1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
//! A hashmap implementation.
//! TODO: we will need function pointers/closures if we want to make the map
//! generic in the key type.
use std::vec::Vec;
pub type Key = usize; // TODO: make this generic
pub type Hash = usize;
pub enum List<T> {
Cons(Key, T, Box<List<T>>),
Nil,
}
/// A hash function for the keys.
/// Rk.: we use shared references because we anticipate on the generic
/// hash map version.
pub fn hash_key(k: &Key) -> Hash {
// Do nothing for now, we might want to implement something smarter
// in the future
*k
}
/// A hash map from [u64] to values
pub struct HashMap<T> {
/// The current number of values in the table
num_values: usize,
/// The max load factor, expressed as a fraction
max_load_factor: (usize, usize),
/// The table itself
slots: Vec<List<T>>,
}
impl<T> HashMap<T> {
/// Allocate a vector of slots of a given size.
/// We would need a loop, but can't use loops for now...
fn allocate_slots(mut slots: Vec<List<T>>, n: usize) -> Vec<List<T>> {
if n == 0 {
slots
} else {
slots.push(List::Nil);
HashMap::allocate_slots(slots, n - 1)
}
}
pub fn new() -> Self {
let slots = HashMap::allocate_slots(Vec::new(), 32);
HashMap {
num_values: 0,
max_load_factor: (4, 5),
slots,
}
}
/// We need a loop here too...
/// Also, we start with the end, so that F* sees that the function terminates.
fn clear_slots(slots: &mut Vec<List<T>>, i: usize) {
if i > 0 {
let i = i - 1;
slots[i] = List::Nil;
HashMap::clear_slots(slots, i)
} else {
()
}
}
pub fn clear(&mut self) {
self.num_values = 0;
let len = self.slots.len();
HashMap::clear_slots(&mut self.slots, len);
}
pub fn len(&self) -> usize {
self.num_values
}
fn insert_in_list(key: Key, value: T, ls: &mut List<T>) {
match ls {
List::Nil => *ls = List::Cons(key, value, Box::new(List::Nil)),
List::Cons(ckey, cvalue, ls) => {
if *ckey == key {
*cvalue = value;
} else {
HashMap::insert_in_list(key, value, ls)
}
}
}
}
pub fn insert(&mut self, key: Key, value: T) {
let hash = hash_key(&key);
let hash_mod = hash % self.slots.len();
HashMap::insert_in_list(key, value, self.slots.get_mut(hash_mod).unwrap());
}
fn get_in_list<'l, 'k>(key: &'k Key, ls: &'l List<T>) -> Option<&'l T> {
match ls {
List::Nil => None,
List::Cons(ckey, cvalue, ls) => {
if ckey == key {
Some(cvalue)
} else {
HashMap::get_in_list(key, ls)
}
}
}
}
/// The signature is not exactly the same as the one in
/// [https://doc.rust-lang.org/std/collections/struct.HashMap.html#method.get_mut]
/// (the region paramaters are more precise here).
pub fn get<'l, 'k>(&'l self, key: &'k Key) -> Option<&'l T> {
let hash = hash_key(key);
let hash_mod = hash % self.slots.len();
HashMap::get_in_list(key, self.slots.get(hash_mod).unwrap())
}
fn get_mut_in_list<'l, 'k>(key: &'k Key, ls: &'l mut List<T>) -> Option<&'l mut T> {
match ls {
List::Nil => None,
List::Cons(ckey, cvalue, ls) => {
if ckey == key {
Some(cvalue)
} else {
HashMap::get_mut_in_list(key, ls)
}
}
}
}
/// Same remark as for [get].
pub fn get_mut<'l, 'k>(&'l mut self, key: &'k Key) -> Option<&'l mut T> {
let hash = hash_key(key);
let hash_mod = hash % self.slots.len();
HashMap::get_mut_in_list(key, self.slots.get_mut(hash_mod).unwrap())
}
fn remove_from_list(key: &Key, ls: &mut List<T>) -> Option<T> {
match ls {
List::Nil => None,
List::Cons(ckey, cvalue, tl) => {
if ckey == key {
// We have to move under borrows, so we need to use
// [std::mem::replace] in several steps.
// Retrieve the tail
let mv_ls = std::mem::replace(ls, List::Nil);
match mv_ls {
List::Nil => unreachable!(),
List::Cons(_, cvalue, tl) => {
// Make the list equal to its tail
*ls = *tl;
// Returned the dropped value
Some(cvalue)
}
}
} else {
HashMap::remove_from_list(key, tl)
}
}
}
}
/// Same remark as for [get].
pub fn remove(&mut self, key: &Key) -> Option<T> {
let hash = hash_key(key);
let hash_mod = hash % self.slots.len();
HashMap::remove_from_list(key, self.slots.get_mut(hash_mod).unwrap())
}
}
#[test]
fn test1() {
let mut hm: HashMap<u64> = HashMap::new();
hm.insert(0, 42);
hm.insert(128, 18);
hm.insert(1024, 138);
hm.insert(1056, 256);
assert!(*hm.get(&128).unwrap() == 18);
let x = hm.get_mut(&1024).unwrap();
*x = 56;
assert!(*hm.get(&1024).unwrap() == 56);
assert!(hm.get(&10).is_none());
let x = hm.remove(&1024).unwrap();
assert!(x == 56);
assert!(*hm.get(&0).unwrap() == 42);
assert!(*hm.get(&128).unwrap() == 18);
assert!(*hm.get(&1056).unwrap() == 256);
}
|