1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
open Cps
open InterpreterUtils
open InterpreterProjectors
open InterpreterBorrows
open InterpreterStatements
open CfimAstUtils
module L = Logging
module T = Types
module A = CfimAst
module M = Modules
module SA = SymbolicAst
(** The local logger *)
let log = L.interpreter_log
let compute_type_fun_contexts (m : M.cfim_module) :
C.type_context * C.fun_context =
let type_decls, _ = M.split_declarations m.declarations in
let type_defs, fun_defs = M.compute_defs_maps m in
let type_defs_groups, _funs_defs_groups =
M.split_declarations_to_group_maps m.declarations
in
let type_infos =
TypesAnalysis.analyze_type_declarations type_defs type_decls
in
let type_context = { C.type_defs_groups; type_defs; type_infos } in
let fun_context = { C.fun_defs } in
(type_context, fun_context)
let initialize_eval_context (type_context : C.type_context)
(fun_context : C.fun_context) (type_vars : T.type_var list) : C.eval_ctx =
C.reset_global_counters ();
{
C.type_context;
C.fun_context;
C.type_vars;
C.env = [ C.Frame ];
C.ended_regions = T.RegionId.Set.empty;
}
(** Initialize an evaluation context to execute a function.
Introduces local variables initialized in the following manner:
- input arguments are initialized as symbolic values
- the remaining locals are initialized as ⊥
Abstractions are introduced for the regions present in the function
signature.
We return:
- the initialized evaluation context
- the list of symbolic values introduced for the input values
- the instantiated function signature
*)
let initialize_symbolic_context_for_fun (type_context : C.type_context)
(fun_context : C.fun_context) (fdef : A.fun_def) :
C.eval_ctx * V.symbolic_value list * A.inst_fun_sig =
(* The abstractions are not initialized the same way as for function
* calls: they contain *loan* projectors, because they "provide" us
* with the input values (which behave as if they had been returned
* by some function calls...).
* Also, note that we properly set the set of parents of every abstraction:
* this should not be necessary, as those abstractions should never be
* *automatically* ended (because ending some borrows requires to end
* one of them), but rather selectively ended when generating code
* for each of the backward functions. We do it only because we can
* do it, and because it gives a bit of sanity.
* *)
let sg = fdef.signature in
(* Create the context *)
let ctx = initialize_eval_context type_context fun_context sg.type_params in
(* Instantiate the signature *)
let type_params = List.map (fun tv -> T.TypeVar tv.T.index) sg.type_params in
let inst_sg = instantiate_fun_sig type_params sg in
(* Create fresh symbolic values for the inputs *)
let input_svs =
List.map (fun ty -> mk_fresh_symbolic_value V.SynthInput ty) inst_sg.inputs
in
(* Initialize the abstractions as empty (i.e., with no avalues) abstractions *)
let call_id = C.fresh_fun_call_id () in
assert (call_id = V.FunCallId.zero);
let compute_abs_avalues (abs : V.abs) (ctx : C.eval_ctx) :
C.eval_ctx * V.typed_avalue list =
(* Project over the values - we use *loan* projectors, as explained above *)
let avalues =
List.map (mk_aproj_loans_value_from_symbolic_value abs.regions) input_svs
in
(ctx, avalues)
in
let ctx =
create_push_abstractions_from_abs_region_groups call_id V.SynthInput
inst_sg.A.regions_hierarchy compute_abs_avalues ctx
in
(* Split the variables between return var, inputs and remaining locals *)
let ret_var = List.hd fdef.locals in
let input_vars, local_vars =
Collections.List.split_at (List.tl fdef.locals) fdef.arg_count
in
(* Push the return variable (initialized with ⊥) *)
let ctx = C.ctx_push_uninitialized_var ctx ret_var in
(* Push the input variables (initialized with symbolic values) *)
let input_values = List.map mk_typed_value_from_symbolic_value input_svs in
let ctx = C.ctx_push_vars ctx (List.combine input_vars input_values) in
(* Push the remaining local variables (initialized with ⊥) *)
let ctx = C.ctx_push_uninitialized_vars ctx local_vars in
(* Return *)
(ctx, input_svs, inst_sg)
(** Small helper.
This is a continuation function called by the symbolic interpreter upon
reaching the `return` instruction when synthesizing a *backward* function:
this continuation takes care of doing the proper manipulations to finish
the synthesis (mostly by ending abstractions).
*)
let evaluate_function_symbolic_synthesize_backward_from_return
(config : C.config) (fdef : A.fun_def) (inst_sg : A.inst_fun_sig)
(back_id : T.RegionGroupId.id) (ctx : C.eval_ctx) : SA.expression option =
(* We need to instantiate the function signature - to retrieve
* the return type. Note that it is important to re-generate
* an instantiation of the signature, so that we use fresh
* region ids for the return abstractions. *)
let sg = fdef.signature in
let type_params = List.map (fun tv -> T.TypeVar tv.T.index) sg.type_params in
let ret_inst_sg = instantiate_fun_sig type_params sg in
let ret_rty = ret_inst_sg.output in
(* Move the return value out of the return variable *)
let cf_pop_frame = ctx_pop_frame config in
(* Insert the return value in the return abstractions (by applying
* borrow projections) *)
let cf_consume_ret ret_value ctx =
let ret_call_id = C.fresh_fun_call_id () in
let compute_abs_avalues (abs : V.abs) (ctx : C.eval_ctx) :
C.eval_ctx * V.typed_avalue list =
let ctx, avalue =
apply_proj_borrows_on_input_value config ctx abs.regions
abs.ancestors_regions ret_value ret_rty
in
(ctx, [ avalue ])
in
(* Initialize and insert the abstractions in the context *)
let ctx =
create_push_abstractions_from_abs_region_groups ret_call_id V.SynthRet
ret_inst_sg.A.regions_hierarchy compute_abs_avalues ctx
in
(* We now need to end the proper *input* abstractions - pay attention
* to the fact that we end the *input* abstractions, not the *return*
* abstractions (of course, the corresponding return abstractions will
* automatically be ended, because they consumed values coming from the
* input abstractions...) *)
let parent_rgs = list_parent_region_groups sg back_id in
let parent_input_abs_ids =
T.RegionGroupId.mapi
(fun rg_id rg ->
if T.RegionGroupId.Set.mem rg_id parent_rgs then Some rg.T.id
else None)
inst_sg.regions_hierarchy
in
let parent_input_abs_ids =
List.filter_map (fun x -> x) parent_input_abs_ids
in
(* End the parent abstractions and the current abstraction - note that we
* end them in an order which follows the regions hierarchy: it should lead
* to generated code which has a better consistency between the parent
* and children backward functions *)
let current_abs_id =
(T.RegionGroupId.nth inst_sg.regions_hierarchy back_id).id
in
let target_abs_ids = List.append parent_input_abs_ids [ current_abs_id ] in
let cf_end_target_abs cf =
List.fold_left
(fun cf id -> end_abstraction config [] id cf)
cf target_abs_ids
in
(* Generate the Return node *)
let cf_return : m_fun = fun _ -> Some (SA.Return None) in
(* Apply *)
cf_end_target_abs cf_return ctx
in
cf_pop_frame cf_consume_ret ctx
(** Evaluate a function with the symbolic interpreter.
We return:
- the list of symbolic values introduced for the input values (this is useful
for the synthesis)
- the symbolic AST generated by the symbolic execution
*)
let evaluate_function_symbolic (config : C.partial_config) (synthesize : bool)
(type_context : C.type_context) (fun_context : C.fun_context)
(fdef : A.fun_def) (back_id : T.RegionGroupId.id option) :
V.symbolic_value list * SA.expression option =
(* Debug *)
let name_to_string () =
Print.fun_name_to_string fdef.A.name
^ " ("
^ Print.option_to_string T.RegionGroupId.to_string back_id
^ ")"
in
log#ldebug (lazy ("evaluate_function_symbolic: " ^ name_to_string ()));
(* Create the evaluation context *)
let ctx, input_svs, inst_sg =
initialize_symbolic_context_for_fun type_context fun_context fdef
in
(* Create the continuation to finish the evaluation *)
let config = C.config_of_partial C.SymbolicMode config in
let cf_finish res ctx =
match res with
| Return ->
if synthesize then
(* There are two cases:
* - if this is a forward translation, we retrieve the returned value.
* - if this is a backward translation, we introduce "return"
* abstractions to consume the return value, then end all the
* abstractions up to the one in which we are interested.
*)
match back_id with
| None ->
(* Forward translation *)
(* Pop the frame and retrieve the returned value at the same time*)
let cf_pop = ctx_pop_frame config in
(* Generate the Return node *)
let cf_return ret_value : m_fun =
fun _ -> Some (SA.Return (Some ret_value))
in
(* Apply *)
cf_pop cf_return ctx
| Some back_id ->
(* Backward translation *)
evaluate_function_symbolic_synthesize_backward_from_return config
fdef inst_sg back_id ctx
else None
| Panic ->
(* Note that as we explore all the execution branches, one of
* the executions can lead to a panic *)
if synthesize then Some SA.Panic else None
| _ ->
failwith ("evaluate_function_symbolic failed on: " ^ name_to_string ())
in
(* Evaluate the function *)
let symbolic = eval_function_body config fdef.A.body cf_finish ctx in
(* Return *)
(input_svs, symbolic)
module Test = struct
(** Test a unit function (taking no arguments) by evaluating it in an empty
environment.
*)
let test_unit_function (config : C.partial_config) (m : M.cfim_module)
(fid : A.FunDefId.id) : unit =
(* Retrieve the function declaration *)
let fdef = A.FunDefId.nth m.functions fid in
(* Debug *)
log#ldebug
(lazy ("test_unit_function: " ^ Print.fun_name_to_string fdef.A.name));
(* Sanity check - *)
assert (List.length fdef.A.signature.region_params = 0);
assert (List.length fdef.A.signature.type_params = 0);
assert (fdef.A.arg_count = 0);
(* Create the evaluation context *)
let type_context, fun_context = compute_type_fun_contexts m in
let ctx = initialize_eval_context type_context fun_context [] in
(* Insert the (uninitialized) local variables *)
let ctx = C.ctx_push_uninitialized_vars ctx fdef.A.locals in
(* Create the continuation to check the function's result *)
let config = C.config_of_partial C.ConcreteMode config in
let cf_check res ctx =
match res with
| Return ->
(* Ok: drop the local variables and finish *)
ctx_pop_frame config (fun _ _ -> None) ctx
| _ ->
failwith
("Unit test failed (concrete execution) on: "
^ Print.fun_name_to_string fdef.A.name)
in
(* Evaluate the function *)
let _ = eval_function_body config fdef.A.body cf_check ctx in
()
(** Small helper: return true if the function is a unit function (no parameters,
no arguments) - TODO: move *)
let fun_def_is_unit (def : A.fun_def) : bool =
def.A.arg_count = 0
&& List.length def.A.signature.region_params = 0
&& List.length def.A.signature.type_params = 0
&& List.length def.A.signature.inputs = 0
(** Test all the unit functions in a list of function definitions *)
let test_unit_functions (config : C.partial_config) (m : M.cfim_module) : unit
=
let unit_funs = List.filter fun_def_is_unit m.functions in
let test_unit_fun (def : A.fun_def) : unit =
test_unit_function config m def.A.def_id
in
List.iter test_unit_fun unit_funs
(** Execute the symbolic interpreter on a function. *)
let test_function_symbolic (config : C.partial_config) (synthesize : bool)
(type_context : C.type_context) (fun_context : C.fun_context)
(fdef : A.fun_def) : unit =
(* Debug *)
log#ldebug
(lazy ("test_function_symbolic: " ^ Print.fun_name_to_string fdef.A.name));
(* Evaluate *)
let evaluate =
evaluate_function_symbolic config synthesize type_context fun_context fdef
in
(* Execute the forward function *)
let _ = evaluate None in
(* Execute the backward functions *)
let _ =
T.RegionGroupId.mapi
(fun gid _ -> evaluate (Some gid))
fdef.signature.regions_hierarchy
in
()
(** Execute the symbolic interpreter on a list of functions.
TODO: for now we ignore the functions which contain loops, because
they are not supported by the symbolic interpreter.
*)
let test_functions_symbolic (config : C.partial_config) (synthesize : bool)
(m : M.cfim_module) : unit =
let no_loop_funs =
List.filter (fun f -> not (CfimAstUtils.fun_def_has_loops f)) m.functions
in
let type_context, fun_context = compute_type_fun_contexts m in
let test_fun (def : A.fun_def) : unit =
(* Execute the function - note that as the symbolic interpreter explores
* all the path, some executions are expected to "panic": we thus don't
* check the return value *)
test_function_symbolic config synthesize type_context fun_context def
in
List.iter test_fun no_loop_funs
end
|