summaryrefslogtreecommitdiff
path: root/src/Cps.ml
blob: 040360c1317cb89fd77622fa67705972f5cdb95d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
(** This module defines various utilities to write the interpretation functions
    in continuation passing style. *)

module T = Types
module V = Values
module C = Contexts

(** TODO: change the name *)
type eval_error = EPanic

(** Result of evaluating a statement *)
type statement_eval_res =
  | Unit
  | Break of int
  | Continue of int
  | Return
  | Panic

(** Synthesized expresssion - dummy for now *)
type sexpr = SOne | SList of sexpr list

type eval_result = sexpr option

type m_fun = C.eval_ctx -> eval_result
(** Monadic function *)

type cm_fun = m_fun -> m_fun
(** Monadic function with continuation *)

type typed_value_cm_fun = V.typed_value -> cm_fun
(** Monadic function with continuation and receiving a typed value *)

(** Convert a unit function to a cm function *)
let unit_to_cm_fun (f : C.eval_ctx -> unit) : cm_fun =
 fun cf ctx ->
  f ctx;
  cf ctx

(** *)
let update_to_cm_fun (f : C.eval_ctx -> C.eval_ctx) : cm_fun =
 fun cf ctx ->
  let ctx = f ctx in
  cf ctx

(** Composition of functions taking continuations as paramters.
    We tried to make this as general as possible. *)
let comp (f : 'c -> 'd -> 'e) (g : ('a -> 'b) -> 'c) : ('a -> 'b) -> 'd -> 'e =
 fun cf ctx -> f (g cf) ctx

let comp_unit (f : cm_fun) (g : C.eval_ctx -> unit) : cm_fun =
  comp f (unit_to_cm_fun g)

let comp_update (f : cm_fun) (g : C.eval_ctx -> C.eval_ctx) : cm_fun =
  comp f (update_to_cm_fun g)

(** This is just a test, to check that [comp] is general enough to handle a case
    where a function must compute a value and give it to the continuation.
    It happens for functions like [eval_operand].

    Keeping this here also makes it a good reference, when one wants to figure
    out the signatures he should use for such a composition.
 *)
let comp_ret_val (f : (V.typed_value -> m_fun) -> m_fun)
    (g : m_fun -> V.typed_value -> m_fun) : cm_fun =
  comp f g

let apply (f : cm_fun) (g : m_fun) : m_fun = fun ctx -> f g ctx

let id_cm_fun : cm_fun = fun cf ctx -> cf ctx

(** If we have a list of [inputs] of type `'a list` and a function [f] which
    evaluates one element of type `'a` to compute a result of type `'b` before
    giving it to a continuation, the following function performs a fold operation:
    it evaluates all the inputs one by one by accumulating the results in a list,
    and gives the list to a continuation.
    
    Note that we make sure that the results are listed in the order in
    which they were computed (the first element of the list is the result
    of applying [f] to the first element of the inputs).
 *)
let fold_left_apply_continuation (f : 'a -> ('b -> 'c -> 'd) -> 'c -> 'd)
    (inputs : 'a list) (cf : 'b list -> 'c -> 'd) : 'c -> 'd =
  let rec eval_list (inputs : 'a list) (cf : 'b list -> 'c -> 'd)
      (outputs : 'b list) : 'c -> 'd =
   fun ctx ->
    match inputs with
    | [] -> cf (List.rev outputs) ctx
    | x :: inputs ->
        comp (f x) (fun cf v -> eval_list inputs cf (v :: outputs)) cf ctx
  in
  eval_list inputs cf []

(** Unit test/example for [fold_left_apply_continuation] *)
let _ =
  fold_left_apply_continuation
    (fun x cf () -> cf (10 + x) ())
    [ 0; 1; 2; 3; 4 ]
    (fun values () -> assert (values = [ 10; 11; 12; 13; 14 ]))
    ()