwrap config access p bottom_v ctx in
      Ok (ctx, Unit)
  | _, V.Symbolic _ ->
      assert (config.mode = SymbolicMode);
      (* TODO *) raise Unimplemented
  | _, (V.Adt _ | V.Bottom) -> failwith "Inconsistent state"
  | _, (V.Concrete _ | V.Borrow _ | V.Loan _) -> failwith "Unexpected value"

(** Push a frame delimiter in the context's environment *)
let ctx_push_frame (ctx : C.eval_ctx) : C.eval_ctx =
  { ctx with env = Frame :: ctx.env }

(** Drop a value at a given place *)
let drop_value (config : C.config) (ctx : C.eval_ctx) (p : E.place) : C.eval_ctx
    =
  L.log#ldebug (lazy ("drop_value: place: " ^ place_to_string ctx p));
  (* Prepare the place (by ending the loans, then the borrows) *)
  let ctx, v = prepare_lplace config p ctx in
  (* Replace the value with [Bottom] *)
  let nv = { v with value = V.Bottom } in
  let ctx = write_place_unwrap config Write p nv ctx in
  ctx

(** Small helper: compute the type of the return value for a specific
    instantiation of a non-local function.
 *)
let get_non_local_function_return_type (fid : A.assumed_fun_id)
    (region_params : T.erased_region list) (type_params : T.ety list) : T.ety =
  match (fid, region_params, type_params) with
  | A.BoxNew, [], [ bty ] -> T.Adt (T.Assumed T.Box, [], [ bty ])
  | A.BoxDeref, [], [ bty ] -> T.Ref (T.Erased, bty, T.Shared)
  | A.BoxDerefMut, [], [ bty ] -> T.Ref (T.Erased, bty, T.Mut)
  | A.BoxFree, [], [ _ ] -> mk_unit_ty
  | _ -> failwith "Inconsistent state"

(** Pop the current frame.
    
    Drop all the local variables but the return variable, move the return
    value out of the return variable, remove all the local variables (but not the
    abstractions!) from the context, remove the [Frame] indicator delimiting the
    current frame and return the return value and the updated context.
 *)
let ctx_pop_frame (config : C.config) (ctx : C.eval_ctx) :
    C.eval_ctx * V.typed_value =
  (* Debug *)
  L.log#ldebug (lazy ("ctx_pop_frame:\n" ^ eval_ctx_to_string ctx));
  (* Eval *)
  let ret_vid = V.VarId.zero in
  (* List the local variables, but the return variable *)
  let rec list_locals env =
    match env with
    | [] -> failwith "Inconsistent environment"
    | C.Abs _ :: env -> list_locals env
    | C.Var (var, _) :: env ->
        let locals = list_locals env in
        if var.index <> ret_vid then var.index :: locals else locals
    | C.Frame :: _ -> []
  in
  let locals = list_locals ctx.env in
  (* Debug *)
  L.log#ldebug
    (lazy
      ("ctx_pop_frame: locals to drop: ["
      ^ String.concat "," (List.map V.VarId.to_string locals)
      ^ "]"));
  (* Drop the local variables *)
  let ctx =
    List.fold_left
      (fun ctx lid -> drop_value config ctx (mk_place_from_var_id lid))
      ctx locals
  in
  (* Debug *)
  L.log#ldebug
    (lazy
      ("ctx_pop_frame: after dropping local variables:\n"
     ^ eval_ctx_to_string ctx));
  (* Move the return value out of the return variable *)
  let ctx, ret_value =
    eval_operand config ctx (E.Move (mk_place_from_var_id ret_vid))
  in
  (* Pop the frame *)
  let rec pop env =
    match env with
    | [] -> failwith "Inconsistent environment"
    | C.Abs abs :: env -> C.Abs abs :: pop env
    | C.Var (_, _) :: env -> pop env
    | C.Frame :: env -> env
  in
  let env = pop ctx.env in
  let ctx = { ctx with env } in
  (ctx, ret_value)

(** Assign a value to a given place *)
let assign_to_place (config : C.config) (ctx : C.eval_ctx) (v : V.typed_value)
    (p : E.place) : C.eval_ctx =
  (* Prepare the destination *)
  let ctx, _ = prepare_lplace config p ctx in
  (* Update the destination *)
  let ctx = write_place_unwrap config Write p v ctx in
  ctx

(** Auxiliary function - see [eval_non_local_function_call] *)
let eval_box_new (config : C.config) (region_params : T.erased_region list)
    (type_params : T.ety list) (ctx : C.eval_ctx) : C.eval_ctx eval_result =
  (* Check and retrieve the arguments *)
  match (region_params, type_params, ctx.env) with
  | ( [],
      [ boxed_ty ],
      Var (input_var, input_value) :: Var (_ret_var, _) :: C.Frame :: _ ) ->
      (* Required type checking *)
      assert (input_value.V.ty = boxed_ty);

      (* Move the input value *)
      let ctx, moved_input_value =
        eval_operand config ctx
          (E.Move (mk_place_from_var_id input_var.C.index))
      in

      (* Create the box value *)
      let box_ty = T.Adt (T.Assumed T.Box, [], [ boxed_ty ]) in
      let box_v =
        V.Adt { variant_id = None; field_values = [ moved_input_value ] }
      in
      let box_v = mk_typed_value box_ty box_v in

      (* Move this value to the return variable *)
      let dest = mk_place_from_var_id V.VarId.zero in
      let ctx = assign_to_place config ctx box_v dest in

      (* Return *)
      Ok ctx
  | _ -> failwith "Inconsistent state"

(** Deconstruct a type of the form `Box<T>` to retrieve the `T` inside *)
let ty_get_box (box_ty : T.ety) : T.ety =
  match box_ty with
  | T.Adt (T.Assumed T.Box, [], [ boxed_ty ]) -> boxed_ty
  | _ -> failwith "Not a boxed type"

(** Deconstruct a type of the form `&T` or `&mut T` to retrieve the `T` (and
    the borrow kind, etc.)
 *)
let ty_get_ref (ty : T.ety) : T.erased_region * T.ety * T.ref_kind =
  match ty with
  | T.Ref (r, ty, ref_kind) -> (r, ty, ref_kind)
  | _ -> failwith "Not a ref type"

(** Auxiliary function which factorizes code to evaluate `std::Deref::deref`
    and `std::DerefMut::deref_mut` - see [eval_non_local_function_call] *)
let eval_box_deref_mut_or_shared (config : C.config)
    (region_params : T.erased_region list) (type_params : T.ety list)
    (is_mut : bool) (ctx : C.eval_ctx) : C.eval_ctx eval_result =
  (* Check the arguments *)
  match (region_params, type_params, ctx.env) with
  | ( [],
      [ boxed_ty ],
      Var (input_var, input_value) :: Var (_ret_var, _) :: C.Frame :: _ ) -> (
      (* Required type checking. We must have:
         - input_value.ty == & (mut) Box<ty>
         - boxed_ty == ty
         for some ty
      *)
      (let _, input_ty, ref_kind = ty_get_ref input_value.V.ty in
       assert (match ref_kind with T.Shared -> not is_mut | T.Mut -> is_mut);
       let input_ty = ty_get_box input_ty in
       assert (input_ty = boxed_ty));

      (* Borrow the boxed value *)
      let p =
        { E.var_id = input_var.C.index; projection = [ E.Deref; E.DerefBox ] }
      in
      let borrow_kind = if is_mut then E.Mut else E.Shared in
      let rv = E.Ref (p, borrow_kind) in
      match eval_rvalue config ctx rv with
      | Error err -> Error err
      | Ok (ctx, borrowed_value) ->
          (* Move the borrowed value to its destination *)
          let destp = mk_place_from_var_id V.VarId.zero in
          let ctx = assign_to_place config ctx borrowed_value destp in
          Ok ctx)
  | _ -> failwith "Inconsistent state"

(** Auxiliary function - see [eval_non_local_function_call] *)
let eval_box_deref (config : C.config) (region_params : T.erased_region list)
    (type_params : T.ety list) (ctx : C.eval_ctx) : C.eval_ctx eval_result =
  let is_mut = false in
  eval_box_deref_mut_or_shared config region_params type_params is_mut ctx

(** Auxiliary function - see [eval_non_local_function_call] *)
let eval_box_deref_mut (config : C.config)
    (region_params : T.erased_region list) (type_params : T.ety list)
    (ctx : C.eval_ctx) : C.eval_ctx eval_result =
  let is_mut = true in
  eval_box_deref_mut_or_shared config region_params type_params is_mut ctx

(** Auxiliary function - see [eval_non_local_function_call].

    `Box::free` is not handled the same way as the other assumed functions:
    - in the regular case, whenever we need to evaluate an assumed function,
      we evaluate the operands, push a frame, call a dedicated function
      to correctly update the variables in the frame (and mimic the execution
      of a body) and finally pop the frame
    - in the case of `Box::free`: the value given to this function is often
      of the form `Box(⊥)` because we can move the value out of the
      box before freeing the box. It makes it invalid to see box_free as a
      "regular" function: it is not valid to call a function with arguments
      which contain `⊥`. For this reason, we execute `Box::free` as drop_value,
      but this is a bit annoying with regards to the semantics...

    Followingly this function doesn't behave like the others: it does not expect
    a stack frame to have been pushed, but rather simply behaves like [drop_value].
    It thus updates the box value (by calling [drop_value]) and updates
    the destination (by setting it to `()`).
*)
let eval_box_free (config : C.config) (region_params : T.erased_region list)
    (type_params : T.ety list) (args : E.operand list) (dest : E.place)
    (ctx : C.eval_ctx) : C.eval_ctx eval_result =
  match (region_params, type_params, args) with
  | [], [ boxed_ty ], [ E.Move input_box_place ] ->
      (* Required type checking *)
      let input_box = read_place_unwrap config Write input_box_place ctx in
      (let input_ty = ty_get_box input_box.V.ty in
       assert (input_ty = boxed_ty));

      (* Drop the value *)
      let ctx = drop_value config ctx input_box_place in

      (* Update the destination by setting it to `()` *)
      let ctx = assign_to_place config ctx mk_unit_value dest in

      (* Return *)
      Ok ctx
  | _ -> failwith "Inconsistent state"

(** Evaluate a non-local (i.e, assumed) function call such as `Box::deref`
    (auxiliary helper for [eval_statement]) *)
let eval_non_local_function_call (config : C.config) (ctx : C.eval_ctx)
    (fid : A.assumed_fun_id) (region_params : T.erased_region list)
    (type_params : T.ety list) (args : E.operand list) (dest : E.place) :
    C.eval_ctx eval_result =
  (* Debug *)
  L.log#ldebug
    (lazy
      (let type_params =
         "["
         ^ String.concat ", " (List.map (ety_to_string ctx) type_params)
         ^ "]"
       in
       let args =
         "[" ^ String.concat ", " (List.map (operand_to_string ctx) args) ^ "]"
       in
       let dest = place_to_string ctx dest in
       "eval_non_local_function_call:\n- fid:" ^ A.show_assumed_fun_id fid
       ^ "\n- type_params: " ^ type_params ^ "\n- args: " ^ args ^ "\n- dest: "
       ^ dest));

  (* There are two cases (and this is extremely annoying):
     - the function is not box_free
     - the function is box_free
     See [eval_box_free]
  *)
  match fid with
  | A.BoxFree ->
      (* Degenerate case: box_free *)
      eval_box_free config region_params type_params args dest ctx
  | _ -> (
      (* "Normal" case: not box_free *)
      (* Evaluate the operands *)
      let ctx, args_vl = eval_operands config ctx args in

      (* Push the stack frame: we initialize the frame with the return variable,
         and one variable per input argument *)
      let ctx = ctx_push_frame ctx in

      (* Create and push the return variable *)
      let ret_vid = V.VarId.zero in
      let ret_ty =
        get_non_local_function_return_type fid region_params type_params
      in
      let ret_var = mk_var ret_vid (Some "@return") ret_ty in
      let ctx = C.ctx_push_uninitialized_var ctx ret_var in

      (* Create and push the input variables *)
      let input_vars =
        V.VarId.mapi_from1
          (fun id (v : V.typed_value) -> (mk_var id None v.V.ty, v))
          args_vl
      in
      let ctx = C.ctx_push_vars ctx input_vars in

      (* "Execute" the function body. As the functions are assumed, here we call
         custom functions to perform the proper manipulations: we don't have
         access to a body. *)
      let res =
        match fid with
        | A.BoxNew -> eval_box_new config region_params type_params ctx
        | A.BoxDeref -> eval_box_deref config region_params type_params ctx
        | A.BoxDerefMut ->
            eval_box_deref_mut config region_params type_params ctx
        | A.BoxFree -> failwith "Unreachable"
        (* should have been treated above *)
      in

      (* Check if the function body evaluated correctly *)
      match res with
      | Error err -> Error err
      | Ok ctx ->
          (* Pop the stack frame and retrieve the return value *)
          let ctx, ret_value = ctx_pop_frame config ctx in

          (* Move the return value to its destination *)
          let ctx = assign_to_place config ctx ret_value dest in

          (* Return *)
          Ok ctx)

(** Evaluate a statement *)
let rec eval_statement (config : C.config) (ctx : C.eval_ctx) (st : A.statement)
    : (C.eval_ctx * statement_eval_res) eval_result =
  (* Debugging *)
  L.log#ldebug
    (lazy
      ("\n" ^ eval_ctx_to_string ctx ^ "\nAbout to evaluate statement: "
     ^ statement_to_string ctx st ^ "\n"));
  (* Evaluate *)
  match st with
  | A.Assign (p, rvalue) -> (
      (* Evaluate the rvalue *)
      match eval_rvalue config ctx rvalue with
      | Error err -> Error err
      | Ok (ctx, rvalue) ->
          (* Assign *)
          let ctx = assign_to_place config ctx rvalue p in
          Ok (ctx, Unit))
  | A.FakeRead p ->
      let ctx, _ = prepare_rplace config Read p ctx in
      Ok (ctx, Unit)
  | A.SetDiscriminant (p, variant_id) ->
      set_discriminant config ctx p variant_id
  | A.Drop p -> Ok (drop_value config ctx p, Unit)
  | A.Assert assertion -> (
      let ctx, v = eval_operand config ctx assertion.cond in
      assert (v.ty = T.Bool);
      match v.value with
      | Concrete (Bool b) ->
          if b = assertion.expected then Ok (ctx, Unit) else Error Panic
      | _ -> failwith "Expected a boolean")
  | A.Call call -> eval_function_call config ctx call
  | A.Panic -> Error Panic
  | A.Return -> Ok (ctx, Return)
  | A.Break i -> Ok (ctx, Break i)
  | A.Continue i -> Ok (ctx, Continue i)
  | A.Nop -> Ok (ctx, Unit)
  | A.Sequence (st1, st2) -> (
      (* Evaluate the first statement *)
      match eval_statement config ctx st1 with
      | Error err -> Error err
      | Ok (ctx, Unit) ->
          (* Evaluate the second statement *)
          eval_statement config ctx st2
      (* Control-flow break: transmit. We enumerate the cases on purpose *)
      | Ok (ctx, Break i) -> Ok (ctx, Break i)
      | Ok (ctx, Continue i) -> Ok (ctx, Continue i)
      | Ok (ctx, Return) -> Ok (ctx, Return))
  | A.Loop loop_body ->
      (* Evaluate a loop body

         We need a specific function for the [Continue] case: in case we continue,
         we might have to reevaluate the current loop body with the new context
         (and repeat this an indefinite number of times).
      *)
      let rec eval_loop_body (ctx : C.eval_ctx) :
          (C.eval_ctx * statement_eval_res) eval_result =
        (* Evaluate the loop body *)
        match eval_statement config ctx loop_body with
        | Error err -> Error err
        | Ok (ctx, Unit) ->
            (* We finished evaluating the statement in a "normal" manner *)
            Ok (ctx, Unit)
        (* Control-flow breaks *)
        | Ok (ctx, Break i) ->
            (* Decrease the break index *)
            if i = 0 then Ok (ctx, Unit) else Ok (ctx, Break (i - 1))
        | Ok (ctx, Continue i) ->
            (* Decrease the continue index *)
            if i = 0 then
              (* We stop there. When we continue, we go back to the beginning
                 of the loop: we must thus reevaluate the loop body (and
                 recheck the result to know whether we must reevaluate again,
                 etc. *)
              eval_loop_body ctx
            else (* We don't stop there: transmit *)
              Ok (ctx, Continue (i - 1))
        | Ok (ctx, Return) -> Ok (ctx, Return)
      in
      (* Apply *)
      eval_loop_body ctx
  | A.Switch (op, tgts) -> (
      (* Evaluate the operand *)
      let ctx, op_v = eval_operand config ctx op in
      match tgts with
      | A.If (st1, st2) -> (
          match op_v.value with
          | V.Concrete (V.Bool b) ->
              if b then eval_statement config ctx st1
              else eval_statement config ctx st2
          | _ -> failwith "Inconsistent state")
      | A.SwitchInt (int_ty, tgts, otherwise) -> (
          match op_v.value with
          | V.Concrete (V.Scalar sv) -> (
              assert (sv.V.int_ty = int_ty);
              match List.find_opt (fun (sv', _) -> sv = sv') tgts with
              | None -> eval_statement config ctx otherwise
              | Some (_, tgt) -> eval_statement config ctx tgt)
          | _ -> failwith "Inconsistent state"))

(** Evaluate a function call (auxiliary helper for [eval_statement]) *)
and eval_function_call (config : C.config) (ctx : C.eval_ctx) (call : A.call) :
    (C.eval_ctx * statement_eval_res) eval_result =
  (* There are two cases *
     - this is a local function, in which case we execute its body
     - this is a non-local function, in which case there is a special treatment
  *)
  let res =
    match call.func with
    | A.Local fid ->
        eval_local_function_call config ctx fid call.region_params
          call.type_params call.args call.dest
    | A.Assumed fid ->
        eval_non_local_function_call config ctx fid call.region_params
          call.type_params call.args call.dest
  in
  match res with Error err -> Error err | Ok ctx -> Ok (ctx, Unit)

(** Evaluate a local (i.e, not assumed) function call (auxiliary helper for
    [eval_statement]) *)
and eval_local_function_call (config : C.config) (ctx : C.eval_ctx)
    (fid : A.FunDefId.id) (_region_params : T.erased_region list)
    (type_params : T.ety list) (args : E.operand list) (dest : E.place) :
    C.eval_ctx eval_result =
  (* Retrieve the (correctly instantiated) body *)
  let def = C.ctx_lookup_fun_def ctx fid in
  match config.mode with
  | ConcreteMode -> (
      let tsubst =
        Subst.make_type_subst
          (List.map (fun v -> v.T.index) def.A.signature.type_params)
          type_params
      in
      let locals, body = Subst.fun_def_substitute_in_body tsubst def in

      (* Evaluate the input operands *)
      let ctx, args = eval_operands config ctx args in
      assert (List.length args = def.A.arg_count);

      (* Push a frame delimiter *)
      let ctx = ctx_push_frame ctx in

      (* Compute the initial values for the local variables *)
      (* 1. Push the return value *)
      let ret_var, locals =
        match locals with
        | ret_ty :: locals -> (ret_ty, locals)
        | _ -> failwith "Unreachable"
      in
      let ctx = C.ctx_push_var ctx ret_var (C.mk_bottom ret_var.var_ty) in

      (* 2. Push the input values *)
      let input_locals, locals =
        Utilities.list_split_at locals def.A.arg_count
      in
      let inputs = List.combine input_locals args in
      (* Note that this function checks that the variables and their values
         have the same type (this is important) *)
      let ctx = C.ctx_push_vars ctx inputs in

      (* 3. Push the remaining local variables (initialized as [Bottom]) *)
      let ctx = C.ctx_push_uninitialized_vars ctx locals in

      (* Execute the function body *)
      match eval_function_body config ctx body with
      | Error Panic -> Error Panic
      | Ok ctx ->
          (* Pop the stack frame and retrieve the return value *)
          let ctx, ret_value = ctx_pop_frame config ctx in

          (* Move the return value to its destination *)
          let ctx = assign_to_place config ctx ret_value dest in

          (* Return *)
          Ok ctx)
  | SymbolicMode -> raise Unimplemented

(** Evaluate a statement seen as a function body (auxiliary helper for
    [eval_statement]) *)
and eval_function_body (config : C.config) (ctx : C.eval_ctx)
    (body : A.statement) : (C.eval_ctx, eval_error) result =
  match eval_statement config ctx body with
  | Error err -> Error err
  | Ok (ctx, res) -> (
      match res with
      | Unit | Break _ | Continue _ -> failwith "Inconsistent state"
      | Return -> Ok ctx)

module Test = struct
  (** Test a unit function (taking no arguments) by evaluating it in an empty
    environment
 *)
  let test_unit_function (type_defs : T.type_def list)
      (fun_defs : A.fun_def list) (fid : A.FunDefId.id) : unit eval_result =
    (* Retrieve the function declaration *)
    let fdef = A.FunDefId.nth fun_defs fid in

    (* Debug *)
    L.log#ldebug
      (lazy ("test_unit_function: " ^ Print.Types.name_to_string fdef.A.name));

    (* Sanity check - *)
    assert (List.length fdef.A.signature.region_params = 0);
    assert (List.length fdef.A.signature.type_params = 0);
    assert (fdef.A.arg_count = 0);

    (* Create the evaluation context *)
    let ctx =
      {
        C.type_context = type_defs;
        C.fun_context = fun_defs;
        C.type_vars = [];
        C.env = [];
        C.symbolic_counter = V.SymbolicValueId.generator_zero;
        C.borrow_counter = V.BorrowId.generator_zero;
      }
    in

    (* Put the (uninitialized) local variables *)
    let ctx = C.ctx_push_uninitialized_vars ctx fdef.A.locals in

    (* Evaluate the function *)
    let config = { C.mode = C.ConcreteMode; C.check_invariants = true } in
    match eval_function_body config ctx fdef.A.body with
    | Error err -> Error err
    | Ok _ -> Ok ()

  (** Small helper: return true if the function is a unit function (no parameters,
    no arguments) - TODO: move *)
  let fun_def_is_unit (def : A.fun_def) : bool =
    def.A.arg_count = 0
    && List.length def.A.signature.region_params = 0
    && List.length def.A.signature.type_params = 0
    && List.length def.A.signature.inputs = 0

  (** Test all the unit functions in a list of function definitions *)
  let test_all_unit_functions (type_defs : T.type_def list)
      (fun_defs : A.fun_def list) : unit =
    let test_fun (def : A.fun_def) : unit =
      if fun_def_is_unit def then
        match test_unit_function type_defs fun_defs def.A.def_id with
        | Error _ -> failwith "Unit test failed"
        | Ok _ -> ()
      else ()
    in
    List.iter test_fun fun_defs
end