summaryrefslogtreecommitdiff
path: root/src/ExtractToFStar.ml
blob: f4cc0d6cdcaa2ee64d1e114f3be1dfc0da7fca93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
(** Extract to F* *)

open Errors
open Pure
open TranslateCore
open PureToExtract
open StringUtils
module F = Format

(** A list of keywords/identifiers used in F* and with which we want to check
    collision. *)
let fstar_keywords =
  [
    "let";
    "rec";
    "in";
    "fn";
    "int";
    "list";
    "FStar";
    "FStar.Mul";
    "type";
    "match";
    "with";
    "assert";
    "Type0";
  ]

(**
 * [ctx]: we use the context to lookup type definitions, to retrieve type names.
 * This is used to compute variable names, when they have no basenames: in this
 * case we use the first letter of the type name.
 *
 * [variant_concatenate_type_name]: if true, add the type name as a prefix
 * to the variant names.
 * Ex.:
 * In Rust:
 *   ```
 *   enum List = {
 *     Cons(u32, Box<List>),
 *     Nil,
 *   }
 *   ```
 *
 * F*, if option activated:
 *   ```
 *   type list =
 *   | ListCons : u32 -> list -> list
 *   | ListNil : list
 *   ```
 *
 * F*, if option not activated:
 *   ```
 *   type list =
 *   | Cons : u32 -> list -> list
 *   | Nil : list
 *   ```
 *
 * Rk.: this should be true by default, because in Rust all the variant names
 * are actively uniquely identifier by the type name `List::Cons(...)`, while
 * in other languages it is not necessarily the case, and thus clashes can mess
 * up type checking. Note that some languages actually forbids the name clashes
 * (it is the case of F* ).
 *)
let mk_name_formatter (ctx : trans_ctx) (variant_concatenate_type_name : bool) =
  let int_name (int_ty : integer_type) =
    match int_ty with
    | Isize -> "isize"
    | I8 -> "i8"
    | I16 -> "i16"
    | I32 -> "i32"
    | I64 -> "i64"
    | I128 -> "i128"
    | Usize -> "usize"
    | U8 -> "u8"
    | U16 -> "u16"
    | U32 -> "u32"
    | U64 -> "u64"
    | U128 -> "u128"
  in
  (* For now, we treat only the case where type and function names are of the
   * form: `Module::Type` and `Module:function`.
   *)
  let get_name (name : name) : string =
    match name with [ _module; name ] -> name | _ -> failwith "Unexpected"
  in
  let type_name_to_camel_case name =
    let name = get_name name in
    to_camel_case name
  in
  let type_name_to_snake_case name =
    let name = get_name name in
    to_snake_case name
  in
  let type_name name = type_name_to_snake_case name ^ "_t" in
  let field_name (def_name : name) (field_id : FieldId.id)
      (field_name : string option) : string =
    let def_name = type_name_to_snake_case def_name ^ "_" in
    match field_name with
    | Some field_name -> def_name ^ field_name
    | None -> def_name ^ FieldId.to_string field_id
  in
  let variant_name (def_name : name) (variant : string) : string =
    let variant = to_camel_case variant in
    if variant_concatenate_type_name then
      type_name_to_camel_case def_name ^ variant
    else variant
  in
  (* For now, we only treat the case where the type name is:
   * `Module::Type`
   *)
  let fun_name (_fid : A.fun_id) (fname : name) (num_rgs : int)
      (rg : region_group_info option) : string =
    let fname = get_name fname in
    (* Converting to snake case should be a no-op, but it doesn't cost much *)
    let fname = to_snake_case fname in
    (* Compute the suffix *)
    let suffix = default_fun_suffix num_rgs rg in
    (* Concatenate *)
    fname ^ suffix
  in
  let var_basename (_varset : StringSet.t) (basename : string option) (ty : ty)
      : string =
    (* If there is a basename, we use it *)
    match basename with
    | Some basename ->
        (* This should be a no-op *)
        to_snake_case basename
    | None -> (
        (* No basename: we use the first letter of the type *)
        match ty with
        | Adt (type_id, tys) -> (
            match type_id with
            | Tuple ->
                (* The "pair" case is frequent enough to have its special treatment *)
                if List.length tys = 2 then "p" else "t"
            | Assumed Result -> "r"
            | AdtId adt_id ->
                let def =
                  TypeDefId.Map.find adt_id ctx.type_context.type_defs
                in
                StringUtils.string_of_chars [ (get_name def.name).[0] ])
        | TypeVar _ -> "x" (* lacking imagination here... *)
        | Bool -> "b"
        | Char -> "c"
        | Integer _ -> "i"
        | Str -> "s"
        | Array _ | Slice _ -> raise Unimplemented)
  in
  let type_var_basename (_varset : StringSet.t) (basename : string) : string =
    (* This is *not* a no-op: type variables in Rust often start with
     * a capital letter *)
    to_snake_case basename
  in
  let append_index (basename : string) (i : int) : string =
    basename ^ string_of_int i
  in
  {
    bool_name = "bool";
    char_name = "char";
    int_name;
    str_name = "string";
    field_name;
    variant_name;
    type_name;
    fun_name;
    var_basename;
    type_var_basename;
    append_index;
  }

(** [inside] constrols whether we should add parentheses or not around type
    application (if `true` we add parentheses).
 *)
let rec extract_ty (ctx : extraction_ctx) (fmt : F.formatter) (inside : bool)
    (ty : ty) : unit =
  match ty with
  | Adt (type_id, tys) -> (
      match type_id with
      | Tuple ->
          F.pp_print_string fmt "(";
          Collections.List.iter_link (F.pp_print_space fmt)
            (extract_ty ctx fmt true) tys;
          F.pp_print_string fmt ")"
      | AdtId _ | Assumed _ ->
          if inside then F.pp_print_string fmt "(";
          F.pp_print_string fmt (ctx_get_type type_id ctx);
          if tys <> [] then F.pp_print_space fmt ();
          Collections.List.iter_link (F.pp_print_space fmt)
            (extract_ty ctx fmt true) tys;
          if inside then F.pp_print_string fmt ")")
  | TypeVar vid -> F.pp_print_string fmt (ctx_get_type_var vid ctx)
  | Bool -> F.pp_print_string fmt ctx.fmt.bool_name
  | Char -> F.pp_print_string fmt ctx.fmt.char_name
  | Integer int_ty -> F.pp_print_string fmt (ctx.fmt.int_name int_ty)
  | Str -> F.pp_print_string fmt ctx.fmt.str_name
  | Array _ | Slice _ -> raise Unimplemented

let extract_type_def_struct_body (ctx : extraction_ctx) (fmt : F.formatter)
    (def : type_def) (fields : field list) : unit =
  (* We want to generate a definition which looks like this:
   * ```
   * type t = { x : int; y : bool; }
   * ```
   *
   * Or if there isn't enough space on one line:
   * ```
   * type t = {
   *   x : int;
   *   y : bool;
   * }
   * ```
   * Note that we already printed: `type t =`
   *
   * Also, in case there are no fields, we need to define the type as `unit`
   * (`type t = {}` doesn't work in F* ).
   *)
  if fields = [] then (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "unit")
  else (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "{";
    (* The body itself *)
    F.pp_open_hvbox fmt 0;
    F.pp_open_hvbox fmt ctx.indent_incr;
    F.pp_print_space fmt ();
    (* Print the fields *)
    let print_field (field_id : FieldId.id) (f : field) : unit =
      let field_name = ctx_get_field def.def_id field_id ctx in
      F.pp_open_box fmt ctx.indent_incr;
      F.pp_print_string fmt field_name;
      F.pp_print_space fmt ();
      F.pp_print_string fmt ":";
      F.pp_print_space fmt ();
      extract_ty ctx fmt false f.field_ty;
      F.pp_print_string fmt ";";
      F.pp_print_space fmt ();
      F.pp_close_box fmt ()
    in
    let fields = FieldId.mapi (fun fid f -> (fid, f)) fields in
    List.iter (fun (fid, f) -> print_field fid f) fields;
    (* Close *)
    F.pp_close_box fmt ();
    F.pp_print_string fmt "}";
    F.pp_close_box fmt ())

let extract_type_def_enum_body (ctx : extraction_ctx) (fmt : F.formatter)
    (def : type_def) (def_name : string) (type_params : string list)
    (variants : variant list) : unit =
  (* We want to generate a definition which looks like this:
   * ```
   * type list a = | Cons : a -> list a -> list a | Nil : list a
   * ```
   *
   * If there isn't enough space on one line:
   * ```
   * type s =
   * | Cons : a -> list a -> list a
   * | Nil : list a
   * ```
   *
   * And if we need to write the type of a variant on several lines:
   * ```
   * type s =
   * | Cons :
   *   a ->
   *   list a ->
   *   list a
   * | Nil : list a
   * ```
   *
   * Finally, it is possible to give names to the variant fields in Rust.
   * In this situation, we generate a definition like this:
   * ```
   * type s =
   * | Cons : hd:a -> tl:list a -> list a
   * | Nil : list a
   * ```
   *
   * Note that we already printed: `type s =`
   *)
  (* Print the variants *)
  let print_variant (variant_id : VariantId.id) (variant : variant) : unit =
    let variant_name = ctx_get_variant def.def_id variant_id ctx in
    F.pp_print_space fmt ();
    F.pp_open_hvbox fmt ctx.indent_incr;
    (* variant box *)
    (* `| Cons :`
     * Note that we really don't want any break above so we print everything
     * at once. *)
    F.pp_print_string fmt ("| " ^ variant_name ^ " :");
    F.pp_print_space fmt ();
    let print_field (fid : FieldId.id) (f : field) (ctx : extraction_ctx) :
        extraction_ctx =
      (* Open the field box *)
      F.pp_open_box fmt ctx.indent_incr;
      (* Print the field names
       * `  x :`
       * Note that when printing fields, we register the field names as
       * *variables*: they don't need to be unique at the top level. *)
      let ctx =
        match f.field_name with
        | None -> ctx
        | Some field_name ->
            let var_id = VarId.of_int (FieldId.to_int fid) in
            let field_name =
              ctx.fmt.var_basename ctx.names_map.names_set (Some field_name)
                f.field_ty
            in
            let ctx, field_name = ctx_add_var field_name var_id ctx in
            F.pp_print_string fmt (field_name ^ " :");
            F.pp_print_space fmt ();
            ctx
      in
      (* Print the field type *)
      extract_ty ctx fmt false f.field_ty;
      (* Print the arrow `->`*)
      F.pp_print_space fmt ();
      F.pp_print_string fmt "->";
      (* Close the field box *)
      F.pp_close_box fmt ();
      F.pp_print_space fmt ();
      (* Return *)
      ctx
    in
    (* Print the fields *)
    let fields = FieldId.mapi (fun fid f -> (fid, f)) variant.fields in
    let _ =
      List.fold_left (fun ctx (fid, f) -> print_field fid f ctx) ctx fields
    in
    (* Print the final type *)
    F.pp_open_hovbox fmt 0;
    F.pp_print_string fmt def_name;
    List.iter
      (fun type_param ->
        F.pp_print_space fmt ();
        F.pp_print_string fmt type_param)
      type_params;
    F.pp_close_box fmt ();
    (* Close the variant box *)
    F.pp_close_box fmt ()
  in
  (* Print the variants *)
  let variants = VariantId.mapi (fun vid v -> (vid, v)) variants in
  List.iter (fun (vid, v) -> print_variant vid v) variants

(** Compute the names for all the top-level identifiers used in a type
    definition (type name, variant names, field names, etc. but not type
    parameters).
    
    We need to do this preemptively, beforce extracting any definition,
    because of recursive definitions.
 *)
let extract_type_def_register_names (ctx : extraction_ctx) (def : type_def) :
    extraction_ctx =
  (* Compute and register the type def name *)
  let ctx, def_name = ctx_add_type_def def ctx in
  (* Compute and register:
   * - the variant names, if this is an enumeration
   * - the field names, if this is a structure
   *)
  let ctx =
    match def.kind with
    | Struct fields ->
        fst (ctx_add_fields def (FieldId.mapi (fun id f -> (id, f)) fields) ctx)
    | Enum variants ->
        fst
          (ctx_add_variants def
             (VariantId.mapi (fun id v -> (id, v)) variants)
             ctx)
  in
  (* Return *)
  ctx

(** Extract a type definition.

    Note that all the names used for extraction should already have been
    registered.
 *)
let extract_type_def (ctx : extraction_ctx) (fmt : F.formatter) (def : type_def)
    : unit =
  (* Retrieve the definition name *)
  let def_name = ctx_get_local_type def.def_id ctx in
  (* Add the type params - note that we remember those bindings only for the
   * body translation: the updated ctx we return at the end of the function
   * only contains the registered type def and variant names *)
  let ctx_body, type_params = ctx_add_type_params def.type_params ctx in
  (* Add a break before *)
  F.pp_print_break fmt 0 0;
  (* Print a comment to link the extracted type to its original rust definition *)
  F.pp_print_string fmt ("(** [" ^ Print.name_to_string def.name ^ "] *)");
  F.pp_print_space fmt ();
  (* Open a box for the definition, so that whenever possible it gets printed on
   * one line *)
  F.pp_open_hvbox fmt 0;
  (* Open a box for "type TYPE_NAME (TYPE_PARAMS) =" *)
  F.pp_open_hovbox fmt ctx.indent_incr;
  (* > "type TYPE_NAME" *)
  F.pp_print_string fmt ("type " ^ def_name);
  (* Print the type parameters *)
  if def.type_params <> [] then (
    F.pp_print_space fmt ();
    F.pp_print_string fmt "(";
    List.iter
      (fun (p : type_var) ->
        let pname = ctx_get_type_var p.index ctx_body in
        F.pp_print_string fmt pname;
        F.pp_print_space fmt ())
      def.type_params;
    F.pp_print_string fmt " : Type0)");
  (* Print the "=" *)
  F.pp_print_space fmt ();
  F.pp_print_string fmt "=";
  (* Close the box for "type TYPE_NAME (TYPE_PARAMS) =" *)
  F.pp_close_box fmt ();
  (match def.kind with
  | Struct fields -> extract_type_def_struct_body ctx_body fmt def fields
  | Enum variants ->
      extract_type_def_enum_body ctx_body fmt def def_name type_params variants);
  (* Close the box for the definition *)
  F.pp_close_box fmt ();
  (* Add breaks to insert new lines between definitions *)
  F.pp_print_break fmt 0 0