1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
(** The following file redefines several modules like Map or Set. *)
module F = Format
module List = struct
include List
(** Split a list at a given index.
`split_at ls i` splits `ls` into two lists where the first list has
length `i`.
Raise `Failure` if the list is too short.
*)
let rec split_at (ls : 'a list) (i : int) =
if i < 0 then raise (Invalid_argument "split_at take positive integers")
else if i = 0 then ([], ls)
else
match ls with
| [] ->
raise
(Failure "The int given to split_at should be <= the list's length")
| x :: ls' ->
let ls1, ls2 = split_at ls' (i - 1) in
(x :: ls1, ls2)
(** Pop the last element of a list
Raise `Failure` if the list is empty.
*)
let rec pop_last (ls : 'a list) : 'a list * 'a =
match ls with
| [] -> raise (Failure "The list is empty")
| [ x ] -> ([], x)
| x :: ls ->
let ls, last = pop_last ls in
(x :: ls, last)
end
module type OrderedType = sig
include Map.OrderedType
val to_string : t -> string
val pp_t : Format.formatter -> t -> unit
val show_t : t -> string
end
(** Ordered string *)
module OrderedString : OrderedType with type t = string = struct
include String
let to_string s = s
let pp_t fmt s = Format.pp_print_string fmt s
let show_t s = s
end
module type Map = sig
include Map.S
val to_string : string option -> ('a -> string) -> 'a t -> string
(** "Simple" pretty printing function.
Is useful when we need to customize a bit [show_t], but without using
something as burdensome as [pp_t].
`to_string (Some indent) m` prints `m` by breaking line after every binding
and inserting `indent`.
*)
val pp : (Format.formatter -> 'a -> unit) -> Format.formatter -> 'a t -> unit
val show : ('a -> string) -> 'a t -> string
end
module MakeMap (Ord : OrderedType) : Map with type key = Ord.t = struct
module Map = Map.Make (Ord)
include Map
let to_string indent_opt a_to_string m =
let indent, break =
match indent_opt with Some indent -> (indent, "\n") | None -> ("", " ")
in
let sep = "," ^ break in
let ls =
Map.fold
(fun key v ls ->
(indent ^ Ord.to_string key ^ " -> " ^ a_to_string v) :: ls)
m []
in
match ls with
| [] -> "{}"
| _ -> "{" ^ break ^ String.concat sep (List.rev ls) ^ break ^ "}"
let pp (pp_a : Format.formatter -> 'a -> unit) (fmt : Format.formatter)
(m : 'a t) : unit =
let pp_string = F.pp_print_string fmt in
let pp_space () = F.pp_print_space fmt () in
pp_string "{";
F.pp_open_box fmt 2;
Map.iter
(fun key x ->
Ord.pp_t fmt key;
pp_space ();
pp_string "->";
pp_space ();
pp_a fmt x;
pp_string ",";
F.pp_print_break fmt 1 0)
m;
F.pp_close_box fmt ();
F.pp_print_break fmt 0 0;
pp_string "}"
let show show_a m = to_string None show_a m
end
module type Set = sig
include Set.S
val to_string : string option -> t -> string
(** "Simple" pretty printing function.
Is useful when we need to customize a bit [show_t], but without using
something as burdensome as [pp_t].
`to_string (Some indent) s` prints `s` by breaking line after every element
and inserting `indent`.
*)
val pp : Format.formatter -> t -> unit
val show : t -> string
end
module MakeSet (Ord : OrderedType) : Set with type elt = Ord.t = struct
module Set = Set.Make (Ord)
include Set
let to_string indent_opt m =
let indent, break =
match indent_opt with Some indent -> (indent, "\n") | None -> ("", " ")
in
let sep = "," ^ break in
let ls = Set.fold (fun v ls -> (indent ^ Ord.to_string v) :: ls) m [] in
match ls with
| [] -> "{}"
| _ -> "{" ^ break ^ String.concat sep (List.rev ls) ^ break ^ "}"
let pp (fmt : Format.formatter) (m : t) : unit =
let pp_string = F.pp_print_string fmt in
pp_string "{";
F.pp_open_box fmt 2;
Set.iter
(fun x ->
Ord.pp_t fmt x;
pp_string ",";
F.pp_print_break fmt 1 0)
m;
F.pp_close_box fmt ();
F.pp_print_break fmt 0 0;
pp_string "}"
let show s = to_string None s
end
(** A map where the bindings are injective (i.e., if two keys are distinct,
their bindings are distinct).
This is useful for instance when generating mappings from our internal
identifiers to names (i.e., strings) when generating code, in order to
make sure that we don't have potentially dangerous collisions.
*)
module type MapInj = sig
type key
type elem
type t
val empty : t
val is_empty : t -> bool
val mem : key -> t -> bool
val add : key -> elem -> t -> t
val singleton : key -> elem -> t
val remove : key -> t -> t
val compare : (elem -> elem -> int) -> t -> t -> int
val equal : (elem -> elem -> bool) -> t -> t -> bool
val iter : (key -> elem -> unit) -> t -> unit
val fold : (key -> elem -> 'b -> 'b) -> t -> 'b -> 'b
val for_all : (key -> elem -> bool) -> t -> bool
val exists : (key -> elem -> bool) -> t -> bool
val filter : (key -> elem -> bool) -> t -> t
val partition : (key -> elem -> bool) -> t -> t * t
val cardinal : t -> int
val bindings : t -> (key * elem) list
val min_binding : t -> key * elem
val min_binding_opt : t -> (key * elem) option
val max_binding : t -> key * elem
val max_binding_opt : t -> (key * elem) option
val choose : t -> key * elem
val choose_opt : t -> (key * elem) option
val split : key -> t -> t * elem option * t
val find : key -> t -> elem
val find_opt : key -> t -> elem option
val find_first : (key -> bool) -> t -> key * elem
val find_first_opt : (key -> bool) -> t -> (key * elem) option
val find_last : (key -> bool) -> t -> key * elem
val find_last_opt : (key -> bool) -> t -> (key * elem) option
val to_seq : t -> (key * elem) Seq.t
val to_seq_from : key -> t -> (key * elem) Seq.t
val add_seq : (key * elem) Seq.t -> t -> t
val of_seq : (key * elem) Seq.t -> t
end
(** See [MapInj] *)
module MakeMapInj (Key : OrderedType) (Elem : OrderedType) :
MapInj with type key = Key.t with type elem = Elem.t = struct
module Map = MakeMap (Key)
module Set = MakeSet (Elem)
type key = Key.t
type elem = Elem.t
type t = { map : elem Map.t; elems : Set.t }
let empty = { map = Map.empty; elems = Set.empty }
let is_empty m = Map.is_empty m.map
let mem k m = Map.mem k m.map
let add k e m =
assert (not (Set.mem e m.elems));
{ map = Map.add k e m.map; elems = Set.add e m.elems }
let singleton k e = { map = Map.singleton k e; elems = Set.singleton e }
let remove k m =
match Map.find_opt k m.map with
| None -> m
| Some x -> { map = Map.remove k m.map; elems = Set.remove x m.elems }
let compare f m1 m2 = Map.compare f m1.map m2.map
let equal f m1 m2 = Map.equal f m1.map m2.map
let iter f m = Map.iter f m.map
let fold f m x = Map.fold f m.map x
let for_all f m = Map.for_all f m.map
let exists f m = Map.exists f m.map
(** Small helper *)
let bindings_to_elems_set (bls : (key * elem) list) : Set.t =
let elems = List.map snd bls in
let elems = List.fold_left (fun s e -> Set.add e s) Set.empty elems in
elems
(** Small helper *)
let map_to_elems_set (map : elem Map.t) : Set.t =
bindings_to_elems_set (Map.bindings map)
(** Small helper *)
let map_to_t (map : elem Map.t) : t =
let elems = map_to_elems_set map in
{ map; elems }
let filter f m =
let map = Map.filter f m.map in
let elems = map_to_elems_set map in
{ map; elems }
let partition f m =
let map1, map2 = Map.partition f m.map in
(map_to_t map1, map_to_t map2)
let cardinal m = Map.cardinal m.map
let bindings m = Map.bindings m.map
let min_binding m = Map.min_binding m.map
let min_binding_opt m = Map.min_binding_opt m.map
let max_binding m = Map.max_binding m.map
let max_binding_opt m = Map.max_binding_opt m.map
let choose m = Map.choose m.map
let choose_opt m = Map.choose_opt m.map
let split k m =
let l, data, r = Map.split k m.map in
let l = map_to_t l in
let r = map_to_t r in
(l, data, r)
let find k m = Map.find k m.map
let find_opt k m = Map.find_opt k m.map
let find_first k m = Map.find_first k m.map
let find_first_opt k m = Map.find_first_opt k m.map
let find_last k m = Map.find_last k m.map
let find_last_opt k m = Map.find_last_opt k m.map
let to_seq m = Map.to_seq m.map
let to_seq_from k m = Map.to_seq_from k m.map
let rec add_seq s m =
(* Note that it is important to check that we don't add bindings mapping
* to the same element *)
match s () with
| Seq.Nil -> m
| Seq.Cons ((k, e), s) ->
let m = add k e m in
add_seq s m
let of_seq s = add_seq s empty
end
|