1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
open Types
open Values
open CfimAst
module V = Values
open ValuesUtils
module M = Modules
(** Some global counters.
*
* Note that those counters were initially stored in [eval_ctx] values,
* but it proved better to make them global and stateful:
* - when branching (and thus executing on several paths with different
* contexts) it is better to really have unique ids everywhere (and
* not have fresh ids shared by several contexts even though introduced
* after the branching) because at some point we might need to merge the
* different contexts
* - also, it is a lot more convenient to not store those counters in contexts
* objects
*)
let symbolic_value_id_counter, fresh_symbolic_value_id =
SymbolicValueId.fresh_stateful_generator ()
let borrow_id_counter, fresh_borrow_id = BorrowId.fresh_stateful_generator ()
let region_id_counter, fresh_region_id = RegionId.fresh_stateful_generator ()
let abstraction_id_counter, fresh_abstraction_id =
AbstractionId.fresh_stateful_generator ()
(** We shouldn't need to reset the global counters, but it might be good to
do it from time to time, for instance every time we start evaluating/
synthesizing a function.
The reasons are manifold:
- it might prevent the counters from overflowing (although this seems
extremely unlikely - as a side node: we have overflow checks to make
sure the synthesis doesn't get impacted by potential overflows)
- most importantly, it allows to always manipulate low values, which
is always a lot more readable when debugging
*)
let reset_global_counters () =
symbolic_value_id_counter := SymbolicValueId.generator_zero;
borrow_id_counter := BorrowId.generator_zero;
region_id_counter := RegionId.generator_zero;
abstraction_id_counter := AbstractionId.generator_zero
type binder = {
index : VarId.id; (** Unique variable identifier *)
name : string option; (** Possible name *)
}
[@@deriving show]
(** A binder used in an environment, to map a variable to a value *)
(** Environment value: mapping from variable to value, abstraction (only
used in symbolic mode) or stack frame delimiter.
TODO: rename Var (-> Binding?)
*)
type env_elem =
| Var of (binder option[@opaque]) * typed_value
(** Variable binding - the binder is None if the variable is a dummy variable
(we use dummy variables to store temporaries while doing bookkeeping such
as ending borrows for instance). *)
| Abs of abs
| Frame
[@@deriving
show,
visitors
{
name = "iter_env_elem";
variety = "iter";
ancestors = [ "iter_abs" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_env_elem";
variety = "map";
ancestors = [ "map_abs" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
type env = env_elem list
[@@deriving
show,
visitors
{
name = "iter_env";
variety = "iter";
ancestors = [ "iter_env_elem" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
},
visitors
{
name = "map_env";
variety = "map";
ancestors = [ "map_env_elem" ];
nude = true (* Don't inherit [VisitorsRuntime.iter] *);
concrete = true;
}]
type interpreter_mode = ConcreteMode | SymbolicMode [@@deriving show]
type config = {
mode : interpreter_mode;
(** Concrete mode (interpreter) or symbolic mode (for synthesis) **)
check_invariants : bool;
(** Check that invariants are maintained whenever we execute a statement *)
greedy_expand_symbolics_with_borrows : bool;
(** Expand all symbolic values containing borrows upon introduction - allows
to use restrict ourselves to a simpler model for the projectors over
symbolic values.
The interpreter fails if doing this requires to do a branching (because
we need to expand an enumeration with strictly more than one variant)
or if we need to expand a recursive type (because this leads to looping).
*)
}
[@@deriving show]
type partial_config = {
check_invariants : bool;
greedy_expand_symbolics_with_borrows : bool;
}
(** See [config] *)
let config_of_partial (mode : interpreter_mode) (config : partial_config) :
config =
{
mode;
check_invariants = config.check_invariants;
greedy_expand_symbolics_with_borrows =
config.greedy_expand_symbolics_with_borrows;
}
type type_context = {
type_defs_groups : M.types_decl_group TypeDefId.map_t;
type_defs : type_def list;
}
[@@deriving show]
type eval_ctx = {
type_context : type_context;
fun_context : fun_def list;
type_vars : type_var list;
env : env;
ended_regions : RegionId.set_t;
}
[@@deriving show]
(** Evaluation context *)
let lookup_type_var (ctx : eval_ctx) (vid : TypeVarId.id) : type_var =
TypeVarId.nth ctx.type_vars vid
let opt_binder_has_vid (bv : binder option) (vid : VarId.id) : bool =
match bv with Some bv -> bv.index = vid | None -> false
let ctx_lookup_binder (ctx : eval_ctx) (vid : VarId.id) : binder =
(* TOOD: we might want to stop at the end of the frame *)
let rec lookup env =
match env with
| [] ->
raise (Invalid_argument ("Variable not found: " ^ VarId.to_string vid))
| Var (var, _) :: env' ->
if opt_binder_has_vid var vid then Option.get var else lookup env'
| (Abs _ | Frame) :: env' -> lookup env'
in
lookup ctx.env
(** TODO: make this more efficient with maps *)
let ctx_lookup_type_def (ctx : eval_ctx) (tid : TypeDefId.id) : type_def =
TypeDefId.nth ctx.type_context.type_defs tid
(** TODO: make this more efficient with maps *)
let ctx_lookup_fun_def (ctx : eval_ctx) (fid : FunDefId.id) : fun_def =
FunDefId.nth ctx.fun_context fid
(** Retrieve a variable's value in an environment *)
let env_lookup_var_value (env : env) (vid : VarId.id) : typed_value =
(* We take care to stop at the end of current frame: different variables
in different frames can have the same id!
*)
let rec lookup env =
match env with
| [] -> failwith "Unexpected"
| Var (var, v) :: env' ->
if opt_binder_has_vid var vid then v else lookup env'
| Abs _ :: env' -> lookup env'
| Frame :: _ -> failwith "End of frame"
in
lookup env
(** Retrieve a variable's value in an evaluation context *)
let ctx_lookup_var_value (ctx : eval_ctx) (vid : VarId.id) : typed_value =
env_lookup_var_value ctx.env vid
(** Update a variable's value in an environment
This is a helper function: it can break invariants and doesn't perform
any check.
*)
let env_update_var_value (env : env) (vid : VarId.id) (nv : typed_value) : env =
(* We take care to stop at the end of current frame: different variables
in different frames can have the same id!
*)
let rec update env =
match env with
| [] -> failwith "Unexpected"
| Var (var, v) :: env' ->
if opt_binder_has_vid var vid then Var (var, nv) :: env'
else Var (var, v) :: update env'
| Abs abs :: env' -> Abs abs :: update env'
| Frame :: _ -> failwith "End of frame"
in
update env
let var_to_binder (var : var) : binder = { index = var.index; name = var.name }
(** Update a variable's value in an evaluation context.
This is a helper function: it can break invariants and doesn't perform
any check.
*)
let ctx_update_var_value (ctx : eval_ctx) (vid : VarId.id) (nv : typed_value) :
eval_ctx =
{ ctx with env = env_update_var_value ctx.env vid nv }
(** Push a variable in the context's environment.
Checks that the pushed variable and its value have the same type (this
is important).
*)
let ctx_push_var (ctx : eval_ctx) (var : var) (v : typed_value) : eval_ctx =
assert (var.var_ty = v.ty);
let bv = var_to_binder var in
{ ctx with env = Var (Some bv, v) :: ctx.env }
(** Push a list of variables.
Checks that the pushed variables and their values have the same type (this
is important).
*)
let ctx_push_vars (ctx : eval_ctx) (vars : (var * typed_value) list) : eval_ctx
=
assert (
List.for_all
(fun (var, (value : typed_value)) -> var.var_ty = value.ty)
vars);
let vars =
List.map (fun (var, value) -> Var (Some (var_to_binder var), value)) vars
in
let vars = List.rev vars in
{ ctx with env = List.append vars ctx.env }
(** Push a dummy variable in the context's environment. *)
let ctx_push_dummy_var (ctx : eval_ctx) (v : typed_value) : eval_ctx =
{ ctx with env = Var (None, v) :: ctx.env }
(** Pop the first dummy variable from a context's environment. *)
let ctx_pop_dummy_var (ctx : eval_ctx) : eval_ctx * typed_value =
let rec pop_var (env : env) : env * typed_value =
match env with
| [] -> failwith "Could not find a dummy variable"
| Var (None, v) :: env -> (env, v)
| ee :: env ->
let env, v = pop_var env in
(ee :: env, v)
in
let env, v = pop_var ctx.env in
({ ctx with env }, v)
(** Read the first dummy variable in a context's environment. *)
let ctx_read_first_dummy_var (ctx : eval_ctx) : typed_value =
let rec read_var (env : env) : typed_value =
match env with
| [] -> failwith "Could not find a dummy variable"
| Var (None, v) :: _env -> v
| _ :: env -> read_var env
in
read_var ctx.env
(** Push an uninitialized variable (which thus maps to [Bottom]) *)
let ctx_push_uninitialized_var (ctx : eval_ctx) (var : var) : eval_ctx =
ctx_push_var ctx var (mk_bottom var.var_ty)
(** Push a list of uninitialized variables (which thus map to [Bottom]) *)
let ctx_push_uninitialized_vars (ctx : eval_ctx) (vars : var list) : eval_ctx =
let vars = List.map (fun v -> (v, mk_bottom v.var_ty)) vars in
ctx_push_vars ctx vars
let env_lookup_abs (env : env) (abs_id : V.AbstractionId.id) : V.abs =
let rec lookup env =
match env with
| [] -> failwith "Unexpected"
| Var (_, _) :: env' -> lookup env'
| Abs abs :: env' -> if abs.abs_id = abs_id then abs else lookup env'
| Frame :: env' -> lookup env'
in
lookup env
let ctx_lookup_abs (ctx : eval_ctx) (abs_id : V.AbstractionId.id) : V.abs =
env_lookup_abs ctx.env abs_id
let ctx_type_def_is_rec (ctx : eval_ctx) (id : TypeDefId.id) : bool =
let decl_group = TypeDefId.Map.find id ctx.type_context.type_defs_groups in
match decl_group with M.Rec _ -> true | M.NonRec _ -> false
(** Visitor to iterate over the values in the *current* frame *)
class ['self] iter_frame =
object (self : 'self)
inherit [_] V.iter_abs
method visit_Var : 'acc -> binder option -> typed_value -> unit =
fun acc _vid v -> self#visit_typed_value acc v
method visit_Abs : 'acc -> abs -> unit =
fun acc abs -> self#visit_abs acc abs
method visit_env_elem : 'acc -> env_elem -> unit =
fun acc em ->
match em with
| Var (vid, v) -> self#visit_Var acc vid v
| Abs abs -> self#visit_Abs acc abs
| Frame -> failwith "Unreachable"
method visit_env : 'acc -> env -> unit =
fun acc env ->
match env with
| [] -> ()
| Frame :: _ -> (* We stop here *) ()
| em :: env ->
self#visit_env_elem acc em;
self#visit_env acc env
end
(** Visitor to map over the values in the *current* frame *)
class ['self] map_frame_concrete =
object (self : 'self)
inherit [_] V.map_abs
method visit_Var : 'acc -> binder option -> typed_value -> env_elem =
fun acc vid v ->
let v = self#visit_typed_value acc v in
Var (vid, v)
method visit_Abs : 'acc -> abs -> env_elem =
fun acc abs -> Abs (self#visit_abs acc abs)
method visit_env_elem : 'acc -> env_elem -> env_elem =
fun acc em ->
match em with
| Var (vid, v) -> self#visit_Var acc vid v
| Abs abs -> self#visit_Abs acc abs
| Frame -> failwith "Unreachable"
method visit_env : 'acc -> env -> env =
fun acc env ->
match env with
| [] -> []
| Frame :: env -> (* We stop here *) Frame :: env
| em :: env ->
let em = self#visit_env_elem acc em in
let env = self#visit_env acc env in
em :: env
end
(** Visitor to iterate over the values in a context *)
class ['self] iter_eval_ctx =
object (_self : 'self)
inherit [_] iter_env as super
method visit_eval_ctx : 'acc -> eval_ctx -> unit =
fun acc ctx -> super#visit_env acc ctx.env
end
(** Visitor to map the values in a context *)
class ['self] map_eval_ctx =
object (_self : 'self)
inherit [_] map_env as super
method visit_eval_ctx : 'acc -> eval_ctx -> eval_ctx =
fun acc ctx ->
let env = super#visit_env acc ctx.env in
{ ctx with env }
end
|