summaryrefslogtreecommitdiff
path: root/src/Cps.ml
blob: 2c515ed0e279bc8bd82de013de203279008292e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
(** This module defines various utilities to write the interpretation functions
    in continuation passing style. *)

module T = Types
module V = Values
module C = Contexts

(** TODO: change the name *)
type eval_error = EPanic

(** Result of evaluating a statement *)
type statement_eval_res =
  | Unit
  | Break of int
  | Continue of int
  | Return
  | Panic

(** Synthesized expresssion - dummy for now *)
type sexpr = SOne | SList of sexpr list

type eval_result = sexpr option

type m_fun = C.eval_ctx -> eval_result
(** Continuation function *)

type cm_fun = m_fun -> m_fun
(** Continuation taking another continuation as parameter *)

type typed_value_m_fun = V.typed_value -> m_fun
(** Continuation taking a typed value as parameter - TODO: use more *)

type typed_value_cm_fun = V.typed_value -> cm_fun
(** Continuation taking another continuation as parameter and a typed
    value as parameter.
 *)

type st_m_fun = statement_eval_res -> m_fun
(** Type of a continuation used when evaluating a statement *)

type st_cm_fun = st_m_fun -> m_fun
(** Type of a continuation used when evaluating a statement *)

(** Convert a unit function to a cm function *)
let unit_to_cm_fun (f : C.eval_ctx -> unit) : cm_fun =
 fun cf ctx ->
  f ctx;
  cf ctx

(** *)
let update_to_cm_fun (f : C.eval_ctx -> C.eval_ctx) : cm_fun =
 fun cf ctx ->
  let ctx = f ctx in
  cf ctx

(** Composition of functions taking continuations as parameters.
    We tried to make this as general as possible. *)
let comp (f : 'c -> 'd -> 'e) (g : ('a -> 'b) -> 'c) : ('a -> 'b) -> 'd -> 'e =
 fun cf ctx -> f (g cf) ctx

let comp_unit (f : cm_fun) (g : C.eval_ctx -> unit) : cm_fun =
  comp f (unit_to_cm_fun g)

let comp_update (f : cm_fun) (g : C.eval_ctx -> C.eval_ctx) : cm_fun =
  comp f (update_to_cm_fun g)

(** This is just a test, to check that [comp] is general enough to handle a case
    where a function must compute a value and give it to the continuation.
    It happens for functions like [eval_operand].

    Keeping this here also makes it a good reference, when one wants to figure
    out the signatures he should use for such a composition.
 *)
let comp_ret_val (f : (V.typed_value -> m_fun) -> m_fun)
    (g : m_fun -> V.typed_value -> m_fun) : cm_fun =
  comp f g

let apply (f : cm_fun) (g : m_fun) : m_fun = fun ctx -> f g ctx

let id_cm_fun : cm_fun = fun cf ctx -> cf ctx

(** If we have a list of [inputs] of type `'a list` and a function [f] which
    evaluates one element of type `'a` to compute a result of type `'b` before
    giving it to a continuation, the following function performs a fold operation:
    it evaluates all the inputs one by one by accumulating the results in a list,
    and gives the list to a continuation.
    
    Note that we make sure that the results are listed in the order in
    which they were computed (the first element of the list is the result
    of applying [f] to the first element of the inputs).
    
    See the unit test below for an illustration.
 *)
let fold_left_apply_continuation (f : 'a -> ('b -> 'c -> 'd) -> 'c -> 'd)
    (inputs : 'a list) (cf : 'b list -> 'c -> 'd) : 'c -> 'd =
  let rec eval_list (inputs : 'a list) (cf : 'b list -> 'c -> 'd)
      (outputs : 'b list) : 'c -> 'd =
   fun ctx ->
    match inputs with
    | [] -> cf (List.rev outputs) ctx
    | x :: inputs ->
        comp (f x) (fun cf v -> eval_list inputs cf (v :: outputs)) cf ctx
  in
  eval_list inputs cf []

(** Unit test/example for [fold_left_apply_continuation] *)
let _ =
  fold_left_apply_continuation
    (fun x cf (ctx : unit) -> cf (10 + x) ctx)
    [ 0; 1; 2; 3; 4 ]
    (fun values _ctx -> assert (values = [ 10; 11; 12; 13; 14 ]))
    ()

(** Composition of functions taking continuations as parameters.

    We sometimes have the following situation, where we want to compose three
    functions `send`, `transmit` and `receive` such that:
    - those three functions take continuations as parameters
    - `send` generates a value and gives it to its continuation
    - `receive` expects a value (so we can compose `send` and `receive` like
      so: `comp send receive`)
    - `transmit` doesn't expect any value and needs to be called between `send`
      and `receive`
    
    In this situation, we need to take the value given by `send` and "transmit"
    it to `receive`.

    This is what this function does (see the unit test below for an illustration).
 *)
let comp_transmit (f : ('v -> 'm) -> 'n) (g : 'm -> 'm) : ('v -> 'm) -> 'n =
 fun cf -> f (fun v -> g (cf v))

(** Example of use of [comp_transmit] *)
let () =
  let return3 (cf : int -> unit -> unit) (ctx : unit) = cf 3 ctx in
  let do_nothing (cf : unit -> unit) (ctx : unit) = cf ctx in
  let consume3 (x : int) (ctx : unit) : unit =
    assert (x = 3);
    ctx
  in
  let cc = comp_transmit return3 do_nothing in
  let cc = cc consume3 in
  cc ()

(** Sometimes, we want to compose a function with a continuation which checks
    its computed value and its updated context, before transmitting them
 *)
let comp_check_value (f : ('v -> 'ctx -> 'a) -> 'ctx -> 'b)
    (g : 'v -> 'ctx -> unit) : ('v -> 'ctx -> 'a) -> 'ctx -> 'b =
 fun cf ->
  f (fun v ctx ->
      g v ctx;
      cf v ctx)

(** This case is similar to [comp_check_value], but even simpler (we only check
    the context)
 *)
let comp_check_ctx (f : ('ctx -> 'a) -> 'ctx -> 'b) (g : 'ctx -> unit) :
    ('ctx -> 'a) -> 'ctx -> 'b =
 fun cf ->
  f (fun ctx ->
      g ctx;
      cf ctx)