1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
|
open Identifiers
open Types
include Charon.Values
(* TODO(SH): I often write "abstract" (value, borrow content, etc.) while I should
* write "abstraction" (because those values are not abstract, they simply are
* inside abstractions) *)
module BorrowId = IdGen ()
module SymbolicValueId = IdGen ()
module AbstractionId = IdGen ()
module FunCallId = IdGen ()
module LoopId = IdGen ()
type symbolic_value_id = SymbolicValueId.id [@@deriving show, ord]
type symbolic_value_id_set = SymbolicValueId.Set.t [@@deriving show, ord]
type loop_id = LoopId.id [@@deriving show, ord]
type borrow_id = BorrowId.id [@@deriving show, ord]
type borrow_id_set = BorrowId.Set.t [@@deriving show, ord]
type loan_id = BorrowId.id [@@deriving show, ord]
type loan_id_set = BorrowId.Set.t [@@deriving show, ord]
(** Ancestor for {!typed_value} iter visitor *)
class ['self] iter_typed_value_base =
object (self : 'self)
inherit [_] iter_ty
method visit_symbolic_value_id : 'env -> symbolic_value_id -> unit =
fun _ _ -> ()
method visit_variant_id : 'env -> variant_id -> unit = fun _ _ -> ()
method visit_borrow_id : 'env -> borrow_id -> unit = fun _ _ -> ()
method visit_loan_id : 'env -> loan_id -> unit = fun _ _ -> ()
method visit_borrow_id_set : 'env -> borrow_id_set -> unit =
fun env ids -> BorrowId.Set.iter (self#visit_borrow_id env) ids
method visit_loan_id_set : 'env -> loan_id_set -> unit =
fun env ids -> BorrowId.Set.iter (self#visit_loan_id env) ids
end
(** Ancestor for {!typed_value} map visitor for *)
class ['self] map_typed_value_base =
object (self : 'self)
inherit [_] map_ty
method visit_symbolic_value_id
: 'env -> symbolic_value_id -> symbolic_value_id =
fun _ x -> x
method visit_variant_id : 'env -> variant_id -> variant_id = fun _ x -> x
method visit_borrow_id : 'env -> borrow_id -> borrow_id = fun _ id -> id
method visit_loan_id : 'env -> loan_id -> loan_id = fun _ id -> id
method visit_borrow_id_set : 'env -> borrow_id_set -> borrow_id_set =
fun env ids -> BorrowId.Set.map (self#visit_borrow_id env) ids
method visit_loan_id_set : 'env -> loan_id_set -> loan_id_set =
fun env ids -> BorrowId.Set.map (self#visit_loan_id env) ids
end
(** A symbolic value *)
type symbolic_value = {
sv_id : symbolic_value_id;
sv_ty : ty; (** This should be a type with regions *)
}
(** An untyped value, used in the environments - TODO: prefix the names with "V" *)
and value =
| VLiteral of literal (** Non-symbolic primitive value *)
| VAdt of adt_value (** Enumerations and structures *)
| VBottom (** No value (uninitialized or moved value) *)
| VBorrow of borrow_content (** A borrowed value *)
| VLoan of loan_content (** A loaned value *)
| VSymbolic of symbolic_value
(** Borrow projector over a symbolic value.
Note that contrary to the abstraction-values case, symbolic values
appearing in regular values are interpreted as *borrow* projectors,
they can never be *loan* projectors.
*)
and adt_value = {
variant_id : variant_id option;
field_values : typed_value list;
}
and borrow_content =
| VSharedBorrow of borrow_id (** A shared borrow. *)
| VMutBorrow of borrow_id * typed_value (** A mutably borrowed value. *)
| VReservedMutBorrow of borrow_id
(** A reserved mut borrow.
This is used to model {{: https://rustc-dev-guide.rust-lang.org/borrow_check/two_phase_borrows.html} two-phase borrows}.
When evaluating a two-phase mutable borrow we first introduce a reserved
borrow which behaves like a shared borrow until the moment we actually *use*
the borrow: at this point, we end all the other shared borrows (and reserved
borrows - though there shouldn't be any other reserved borrows in practice)
of this value and replace the reserved borrow with a mutable borrow (as well as
the shared loan with a mutable loan).
A simple use case of two-phase borrows:
{[
let mut v = Vec::new();
v.push(v.len());
]}
Without two-phase borrows, this gets desugared to (something similar to)
the following MIR:
{[
v = Vec::new();
v1 = &mut v;
v2 = &v; // We need this borrow, but v has already been mutably borrowed!
l = Vec::len(move v2); // We need v2 here, and v1 *below*
Vec::push(move v1, move l);
]}
With two-phase borrows we get this:
{[
v = Vec::new();
v1 = &two-phase mut v; // v1 is a reserved borrow, and v is *shared*
v2 = &v; // v is shared, so we can (immutably) borrow through v2
l = Vec::len(move v2); // We use v2 here
Vec::push(move v1, move l); // v1 gets promoted to a mutable borrow here
]}
*)
and loan_content =
| VSharedLoan of loan_id_set * typed_value
| VMutLoan of loan_id
(** "Regular" typed value (we map variables to typed values) *)
and typed_value = { value : value; ty : ty }
[@@deriving
show,
ord,
visitors
{
name = "iter_typed_value";
variety = "iter";
ancestors = [ "iter_typed_value_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
},
visitors
{
name = "map_typed_value";
variety = "map";
ancestors = [ "map_typed_value_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
}]
(** "Meta"-value: information we store for the synthesis.
Note that we never automatically visit the meta-values with the
visitors: they really are span information, and shouldn't be considered
as part of the environment during a symbolic execution.
TODO: we may want to create wrappers, to prevent accidently mixing span
values and regular values.
*)
type mvalue = typed_value [@@deriving show, ord]
(** "Meta"-symbolic value.
See the explanations for {!mvalue}
TODO: we may want to create wrappers, to prevent mixing meta values
and regular values.
*)
type msymbolic_value = symbolic_value [@@deriving show, ord]
type region_id = RegionId.id [@@deriving show, ord]
type region_id_set = RegionId.Set.t [@@deriving show, ord]
type abstraction_id = AbstractionId.id [@@deriving show, ord]
type abstraction_id_set = AbstractionId.Set.t [@@deriving show, ord]
(** Projection markers: those are used in the joins.
For additional explanations see: https://arxiv.org/pdf/2404.02680#section.5 *)
type proj_marker = PNone | PLeft | PRight [@@deriving show, ord]
(** Ancestor for {!typed_avalue} iter visitor *)
class ['self] iter_typed_avalue_base =
object (self : 'self)
inherit [_] iter_typed_value
method visit_mvalue : 'env -> mvalue -> unit = fun _ _ -> ()
method visit_msymbolic_value : 'env -> msymbolic_value -> unit =
fun _ _ -> ()
method visit_region_id_set : 'env -> region_id_set -> unit =
fun env ids -> RegionId.Set.iter (self#visit_region_id env) ids
method visit_abstraction_id : 'env -> abstraction_id -> unit = fun _ _ -> ()
method visit_abstraction_id_set : 'env -> abstraction_id_set -> unit =
fun env ids -> AbstractionId.Set.iter (self#visit_abstraction_id env) ids
method visit_proj_marker : 'env -> proj_marker -> unit = fun _ _ -> ()
end
(** Ancestor for {!typed_avalue} map visitor *)
class ['self] map_typed_avalue_base =
object (self : 'self)
inherit [_] map_typed_value
method visit_mvalue : 'env -> mvalue -> mvalue = fun _ x -> x
method visit_msymbolic_value : 'env -> msymbolic_value -> msymbolic_value =
fun _ m -> m
method visit_region_id_set : 'env -> region_id_set -> region_id_set =
fun env ids -> RegionId.Set.map (self#visit_region_id env) ids
method visit_abstraction_id : 'env -> abstraction_id -> abstraction_id =
fun _ x -> x
method visit_abstraction_id_set
: 'env -> abstraction_id_set -> abstraction_id_set =
fun env ids -> AbstractionId.Set.map (self#visit_abstraction_id env) ids
method visit_proj_marker : 'env -> proj_marker -> proj_marker = fun _ x -> x
end
(** When giving shared borrows to functions (i.e., inserting shared borrows inside
abstractions) we need to reborrow the shared values. When doing so, we lookup
the shared values and apply some special projections to the shared value
(until we can't go further, i.e., we find symbolic values which may get
expanded upon reading them later), which don't generate avalues but
sets of borrow ids and symbolic values.
Note that as shared values can't get modified it is ok to forget the
structure of the values we projected, and only keep the set of borrows
(and symbolic values).
TODO: we may actually need to remember the structure, in order to know
which borrows are inside which other borrows...
*)
type abstract_shared_borrow =
| AsbBorrow of borrow_id
| AsbProjReborrows of symbolic_value * ty
(** A set of abstract shared borrows *)
and abstract_shared_borrows = abstract_shared_borrow list
and aproj =
| AProjLoans of symbolic_value * (msymbolic_value * aproj) list
(** A projector of loans over a symbolic value.
Whenever we call a function, we introduce a symbolic value for
the returned value. We insert projectors of loans over this
symbolic value in the abstractions introduced by this function
call: those projectors allow to insert the proper loans in the
various abstractions whenever symbolic borrows get expanded.
The borrows of a symbolic value may be spread between different
abstractions, meaning that *one* projector of loans might receive
*several* (symbolic) given back values.
This is the case in the following example:
{[
fn f<'a> (...) -> (&'a mut u32, &'a mut u32);
fn g<'b, 'c>(p : (&'b mut u32, &'c mut u32));
let p = f(...);
g(move p);
// Symbolic context after the call to g:
// abs'a {'a} { [s@0 <: (&'a mut u32, &'a mut u32)] }
//
// abs'b {'b} { (s@0 <: (&'b mut u32, &'c mut u32)) }
// abs'c {'c} { (s@0 <: (&'b mut u32, &'c mut u32)) }
]}
Upon evaluating the call to [f], we introduce a symbolic value [s@0]
and a projector of loans (projector loans from the region 'c).
This projector will later receive two given back values: one for
'a and one for 'b.
We accumulate those values in the list of projections (note that
the meta value stores the value which was given back).
We can later end the projector of loans if [s@0] is not referenced
anywhere in the context below a projector of borrows which intersects
this projector of loans.
*)
| AProjBorrows of symbolic_value * ty
(** Note that an AProjBorrows only operates on a value which is not below
a shared loan: under a shared loan, we use {!abstract_shared_borrow}.
Also note that once given to a borrow projection, a symbolic value
can't get updated/expanded: this means that we don't need to save
any meta-value here.
*)
| AEndedProjLoans of msymbolic_value * (msymbolic_value * aproj) list
(** An ended projector of loans over a symbolic value.
See the explanations for {!AProjLoans}
Note that we keep the original symbolic value as a meta-value.
*)
| AEndedProjBorrows of msymbolic_value
(** The only purpose of {!AEndedProjBorrows} is to store, for synthesis
purposes, the symbolic value which was generated and given back upon
ending the borrow.
*)
| AIgnoredProjBorrows
(** Abstraction values are used inside of abstractions to properly model
borrowing relations introduced by function calls.
When calling a function, we lose information about the borrow graph:
part of it is thus "abstracted" away.
*)
and avalue =
| AAdt of adt_avalue
| ABottom (* TODO: remove once we change the way internal borrows are ended *)
| ALoan of aloan_content
| ABorrow of aborrow_content
| ASymbolic of aproj
| AIgnored
(** A value which doesn't contain borrows, or which borrows we
don't own and thus ignore.
In the comments, we display it as [_].
*)
and adt_avalue = {
variant_id : (VariantId.id option[@opaque]);
field_values : typed_avalue list;
}
(** A loan content as stored in an abstraction.
We use the children avalues for synthesis purposes: though not necessary
to maintain the borrow graph, we maintain a structured representation of
the avalues to synthesize values for the backward functions in the translation.
Note that the children avalues are independent of the parent avalues.
For instance, the child avalue contained in an {!AMutLoan} will likely
contain other, independent loans.
*)
and aloan_content =
| AMutLoan of proj_marker * loan_id * typed_avalue
(** A mutable loan owned by an abstraction.
The avalue is the child avalue.
Example:
========
{[
fn f<'a>(...) -> &'a mut &'a mut u32;
let px = f(...);
]}
We get (after some symbolic exansion):
{[
abs0 {
a_mut_loan l0 (a_mut_loan l1 _)
}
px -> mut_borrow l0 (mut_borrow @s1)
]}
*)
| ASharedLoan of proj_marker * loan_id_set * typed_value * typed_avalue
(** A shared loan owned by an abstraction.
The avalue is the child avalue.
Example:
========
{[
fn f<'a>(...) -> &'a u32;
let px = f(...);
]}
We get:
{[
abs0 { a_shared_loan {l0} @s0 _ }
px -> shared_loan l0
]}
*)
| AEndedMutLoan of {
child : typed_avalue;
given_back : typed_avalue;
given_back_span : mvalue;
}
(** An ended mutable loan in an abstraction.
We need it because abstractions must keep track of the values
we gave back to them, so that we can correctly instantiate
backward functions.
[given_back]: stores the projected given back value (useful when
there are nested borrows: ending a loan might consume borrows which
need to be projected in the abstraction).
Rk.: *DO NOT* use [visit_AEndedMutLoan]. If we update the order of
the arguments and you forget to swap them at the level of
[visit_AEndedMutLoan], you will not notice it.
Example 1:
==========
{[
abs0 { a_mut_loan l0 _ }
x -> mut_borrow l0 (U32 3)
]}
After ending [l0]:
{[
abs0 { a_ended_mut_loan { child = _; given_back = _; given_back_span = U32 3; }
x -> ⊥
]}
Example 2 (nested borrows):
===========================
{[
abs0 { a_mut_loan l0 _ }
... // abstraction containing a_mut_loan l1
x -> mut_borrow l0 (mut_borrow l1 (U32 3))
]}
After ending [l0]:
{[
abs0 {
a_ended_mut_loan {
child = _;
given_back = a_mut_borrow l1 _;
given_back_span = (mut_borrow l1 (U32 3));
}
}
...
x -> ⊥
]}
*)
| AEndedSharedLoan of typed_value * typed_avalue
(** Similar to {!AEndedMutLoan} but in this case we don't consume given
back values when the loan ends. We remember the shared value because
it now behaves as a "regular" value (which might contain borrows we need
to keep track of...).
*)
| AIgnoredMutLoan of loan_id option * typed_avalue
(** An ignored mutable loan.
We need to keep track of ignored mutable loans, because we may have
to apply projections on the values given back to those loans (say
you have a borrow of type [&'a mut &'b mut], in the abstraction 'b,
the outer loan is ignored, however you need to keep track of it so
that when ending the borrow corresponding to 'a you can correctly
project on the inner given back value).
Note that we need to do so only for borrows consumed by parent
abstractions, hence the optional loan id.
Example:
========
{[
fn f<'a,'b>(...) -> &'a mut &'b mut u32;
let x = f(...);
> abs'a { a_mut_loan l0 (a_ignored_mut_loan None _) _ }
> abs'b { a_ignored_mut_loan (Some l0) (a_mut_loan l1 _) }
> x -> mut_borrow l0 (mut_borrow l1 @s1)
]}
If we end [l0]:
{[
abs'a { ... }
abs'b {
a_ended_ignored_mut_loan {
child = a_mut_loan l1 _;
given_back = a_mut_borrow l1 _;
given_back_span = mut_borrow l1 @s1
}
}
x -> ⊥
]}
*)
| AEndedIgnoredMutLoan of {
child : typed_avalue;
given_back : typed_avalue;
given_back_span : mvalue;
}
(** Similar to {!AEndedMutLoan}, for ignored loans.
See the comments for {!AIgnoredMutLoan}.
Rk.: *DO NOT* use [visit_AEndedIgnoredMutLoan] (for the reason why,
see the comments for {!AEndedMutLoan}).
*)
| AIgnoredSharedLoan of typed_avalue
(** An ignored shared loan.
Example:
========
{[
fn f<'a,'b>(...) -> &'a &'b u32;
let x = f(...);
> abs'a { a_shared_loan {l0} (shared_borrow l1) (a_ignored_shared_loan _) }
> abs'b { a_ignored_shared_loan (a_shared_loan {l1} @s1 _) }
> x -> shared_borrow l0
]}
*)
(** Note that contrary to {!aloan_content}, here the children avalues are
not independent of the parent avalues. For instance, a value
[AMutBorrow (_, AMutBorrow (_, ...)] (ignoring the types) really is
to be seen like a [mut_borrow ... (mut_borrow ...)] (i.e., it is a nested
borrow).
TODO: be more precise about the ignored borrows (keep track of the borrow
ids)?
*)
and aborrow_content =
| AMutBorrow of proj_marker * borrow_id * typed_avalue
(** A mutable borrow owned by an abstraction.
Is used when an abstraction "consumes" borrows, when giving borrows
as arguments to a function.
Example:
========
{[
fn f<'a>(px : &'a mut u32);
> x -> mut_loan l0
> px -> mut_borrow l0 (U32 0)
f(move px);
> x -> mut_loan l0
> px -> ⊥
> abs0 { a_mut_borrow l0 (U32 0) _ }
]}
*)
| ASharedBorrow of proj_marker * borrow_id
(** A shared borrow owned by an abstraction.
Example:
========
{[
fn f<'a>(px : &'a u32);
> x -> shared_loan {l0} (U32 0)
> px -> shared_borrow l0
f(move px);
> x -> shared_loan {l0} (U32 0)
> px -> ⊥
> abs0 { a_shared_borrow l0 _ }
]}
*)
| AIgnoredMutBorrow of borrow_id option * typed_avalue
(** An ignored mutable borrow.
We need to keep track of ignored mut borrows because when ending such
borrows, we need to project the loans of the given back value to
insert them in the proper abstractions.
Note that we need to do so only for borrows consumed by parent
abstractions (hence the optional borrow id).
Rem.: we don't have an equivalent for shared borrows because if
we ignore a shared borrow we don't need to keep track it (we directly
use {!AProjSharedBorrow} to project the shared value).
TODO: the explanations below are obsolete
Example:
========
{[
fn f<'a,'b>(ppx : &'a mut &'b mut u32);
> x -> mut_loan l0
> px -> mut_loan l1
> ppx -> mut_borrow l1 (mut_borrow l0 (U32 0))
f(move ppx);
> x -> mut_loan l0
> px -> mut_loan l1
> ppx -> ⊥
> abs'a { a_mut_borrow l1 (a_ignored_mut_borrow None _) }
> abs'b {parents={abs'a}} { a_ignored_mut_borrow (Some l1) (a_mut_borrow l0 _) }
... // abs'a ends
> x -> mut_loan l0
> px -> @s0
> ppx -> ⊥
> abs'b {
> a_ended_ignored_mut_borrow {
> child = a_mut_borrow l0 _;
> given_back = a_proj_loans (@s0 <: &'b mut u32) // <-- loan projector
> }
> }
... // [@s0] gets expanded to [&mut l2 @s1]
> x -> mut_loan l0
> px -> &mut l2 @s1
> ppx -> ⊥
> abs'b {
> a_ended_ignored_mut_borrow {
> child = a_mut_borrow l0 _;
> given_back = a_mut_loan l2 _;
> }
> }
]}
Note that we could use [AIgnoredMutLoan] in the case the borrow id is not
[None], which would allow us to simplify the rules (to not have rules
to specifically handle the case of AIgnoredMutBorrow with Some borrow
id) and also remove the AEndedIgnoredMutBorrow variant.
For now, we prefer to be more precise that required.
*)
| AEndedMutBorrow of msymbolic_value * typed_avalue
(** The sole purpose of {!AEndedMutBorrow} is to store the (symbolic) value
that we gave back as a meta-value, to help with the synthesis.
*)
| AEndedSharedBorrow
(** We don't really need {!AEndedSharedBorrow}: we simply want to be
precise, and not insert ⊥ when ending borrows.
*)
| AEndedIgnoredMutBorrow of {
child : typed_avalue;
given_back : typed_avalue;
given_back_span : msymbolic_value;
(** [given_back_span] is used to store the (symbolic) value we gave back
upon ending the borrow.
Rk.: *DO NOT* use [visit_AEndedIgnoredMutLoan].
See the comment for {!AEndedMutLoan}.
*)
} (** See the explanations for {!AIgnoredMutBorrow} *)
| AProjSharedBorrow of abstract_shared_borrows
(** A projected shared borrow.
When giving shared borrows as arguments to function calls, we
introduce new borrows to keep track of the fact that the function
might reborrow values inside. Note that as shared values are immutable,
we don't really need to remember the structure of the shared values.
Example:
========
Below, when calling [f], we need to introduce one shared re-borrow per
*inner* borrow (the borrows for 'b and 'c but not 'a) consumed by the
function. Those reborrows are introduced by projecting over the shared
value. For each one of those, we introduce an [abstract_shared_borrow]
in the abstraction.
{[
fn f<'a,'b>(pppx : &'a &'b &'c mut u32);
> x -> mut_loan l0
> px -> shared_loan {l1} (mut_borrow l0 (U32 0))
> ppx -> shared_loan {l2} (shared_borrow l1)
> pppx -> shared_borrow l2
f(move pppx);
> x -> mut_loan l0
> px -> shared_loan {l1, l3, l4} (mut_borrow l0 (U32 0))
> ppx -> shared_loan {l2} (shared_borrow l1)
> pppx -> ⊥
> abs'a { a_shared_borrow {l2} }
> abs'b { a_proj_shared_borrow {l3} } // l3 reborrows l1
> abs'c { a_proj_shared_borrow {l4} } // l4 reborrows l0
]}
Rem.: we introduce {!AProjSharedBorrow} only when we project a shared
borrow *which is ignored* (i.e., the shared borrow doesn't belong to
the current abstraction, in which case we still project the shared
value). The reason is that if the shared borrow belongs to the
abstraction, then by introducing a shared borrow inside the
abstraction we make sure the whole value is shared (and thus
immutable) for as long as the abstraction lives, meaning reborrowing
subvalues is redundant. However, if the borrow doesn't belong to the
abstraction, we need to project the shared values because it may
contain some borrows which *do* belong to the current abstraction.
TODO: maybe we should factorized [ASharedBorrow] and [AProjSharedBorrow].
*)
(** Rem.: the of avalues is not to be understood in the same manner as for values.
To be more precise, shared aloans have the borrow type (i.e., a shared aloan
has type [& (mut) T] instead of [T]).
*)
and typed_avalue = {
value : avalue;
ty : ty; (** This should be a type with regions *)
}
[@@deriving
show,
ord,
visitors
{
name = "iter_typed_avalue";
variety = "iter";
ancestors = [ "iter_typed_avalue_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
},
visitors
{
name = "map_typed_avalue";
variety = "map";
ancestors = [ "map_typed_avalue_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
}]
(** TODO: make those variants of [abs_kind] *)
type loop_abs_kind =
| LoopSynthInput
(** See {!abs_kind.SynthInput} - this abstraction is an input abstraction
for a loop body. *)
| LoopCall
(** An abstraction introduced because we (re-)entered a loop, that we see
like a function call. *)
[@@deriving show, ord]
(** The kind of an abstraction, which keeps track of its origin *)
type abs_kind =
| FunCall of (FunCallId.id * RegionGroupId.id)
(** The abstraction was introduced because of a function call.
It contains he identifier of the function call which introduced this
abstraction, as well as the id of the backward function this
abstraction stands for (backward functions are identified by the group
of regions to which they are associated). This is not used by the
symbolic execution: this is only used for pretty-printing and
debugging in the symbolic AST, generated by the symbolic
execution.
*)
| SynthInput of RegionGroupId.id
(** The abstraction keeps track of the input values of the function
we are currently synthesizing.
We introduce one abstraction per (group of) region(s) in the function
signature, the region group id identifies this group. Similarly to
the [FunCall] case, this is not used by the symbolic execution.
*)
| SynthRet of RegionGroupId.id
(** The abstraction "absorbed" the value returned by the function we
are currently synthesizing
See the explanations for [SynthInput].
*)
| Loop of (LoopId.id * RegionGroupId.id option * loop_abs_kind)
(** The abstraction corresponds to a loop.
The region group id is initially [None].
After we computed a fixed point, we give a unique region group
identifier for each loop abstraction.
*)
| Identity
(** An identity abstraction, which only consumes and provides shared
borrows/loans.
We introduce them to abstract the context a bit, for instance
to compute fixed-points.
*)
[@@deriving show, ord]
(** Ancestor for {!abs} iter visitor *)
class ['self] iter_abs_base =
object (_self : 'self)
inherit [_] iter_typed_avalue
method visit_abs_kind : 'env -> abs_kind -> unit = fun _ _ -> ()
end
(** Ancestor for {!abs} map visitor *)
class ['self] map_abs_base =
object (_self : 'self)
inherit [_] map_typed_avalue
method visit_abs_kind : 'env -> abs_kind -> abs_kind = fun _ x -> x
end
(** Abstractions model the parts in the borrow graph where the borrowing relations
have been abstracted because of a function call.
In order to model the relations between the borrows, we use "abstraction values",
which are a special kind of value.
*)
type abs = {
abs_id : abstraction_id;
kind : abs_kind;
can_end : bool;
(** Controls whether the region can be ended or not.
This allows to "pin" some regions, and is useful when generating
backward functions.
For instance, if we have: [fn f<'a, 'b>(...) -> (&'a mut T, &'b mut T)],
when generating the backward function for 'a, we have to make sure we
don't need to end the return region for 'b (if it is the case, it means
the function doesn't borrow check).
*)
parents : abstraction_id_set; (** The parent abstractions *)
original_parents : abstraction_id list;
(** The original list of parents, ordered. This is used for synthesis. TODO: remove? *)
regions : region_id_set; (** Regions owned by this abstraction *)
ancestors_regions : region_id_set;
(** Union of the regions owned by this abstraction's ancestors (not
including the regions of this abstraction itself) *)
avalues : typed_avalue list; (** The values in this abstraction *)
}
[@@deriving
show,
ord,
visitors
{
name = "iter_abs";
variety = "iter";
ancestors = [ "iter_abs_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
},
visitors
{
name = "map_abs";
variety = "map";
ancestors = [ "map_abs_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
}]
(** A symbolic expansion
A symbolic expansion doesn't represent a value, but rather an operation
that we apply to values.
TODO: this should rather be name "expanded_symbolic"
*)
type symbolic_expansion =
| SeLiteral of literal
| SeAdt of (VariantId.id option * symbolic_value list)
| SeMutRef of BorrowId.id * symbolic_value
| SeSharedRef of BorrowId.Set.t * symbolic_value
[@@deriving show]
|