1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
|
open InterpreterStatements
open Interpreter
module L = Logging
module T = Types
module A = LlbcAst
module SA = SymbolicAst
module Micro = PureMicroPasses
module C = Contexts
open PureUtils
open TranslateCore
(** The local logger *)
let log = TranslateCore.log
(** The result of running the symbolic interpreter on a function:
- the list of symbolic values used for the input values
- the generated symbolic AST
*)
type symbolic_fun_translation = V.symbolic_value list * SA.expression
(** Execute the symbolic interpreter on a function to generate a list of symbolic ASTs,
for the forward function and the backward functions.
*)
let translate_function_to_symbolics (trans_ctx : trans_ctx) (fdef : A.fun_decl)
: symbolic_fun_translation option =
(* Debug *)
log#ldebug
(lazy
("translate_function_to_symbolics: "
^ Print.fun_name_to_string fdef.A.name));
let {
type_context;
fun_context;
global_context;
trait_decls_context;
trait_impls_context;
} =
trans_ctx
in
let fun_context = { C.fun_decls = fun_context.fun_decls } in
(* TODO: we should merge trans_ctx and decls_ctx *)
let decls_ctx : C.decls_ctx =
{
C.type_ctx = type_context;
fun_ctx = fun_context;
global_ctx = global_context;
trait_decls_ctx = trait_decls_context;
trait_impls_ctx = trait_impls_context;
}
in
match fdef.body with
| None -> None
| Some _ ->
(* Evaluate *)
let synthesize = true in
let inputs, symb = evaluate_function_symbolic synthesize decls_ctx fdef in
Some (inputs, Option.get symb)
(** Translate a function, by generating its forward and backward translations.
[fun_sigs]: maps the forward/backward functions to their signatures. In case
of backward functions, we also provide names for the outputs.
TODO: maybe we should introduce a record for this.
*)
let translate_function_to_pure (trans_ctx : trans_ctx)
(fun_sigs : SymbolicToPure.fun_sig_named_outputs RegularFunIdNotLoopMap.t)
(pure_type_decls : Pure.type_decl Pure.TypeDeclId.Map.t) (fdef : A.fun_decl)
: pure_fun_translation_no_loops =
(* Debug *)
log#ldebug
(lazy
("translate_function_to_pure: " ^ Print.fun_name_to_string fdef.A.name));
let {
type_context;
fun_context;
global_context;
trait_decls_context;
trait_impls_context;
} =
trans_ctx
in
let def_id = fdef.def_id in
(* Compute the symbolic ASTs, if the function is transparent *)
let symbolic_trans = translate_function_to_symbolics trans_ctx fdef in
(* Convert the symbolic ASTs to pure ASTs: *)
(* Initialize the context *)
let forward_sig =
RegularFunIdNotLoopMap.find (A.Regular def_id, None) fun_sigs
in
let sv_to_var = V.SymbolicValueId.Map.empty in
let var_counter = Pure.VarId.generator_zero in
let state_var, var_counter = Pure.VarId.fresh var_counter in
let back_state_var, var_counter = Pure.VarId.fresh var_counter in
let fuel0, var_counter = Pure.VarId.fresh var_counter in
let fuel, var_counter = Pure.VarId.fresh var_counter in
let calls = V.FunCallId.Map.empty in
let abstractions = V.AbstractionId.Map.empty in
let recursive_type_decls =
T.TypeDeclId.Set.of_list
(List.filter_map
(fun (tid, g) ->
match g with Charon.GAst.NonRec _ -> None | Rec _ -> Some tid)
(T.TypeDeclId.Map.bindings trans_ctx.type_context.type_decls_groups))
in
let type_context =
{
SymbolicToPure.type_infos = type_context.type_infos;
llbc_type_decls = type_context.type_decls;
type_decls = pure_type_decls;
recursive_decls = recursive_type_decls;
}
in
let fun_context =
{
SymbolicToPure.llbc_fun_decls = fun_context.fun_decls;
fun_sigs;
fun_infos = fun_context.fun_infos;
}
in
let global_context =
{ SymbolicToPure.llbc_global_decls = global_context.global_decls }
in
(* Compute the set of loops, and find better ids for them (starting at 0).
Note that we only need to explore the forward function: the backward
functions should contain the same set of loops.
*)
let loop_ids_map =
match symbolic_trans with
| None -> V.LoopId.Map.empty
| Some (_, ast) ->
let m = ref V.LoopId.Map.empty in
let _, fresh_loop_id = Pure.LoopId.fresh_stateful_generator () in
let visitor =
object
inherit [_] SA.iter_expression as super
method! visit_loop env loop =
let _ =
match V.LoopId.Map.find_opt loop.loop_id !m with
| Some _ -> ()
| None ->
m := V.LoopId.Map.add loop.loop_id (fresh_loop_id ()) !m
in
super#visit_loop env loop
end
in
visitor#visit_expression () ast;
!m
in
let ctx =
{
SymbolicToPure.bid = None;
(* Dummy for now *)
sg = forward_sig.sg;
fwd_sg = forward_sig.sg;
(* Will need to be updated for the backward functions *)
sv_to_var;
var_counter;
state_var;
back_state_var;
fuel0;
fuel;
type_context;
fun_context;
global_context;
trait_decls_ctx = trait_decls_context.trait_decls;
trait_impls_ctx = trait_impls_context.trait_impls;
fun_decl = fdef;
forward_inputs = [];
(* Empty for now *)
backward_inputs = T.RegionGroupId.Map.empty;
(* Empty for now *)
backward_outputs = T.RegionGroupId.Map.empty;
loop_backward_outputs = None;
(* Empty for now *)
calls;
abstractions;
loop_id = None;
inside_loop = false;
loop_ids_map;
loops = Pure.LoopId.Map.empty;
}
in
(* Add the forward inputs (the initialized input variables for the forward
function)
*)
let ctx =
match (fdef.body, symbolic_trans) with
| None, None -> ctx
| Some body, Some (input_svs, _) ->
let forward_input_vars = LlbcAstUtils.fun_body_get_input_vars body in
let forward_input_varnames =
List.map (fun (v : A.var) -> v.name) forward_input_vars
in
let input_svs = List.combine forward_input_varnames input_svs in
let ctx, forward_inputs =
SymbolicToPure.fresh_named_vars_for_symbolic_values input_svs ctx
in
{ ctx with forward_inputs }
| _ -> raise (Failure "Unreachable")
in
(* Translate the forward function *)
let pure_forward =
match symbolic_trans with
| None -> SymbolicToPure.translate_fun_decl ctx None
| Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast)
in
(* Translate the backward functions *)
let translate_backward (rg : T.region_var_group) : Pure.fun_decl =
(* For the backward inputs/outputs initialization: we use the fact that
* there are no nested borrows for now, and so that the region groups
* can't have parents *)
assert (rg.parents = []);
let back_id = rg.id in
match symbolic_trans with
| None ->
(* Initialize the context - note that the ret_ty is not really
* useful as we don't translate a body *)
let backward_sg =
RegularFunIdNotLoopMap.find (A.Regular def_id, Some back_id) fun_sigs
in
let ctx = { ctx with bid = Some back_id; sg = backward_sg.sg } in
(* Translate *)
SymbolicToPure.translate_fun_decl ctx None
| Some (_, symbolic) ->
(* Finish initializing the context by adding the additional input
variables required by the backward function.
*)
let backward_sg =
RegularFunIdNotLoopMap.find (A.Regular def_id, Some back_id) fun_sigs
in
(* We need to ignore the forward inputs, and the state input (if there is) *)
let backward_inputs =
let sg = backward_sg.sg in
(* We need to ignore the forward state and the backward state *)
let num_forward_inputs =
sg.info.num_fwd_inputs_with_fuel_with_state
in
let num_back_inputs = Option.get sg.info.num_back_inputs_no_state in
Collections.List.subslice sg.inputs num_forward_inputs
(num_forward_inputs + num_back_inputs)
in
(* As we forbid nested borrows, the additional inputs for the backward
* functions come from the borrows in the return value of the rust function:
* we thus use the name "ret" for those inputs *)
let backward_inputs =
List.map (fun ty -> (Some "ret", ty)) backward_inputs
in
let ctx, backward_inputs =
SymbolicToPure.fresh_vars backward_inputs ctx
in
(* The outputs for the backward functions, however, come from borrows
* present in the input values of the rust function: for those we reuse
* the names of the input values. *)
let backward_outputs =
List.combine backward_sg.output_names backward_sg.sg.doutputs
in
let ctx, backward_outputs =
SymbolicToPure.fresh_vars backward_outputs ctx
in
let backward_inputs =
T.RegionGroupId.Map.singleton back_id backward_inputs
in
let backward_outputs =
T.RegionGroupId.Map.singleton back_id backward_outputs
in
(* Put everything in the context *)
let ctx =
{
ctx with
bid = Some back_id;
sg = backward_sg.sg;
backward_inputs;
backward_outputs;
}
in
(* Translate *)
SymbolicToPure.translate_fun_decl ctx (Some symbolic)
in
let pure_backwards =
List.map translate_backward fdef.signature.regions_hierarchy
in
(* Return *)
(pure_forward, pure_backwards)
(* TODO: factor out the return type *)
let translate_crate_to_pure (crate : A.crate) :
trans_ctx
* Pure.type_decl list
* pure_fun_translation list
* Pure.trait_decl list
* Pure.trait_impl list =
(* Debug *)
log#ldebug (lazy "translate_crate_to_pure");
(* Compute the type and function contexts *)
let decls_ctx = compute_contexts crate in
let fun_infos =
FA.analyze_module crate decls_ctx.fun_ctx.C.fun_decls
decls_ctx.global_ctx.C.global_decls !Config.use_state
in
let fun_context = { fun_decls = decls_ctx.fun_ctx.fun_decls; fun_infos } in
let trans_ctx =
{
type_context = decls_ctx.type_ctx;
fun_context;
global_context = decls_ctx.global_ctx;
trait_decls_context = decls_ctx.trait_decls_ctx;
trait_impls_context = decls_ctx.trait_impls_ctx;
}
in
(* Translate all the type definitions *)
let type_decls =
SymbolicToPure.translate_type_decls (T.TypeDeclId.Map.values crate.types)
in
(* Compute the type definition map *)
let type_decls_map =
Pure.TypeDeclId.Map.of_list
(List.map (fun (def : Pure.type_decl) -> (def.def_id, def)) type_decls)
in
(* Translate all the function *signatures* *)
let assumed_sigs =
List.map
(fun (id, sg, _, _) ->
(A.Assumed id, List.map (fun _ -> None) (sg : A.fun_sig).inputs, sg))
Assumed.assumed_infos
in
let local_sigs =
List.map
(fun (fdef : A.fun_decl) ->
let input_names =
match fdef.body with
| None -> List.map (fun _ -> None) fdef.signature.inputs
| Some body ->
List.map
(fun (v : A.var) -> v.name)
(LlbcAstUtils.fun_body_get_input_vars body)
in
(A.Regular fdef.def_id, input_names, fdef.signature))
(A.FunDeclId.Map.values crate.functions)
in
let sigs = List.append assumed_sigs local_sigs in
let fun_sigs =
SymbolicToPure.translate_fun_signatures fun_context.fun_infos
decls_ctx.type_ctx.type_infos sigs
in
(* Translate all the *transparent* functions *)
let pure_translations =
List.map
(translate_function_to_pure trans_ctx fun_sigs type_decls_map)
(A.FunDeclId.Map.values crate.functions)
in
(* Translate the trait declarations *)
let type_infos = trans_ctx.type_context.type_infos in
let trait_decls =
List.map
(SymbolicToPure.translate_trait_decl type_infos)
(T.TraitDeclId.Map.values trans_ctx.trait_decls_context.trait_decls)
in
(* Translate the trait implementations *)
let trait_impls =
List.map
(SymbolicToPure.translate_trait_impl type_infos)
(T.TraitImplId.Map.values trans_ctx.trait_impls_context.trait_impls)
in
(* Apply the micro-passes *)
let pure_translations =
Micro.apply_passes_to_pure_fun_translations trans_ctx pure_translations
in
(* Return *)
(trans_ctx, type_decls, pure_translations, trait_decls, trait_impls)
type gen_ctx = ExtractBase.extraction_ctx
type gen_config = {
extract_types : bool;
extract_decreases_clauses : bool;
extract_template_decreases_clauses : bool;
extract_fun_decls : bool;
extract_trait_decls : bool;
extract_trait_impls : bool;
extract_transparent : bool;
(** If [true], extract the transparent declarations, otherwise ignore. *)
extract_opaque : bool;
(** If [true], extract the opaque declarations, otherwise ignore.
For now, this controls only the opaque *functions*, not the opaque
globals or types.
TODO: update this. This is not trivial if we want to extract the opaque
types in an opaque module, because some non-opaque types may refer
to opaque types and vice-versa.
*)
extract_state_type : bool;
(** If [true], generate a definition/declaration for the state type *)
extract_globals : bool;
(** If [true], generate a definition/declaration for top-level (global)
declarations *)
interface : bool;
(** [true] if we generate an interface file, [false] otherwise.
For now, this only impacts whether we use [val] or [assume val] for the
opaque definitions. In the future, we might want to extract all the
declarations in an interface file, together with an implementation file
if needed.
*)
test_trans_unit_functions : bool;
}
(** Returns the pair: (has opaque type decls, has opaque fun decls).
[filter_assumed]: if [true], do not consider as opaque the external definitions
that we will map to definitions from the standard library.
*)
let crate_has_opaque_decls (ctx : gen_ctx) (filter_assumed : bool) : bool * bool
=
let types, funs =
LlbcAstUtils.crate_get_opaque_decls ctx.crate filter_assumed
in
log#ldebug
(lazy
("Opaque decls:" ^ "\n- types:\n"
^ String.concat ",\n" (List.map T.show_type_decl types)
^ "\n- functions:\n"
^ String.concat ",\n" (List.map A.show_fun_decl funs)));
(types <> [], funs <> [])
(** Export a type declaration.
It may happen that we have to extract extra information/instructions.
For instance, we might need to define some projector notations. This is
why we have the two booleans [extract_decl] and [extract_extra_info].
If [extract_decl] is [true], then we extract the type declaration. If
[extract_extra_info] is [true], we extract this extra information (after
the declaration, if both booleans are [true]).
*)
let export_type (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx)
(type_decl_group : Pure.TypeDeclId.Set.t) (kind : ExtractBase.decl_kind)
(def : Pure.type_decl) (extract_decl : bool) (extract_extra_info : bool) :
unit =
(* Update the kind, if the type is opaque *)
let is_opaque, kind =
match def.kind with
| Enum _ | Struct _ -> (false, kind)
| Opaque ->
let kind =
if config.interface then ExtractBase.Declared else ExtractBase.Assumed
in
(true, kind)
in
(* Extract, if the config instructs to do so (depending on whether the type
* is opaque or not) *)
if
(is_opaque && config.extract_opaque)
|| ((not is_opaque) && config.extract_transparent)
then (
if extract_decl then
Extract.extract_type_decl ctx fmt type_decl_group kind def;
if extract_extra_info then
Extract.extract_type_decl_extra_info ctx fmt kind def)
(** Export a group of types.
[is_rec]: [true] if the types are recursive. Necessarily [true] if there is
> 1 type to extract.
*)
let export_types_group (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) (is_rec : bool) (ids : Pure.TypeDeclId.id list) : unit =
assert (ids <> []);
let export_type = export_type fmt config ctx in
let ids_set = Pure.TypeDeclId.Set.of_list ids in
let export_type_decl kind id = export_type ids_set kind id true false in
let export_type_extra_info kind id = export_type ids_set kind id false true in
(* Rem.: we shouldn't have (mutually) recursive opaque types *)
let num_decls = List.length ids in
let is_mut_rec = num_decls > 1 in
let kind_from_index i =
if not is_mut_rec then
if is_rec then ExtractBase.SingleRec else ExtractBase.SingleNonRec
else if i = 0 then ExtractBase.MutRecFirst
else if i = num_decls - 1 then ExtractBase.MutRecLast
else ExtractBase.MutRecInner
in
(* Retrieve the declarations *)
let defs =
List.map (fun id -> Pure.TypeDeclId.Map.find id ctx.trans_types) ids
in
(* Extract the type declarations.
Because some declaration groups are delimited, we wrap the declarations
between [{start,end}_type_decl_group].
Ex.:
====
When targeting HOL4, the calls to [{start,end}_type_decl_group] would generate
the [Datatype] and [End] delimiters in the snippet of code below:
{[
Datatype:
tree =
TLeaf 'a
| TNode node ;
node =
Node (tree list)
End
]}
*)
Extract.start_type_decl_group ctx fmt is_rec defs;
List.iteri
(fun i def ->
let kind = kind_from_index i in
export_type_decl kind def)
defs;
Extract.end_type_decl_group fmt is_rec defs;
(* Export the extra information (ex.: [Arguments] instructions in Coq) *)
List.iteri
(fun i def ->
let kind = kind_from_index i in
export_type_extra_info kind def)
defs
(** Export a global declaration.
TODO: check correct behavior with opaque globals.
*)
let export_global (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx)
(id : A.GlobalDeclId.id) : unit =
let global_decls = ctx.trans_ctx.global_context.global_decls in
let global = A.GlobalDeclId.Map.find id global_decls in
let trans = A.FunDeclId.Map.find global.body_id ctx.trans_funs in
assert (trans.fwd.loops = []);
assert (trans.backs = []);
let body = trans.fwd.f in
let is_opaque = Option.is_none body.Pure.body in
(* Check if we extract the global *)
let extract =
config.extract_globals
&& (((not is_opaque) && config.extract_transparent)
|| (is_opaque && config.extract_opaque))
in
(* Check if it is an assumed global - if yes, we ignore it because we
map the definition to one in the standard library *)
let open ExtractAssumed in
let sname = name_to_simple_name global.name in
let extract =
extract && SimpleNameMap.find_opt sname assumed_globals_map = None
in
if extract then
(* We don't wrap global declaration groups between calls to functions
[{start, end}_global_decl_group] (which don't exist): global declaration
groups are always singletons, so the [extract_global_decl] function
takes care of generating the delimiters.
*)
Extract.extract_global_decl ctx fmt global body config.interface
(** Utility.
Export a group of functions, used by {!export_functions_group}.
We need this because for every function in Rust we may generate several functions
in the translation (a forward function, several backward functions, loop
functions, etc.). Those functions might call each other in different
ways. In particular, they may be mutually recursive, in which case we might
be able to group them into several groups of mutually recursive definitions,
etc. For this reason, {!export_functions_group} computes the dependency
graph of the functions as well as their strongly connected components, and
gives each SCC at a time to {!export_functions_group_scc}.
Rem.: this function only extracts the function *declarations*. It doesn't
extract the decrease clauses, nor does it extract the unit tests.
Rem.: this function doesn't check [config.extract_fun_decls]: it should have
been checked by the caller.
*)
let export_functions_group_scc (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) (is_rec : bool) (decls : Pure.fun_decl list) : unit =
(* Utility to check a function has a decrease clause *)
let has_decreases_clause (def : Pure.fun_decl) : bool =
PureUtils.FunLoopIdSet.mem (def.def_id, def.loop_id)
ctx.functions_with_decreases_clause
in
(* Extract the function declarations *)
(* Check if the functions are mutually recursive *)
let is_mut_rec = List.length decls > 1 in
assert ((not is_mut_rec) || is_rec);
let decls_length = List.length decls in
(* We open and close the declaration group with [{start, end}_fun_decl_group].
Some backends require the groups to be delimited. For instance, if we target
HOL4, the calls to [{start, end}_fun_decl_group] would generate the
[val ... = Define `] and [`] delimiters in the snippet of code below:
{[
val ... = Define `
(even (i : num) : bool result = if i = 0 then Return T else odd (i - 1)) /\
(odd (i : num) : bool result = if i = 0 then Return F else even (i - 1))
`
]}
TODO: in practice splitting the code this way doesn't work so well: merge
the start/end decl group functions with the extract_fun_decl function?
*)
(* Filter the definitions - we generate a list of continuations *)
let extract_defs =
List.mapi
(fun i def ->
let is_opaque = Option.is_none def.Pure.body in
let kind =
if is_opaque then
if config.interface then ExtractBase.Declared
else ExtractBase.Assumed
else if not is_rec then ExtractBase.SingleNonRec
else if is_mut_rec then
(* If the functions are mutually recursive, we need to distinguish:
* - the first of the group
* - the last of the group
* - the inner functions
*)
if i = 0 then ExtractBase.MutRecFirst
else if i = decls_length - 1 then ExtractBase.MutRecLast
else ExtractBase.MutRecInner
else ExtractBase.SingleRec
in
let has_decr_clause =
has_decreases_clause def && config.extract_decreases_clauses
in
(* Check if the definition needs to be filtered or not *)
if
((not is_opaque) && config.extract_transparent)
|| (is_opaque && config.extract_opaque)
then
Some
(fun () ->
Extract.extract_fun_decl ctx fmt kind has_decr_clause def)
else None)
decls
in
let extract_defs = List.filter_map (fun x -> x) extract_defs in
if extract_defs <> [] then (
Extract.start_fun_decl_group ctx fmt is_rec decls;
List.iter (fun f -> f ()) extract_defs;
Extract.end_fun_decl_group fmt is_rec decls)
(** Export a group of function declarations.
In case of (non-mutually) recursive functions, we use a simple procedure to
check if the forward and backward functions are mutually recursive.
*)
let export_functions_group (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) (pure_ls : pure_fun_translation list) : unit =
(* Utility to check a function has a decrease clause *)
let has_decreases_clause (def : Pure.fun_decl) : bool =
PureUtils.FunLoopIdSet.mem (def.def_id, def.loop_id)
ctx.functions_with_decreases_clause
in
(* Extract the decrease clauses template bodies *)
if config.extract_template_decreases_clauses then
List.iter
(fun { fwd; _ } ->
(* We only generate decreases clauses for the forward functions, because
the termination argument should only depend on the forward inputs.
The backward functions thus use the same decreases clauses as the
forward function.
Rem.: we might filter backward functions in {!PureMicroPasses}, but
we don't remove forward functions. Instead, we remember if we should
filter those functions at extraction time with a boolean (see the
type of the [pure_ls] input parameter).
*)
let extract_decrease decl =
let has_decr_clause = has_decreases_clause decl in
if has_decr_clause then
match !Config.backend with
| Lean ->
Extract.extract_template_lean_termination_and_decreasing ctx fmt
decl
| FStar ->
Extract.extract_template_fstar_decreases_clause ctx fmt decl
| Coq ->
raise (Failure "Coq doesn't have decreases/termination clauses")
| HOL4 ->
raise
(Failure "HOL4 doesn't have decreases/termination clauses")
in
extract_decrease fwd.f;
List.iter extract_decrease fwd.loops)
pure_ls;
(* Concatenate the function definitions, filtering the useless forward
* functions. *)
let decls =
List.concat
(List.map
(fun { keep_fwd; fwd; backs } ->
let fwd = if keep_fwd then List.append fwd.loops [ fwd.f ] else [] in
let backs : Pure.fun_decl list =
List.concat
(List.map (fun back -> List.append back.loops [ back.f ]) backs)
in
List.append fwd backs)
pure_ls)
in
(* Extract the function definitions *)
(if config.extract_fun_decls then
(* Group the mutually recursive definitions *)
let subgroups = ReorderDecls.group_reorder_fun_decls decls in
(* Extract the subgroups *)
let export_subgroup (is_rec : bool) (decls : Pure.fun_decl list) : unit =
export_functions_group_scc fmt config ctx is_rec decls
in
List.iter (fun (is_rec, decls) -> export_subgroup is_rec decls) subgroups);
(* Insert unit tests if necessary *)
if config.test_trans_unit_functions then
List.iter
(fun trans ->
if trans.keep_fwd then
Extract.extract_unit_test_if_unit_fun ctx fmt trans.fwd.f)
pure_ls
(** Export a trait declaration. *)
let export_trait_decl (fmt : Format.formatter) (_config : gen_config)
(ctx : gen_ctx) (trait_decl_id : Pure.trait_decl_id) : unit =
let trait_decl = T.TraitDeclId.Map.find trait_decl_id ctx.trans_trait_decls in
let ctx = { ctx with trait_decl_id = Some trait_decl.def_id } in
Extract.extract_trait_decl ctx fmt trait_decl
(** Export a trait implementation. *)
let export_trait_impl (fmt : Format.formatter) (_config : gen_config)
(ctx : gen_ctx) (trait_impl_id : Pure.trait_impl_id) : unit =
let trait_impl = T.TraitImplId.Map.find trait_impl_id ctx.trans_trait_impls in
Extract.extract_trait_impl ctx fmt trait_impl
(** A generic utility to generate the extracted definitions: as we may want to
split the definitions between different files (or not), we can control
what is precisely extracted.
*)
let extract_definitions (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) : unit =
(* Export the definition groups to the file, in the proper order.
- [extract_decl]: extract the type declaration (if not filtered)
- [extract_extra_info]: extra the extra type information (e.g.,
the [Arguments] information in Coq).
*)
let export_functions_group = export_functions_group fmt config ctx in
let export_global = export_global fmt config ctx in
let export_types_group = export_types_group fmt config ctx in
let export_trait_decl = export_trait_decl fmt config ctx in
let export_trait_impl = export_trait_impl fmt config ctx in
let export_state_type () : unit =
let kind =
if config.interface then ExtractBase.Declared else ExtractBase.Assumed
in
Extract.extract_state_type fmt ctx kind
in
let export_decl_group (dg : A.declaration_group) : unit =
match dg with
| Type (NonRec id) ->
if config.extract_types then export_types_group false [ id ]
| Type (Rec ids) -> if config.extract_types then export_types_group true ids
| Fun (NonRec id) -> (
(* Lookup *)
let pure_fun = A.FunDeclId.Map.find id ctx.trans_funs in
(* Special case: we skip trait method *declarations* (we will
extract their type directly in the records we generate for
the trait declarations themselves, there is no point in having
separate type definitions) *)
match pure_fun.fwd.f.Pure.kind with
| TraitMethodDecl _ -> ()
| _ ->
(* Translate *)
export_functions_group [ pure_fun ])
| Fun (Rec ids) ->
(* General case of mutually recursive functions *)
(* Lookup *)
let pure_funs =
List.map (fun id -> A.FunDeclId.Map.find id ctx.trans_funs) ids
in
(* Translate *)
export_functions_group pure_funs
| Global id -> export_global id
| TraitDecl id ->
if config.extract_trait_decls && config.extract_transparent then
export_trait_decl id
| TraitImpl id ->
if config.extract_trait_impls && config.extract_transparent then
export_trait_impl id
in
(* If we need to export the state type: we try to export it after we defined
* the type definitions, because if the user wants to define a model for the
* type, they might want to reuse those in the state type.
* More specifically: if we extract functions in the same file as the type,
* we have no choice but to define the state type before the functions,
* because they may reuse this state type: in this case, we define/declare
* it at the very beginning. Otherwise, we define/declare it at the very end.
*)
if config.extract_state_type && config.extract_fun_decls then
export_state_type ();
(* Obsolete: (TODO: remove) For Lean we parameterize the entire development by a section
variable called opaque_defs, of type OpaqueDefs. The code below emits the type
definition for OpaqueDefs, which is a structure, in which each field is one of the
functions marked as Opaque. We emit the `structure ...` bit here, then rely on
`extract_fun_decl` to be aware of this, and skip the keyword (e.g. "axiom" or "val")
so as to generate valid syntax for records.
We also generate such a structure only if there actually are opaque definitions. *)
let wrap_in_sig =
config.extract_opaque && config.extract_fun_decls
&& !Config.wrap_opaque_in_sig
&&
let _, opaque_funs = crate_has_opaque_decls ctx true in
opaque_funs
in
if wrap_in_sig then (
(* We change the name of the structure depending on whether we *only*
extract opaque definitions, or if we extract all definitions *)
let struct_name =
if config.extract_transparent then "Definitions" else "OpaqueDefs"
in
Format.pp_print_break fmt 0 0;
Format.pp_open_vbox fmt ctx.indent_incr;
Format.pp_print_string fmt ("structure " ^ struct_name ^ " where");
Format.pp_print_break fmt 0 0);
List.iter export_decl_group ctx.crate.declarations;
if config.extract_state_type && not config.extract_fun_decls then
export_state_type ();
if wrap_in_sig then Format.pp_close_box fmt ()
type extract_file_info = {
filename : string;
namespace : string;
in_namespace : bool;
crate_name : string;
rust_module_name : string;
module_name : string;
custom_msg : string;
custom_imports : string list;
custom_includes : string list;
}
let extract_file (config : gen_config) (ctx : gen_ctx) (fi : extract_file_info)
: unit =
(* Open the file and create the formatter *)
let out = open_out fi.filename in
let fmt = Format.formatter_of_out_channel out in
(* Print the headers.
* Note that we don't use the OCaml formatter for purpose: we want to control
* line insertion (we have to make sure that some instructions like [open MODULE]
* are printed on one line!).
* This is ok as long as we end up with a line break, so that the formatter's
* internal count is consistent with the state of the file.
*)
(* Create the header *)
(match !Config.backend with
| Lean ->
Printf.fprintf out "-- THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS\n";
Printf.fprintf out "-- [%s]%s\n" fi.rust_module_name fi.custom_msg
| Coq | FStar | HOL4 ->
Printf.fprintf out
"(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)\n";
Printf.fprintf out "(** [%s]%s *)\n" fi.rust_module_name fi.custom_msg);
(* Generate the imports *)
(match !Config.backend with
| FStar ->
Printf.fprintf out "module %s\n" fi.module_name;
Printf.fprintf out "open Primitives\n";
(* Add the custom imports *)
List.iter (fun m -> Printf.fprintf out "open %s\n" m) fi.custom_imports;
(* Add the custom includes *)
List.iter
(fun m -> Printf.fprintf out "include %s\n" m)
fi.custom_includes;
(* Z3 options - note that we use fuel 1 because it its useful for the decrease clauses *)
Printf.fprintf out "\n#set-options \"--z3rlimit 50 --fuel 1 --ifuel 1\"\n"
| Coq ->
Printf.fprintf out "Require Import Primitives.\n";
Printf.fprintf out "Import Primitives.\n";
Printf.fprintf out "Require Import Coq.ZArith.ZArith.\n";
Printf.fprintf out "Require Import List.\n";
Printf.fprintf out "Import ListNotations.\n";
Printf.fprintf out "Local Open Scope Primitives_scope.\n";
(* Add the custom imports *)
List.iter
(fun m -> Printf.fprintf out "Require Import %s.\n" m)
fi.custom_imports;
(* Add the custom includes *)
List.iter
(fun m ->
Printf.fprintf out "Require Export %s.\n" m;
Printf.fprintf out "Import %s.\n" m)
fi.custom_includes;
Printf.fprintf out "Module %s.\n" fi.module_name
| Lean ->
Printf.fprintf out "import Base\n";
(* Add the custom imports *)
List.iter (fun m -> Printf.fprintf out "import %s\n" m) fi.custom_imports;
(* Add the custom includes *)
List.iter (fun m -> Printf.fprintf out "import %s\n" m) fi.custom_includes;
(* Always open the Primitives namespace *)
Printf.fprintf out "open Primitives\n";
(* If we are inside the namespace: declare it, otherwise: open it *)
if fi.in_namespace then Printf.fprintf out "\nnamespace %s\n" fi.namespace
else Printf.fprintf out "open %s\n" fi.namespace
| HOL4 ->
Printf.fprintf out "open primitivesLib divDefLib\n";
(* Add the custom imports and includes *)
let imports = fi.custom_imports @ fi.custom_includes in
(* The imports are a list of module names: we need to add a "Theory" suffix *)
let imports = List.map (fun s -> s ^ "Theory") imports in
if imports <> [] then
let imports = String.concat " " imports in
Printf.fprintf out "open %s\n\n" imports
else Printf.fprintf out "\n";
(* Initialize the theory *)
Printf.fprintf out "val _ = new_theory \"%s\"\n\n" fi.module_name);
(* From now onwards, we use the formatter *)
(* Set the margin *)
Format.pp_set_margin fmt 80;
(* Create a vertical box *)
Format.pp_open_vbox fmt 0;
(* Extract the definitions *)
extract_definitions fmt config ctx;
(* Close the box and end the formatting *)
Format.pp_close_box fmt ();
Format.pp_print_newline fmt ();
(* Close the module *)
(match !Config.backend with
| FStar -> ()
| Lean -> if fi.in_namespace then Printf.fprintf out "end %s\n" fi.namespace
| HOL4 -> Printf.fprintf out "val _ = export_theory ()\n"
| Coq -> Printf.fprintf out "End %s .\n" fi.module_name);
(* Some logging *)
log#linfo (lazy ("Generated: " ^ fi.filename));
(* Flush and close the file *)
close_out out
(** Translate a crate and write the synthesized code to an output file. *)
let translate_crate (filename : string) (dest_dir : string) (crate : A.crate) :
unit =
(* Translate the module to the pure AST *)
let trans_ctx, trans_types, trans_funs, trans_trait_decls, trans_trait_impls =
translate_crate_to_pure crate
in
(* Initialize the extraction context - for now we extract only to F*.
* We initialize the names map by registering the keywords used in the
* language, as well as some primitive names ("u32", etc.) *)
let variant_concatenate_type_name =
(* For Lean, we exploit the fact that the variant name should always be
prefixed with the type name to prevent collisions *)
match !Config.backend with Coq | FStar | HOL4 -> true | Lean -> false
in
(* Initialize the names map (we insert the names of the "primitives"
declarations, and insert the names of the local declarations later) *)
let mk_formatter_and_names_map = Extract.mk_formatter_and_names_map in
let fmt, names_map =
mk_formatter_and_names_map trans_ctx crate.name
variant_concatenate_type_name
in
let strict_names_map =
let open ExtractBase in
let ids =
List.filter
(fun (id, _) -> strict_collisions id)
(IdMap.bindings names_map.id_to_name)
in
let is_opaque = false in
List.fold_left
(* id_to_string: we shouldn't need to use it *)
(fun m (id, n) -> names_map_add show_id is_opaque id n m)
empty_names_map ids
in
(* We need to compute which functions are recursive, in order to know
* whether we should generate a decrease clause or not. *)
let rec_functions =
List.map
(fun { fwd; _ } ->
let fwd_f =
if fwd.f.Pure.signature.info.effect_info.is_rec then
[ (fwd.f.def_id, None) ]
else []
in
let loop_fwds =
List.map
(fun (def : Pure.fun_decl) -> [ (def.def_id, def.loop_id) ])
fwd.loops
in
fwd_f :: loop_fwds)
trans_funs
in
let rec_functions : PureUtils.fun_loop_id list =
List.concat (List.concat rec_functions)
in
let rec_functions = PureUtils.FunLoopIdSet.of_list rec_functions in
(* Put the translated definitions in maps *)
let trans_types =
Pure.TypeDeclId.Map.of_list
(List.map (fun (d : Pure.type_decl) -> (d.def_id, d)) trans_types)
in
let trans_funs : pure_fun_translation A.FunDeclId.Map.t =
A.FunDeclId.Map.of_list
(List.map
(fun (trans : pure_fun_translation) -> (trans.fwd.f.def_id, trans))
trans_funs)
in
(* Put everything in the context *)
let ctx =
let trans_trait_decls =
T.TraitDeclId.Map.of_list
(List.map
(fun (d : Pure.trait_decl) -> (d.def_id, d))
trans_trait_decls)
in
let trans_trait_impls =
T.TraitImplId.Map.of_list
(List.map
(fun (d : Pure.trait_impl) -> (d.def_id, d))
trans_trait_impls)
in
{
ExtractBase.crate;
trans_ctx;
names_map;
unsafe_names_map = { id_to_name = ExtractBase.IdMap.empty };
strict_names_map;
fmt;
indent_incr = 2;
use_opaque_pre = !Config.split_files;
use_dep_ite = !Config.backend = Lean && !Config.extract_decreases_clauses;
fun_name_info = PureUtils.RegularFunIdMap.empty;
trait_decl_id = None (* None by default *);
is_provided_method = false (* false by default *);
trans_trait_decls;
trans_trait_impls;
trans_types;
trans_funs;
functions_with_decreases_clause = rec_functions;
}
in
(* Register unique names for all the top-level types, globals, functions...
* Note that the order in which we generate the names doesn't matter:
* we just need to generate a mapping from identifier to name, and make
* sure there are no name clashes. *)
let ctx =
List.fold_left
(fun ctx def -> Extract.extract_type_decl_register_names ctx def)
ctx
(Pure.TypeDeclId.Map.values trans_types)
in
let ctx =
List.fold_left
(fun ctx (trans : pure_fun_translation) ->
(* If requested by the user, register termination measures and decreases
proofs for all the recursive functions *)
let fwd_def = trans.fwd.f in
let gen_decr_clause (def : Pure.fun_decl) =
!Config.extract_decreases_clauses
&& PureUtils.FunLoopIdSet.mem
(def.Pure.def_id, def.Pure.loop_id)
rec_functions
in
(* Register the names, only if the function is not a global body -
* those are handled later *)
let is_global = fwd_def.Pure.is_global_decl_body in
if is_global then ctx
else Extract.extract_fun_decl_register_names ctx gen_decr_clause trans)
ctx
(A.FunDeclId.Map.values trans_funs)
in
let ctx =
List.fold_left Extract.extract_global_decl_register_names ctx
(A.GlobalDeclId.Map.values crate.globals)
in
let ctx =
List.fold_left Extract.extract_trait_decl_register_names ctx
trans_trait_decls
in
let ctx =
List.fold_left Extract.extract_trait_impl_register_names ctx
trans_trait_impls
in
(* Open the output file *)
(* First compute the filename by replacing the extension and converting the
* case (rust module names are snake case) *)
let namespace, crate_name, extract_filebasename =
match Filename.chop_suffix_opt ~suffix:".llbc" filename with
| None ->
(* Note that we already checked the suffix upon opening the file *)
raise (Failure "Unreachable")
| Some filename ->
(* Retrieve the file basename *)
let basename = Filename.basename filename in
(* Convert the case *)
let crate_name = StringUtils.to_camel_case basename in
let crate_name =
if !Config.backend = HOL4 then
StringUtils.lowercase_first_letter crate_name
else crate_name
in
(* We use the raw crate name for the namespaces *)
let namespace =
match !Config.backend with
| FStar | Coq | HOL4 -> crate.name
| Lean -> crate.name
in
(* Concatenate *)
(namespace, crate_name, Filename.concat dest_dir crate_name)
in
let mkdir_if dest_dir =
if not (Sys.file_exists dest_dir) then (
log#linfo (lazy ("Creating missing directory: " ^ dest_dir));
(* Create a directory with *default* permissions *)
Core_unix.mkdir_p dest_dir)
in
(* Create the directory, if necessary *)
mkdir_if dest_dir;
let needs_clauses_module =
!Config.extract_decreases_clauses
&& not (PureUtils.FunLoopIdSet.is_empty rec_functions)
in
(* Lean reflects the module hierarchy within the filesystem, so we need to
create more directories *)
if !Config.backend = Lean then (
let ( ^^ ) = Filename.concat in
if !Config.split_files then mkdir_if (dest_dir ^^ crate_name);
if needs_clauses_module then (
assert !Config.split_files;
mkdir_if (dest_dir ^^ crate_name ^^ "Clauses")));
(* Copy the "Primitives" file, if necessary *)
let _ =
(* Retrieve the executable's directory *)
let exe_dir = Filename.dirname Sys.argv.(0) in
let primitives_src_dest =
match !Config.backend with
| FStar -> Some ("/backends/fstar/Primitives.fst", "Primitives.fst")
| Coq -> Some ("/backends/coq/Primitives.v", "Primitives.v")
| Lean -> None
| HOL4 -> None
in
match primitives_src_dest with
| None -> ()
| Some (primitives_src, primitives_destname) -> (
let src = open_in (exe_dir ^ primitives_src) in
let tgt_filename = Filename.concat dest_dir primitives_destname in
let tgt = open_out tgt_filename in
(* Very annoying: I couldn't find a "cp" function in the OCaml libraries... *)
try
while true do
(* We copy line by line *)
let line = input_line src in
Printf.fprintf tgt "%s\n" line
done
with End_of_file ->
close_in src;
close_out tgt;
log#linfo (lazy ("Copied: " ^ tgt_filename)))
in
(* Extract the file(s) *)
let module_delimiter =
match !Config.backend with
| FStar -> "."
| Coq -> "_"
| Lean -> "."
| HOL4 -> "_"
in
let file_delimiter =
if !Config.backend = Lean then "/" else module_delimiter
in
(* File extension for the "regular" modules *)
let ext =
match !Config.backend with
| FStar -> ".fst"
| Coq -> ".v"
| Lean -> ".lean"
| HOL4 -> "Script.sml"
in
(* File extension for the opaque module *)
let opaque_ext =
match !Config.backend with
| FStar -> ".fsti"
| Coq -> ".v"
| Lean -> ".lean"
| HOL4 -> "Script.sml"
in
(* Extract one or several files, depending on the configuration *)
(if !Config.split_files then (
let base_gen_config =
{
extract_types = false;
extract_decreases_clauses = !Config.extract_decreases_clauses;
extract_template_decreases_clauses = false;
extract_fun_decls = false;
extract_trait_decls = false;
extract_trait_impls = false;
extract_transparent = true;
extract_opaque = false;
extract_state_type = false;
extract_globals = false;
interface = false;
test_trans_unit_functions = false;
}
in
(* Check if there are opaque types and functions - in which case we need
* to split *)
let has_opaque_types, has_opaque_funs = crate_has_opaque_decls ctx true in
let has_opaque_types = has_opaque_types || !Config.use_state in
(* Extract the types *)
(* If there are opaque types, we extract in an interface *)
(* TODO: for Lean and Coq: generate a template file *)
let types_filename_ext =
match !Config.backend with
| FStar -> if has_opaque_types then ".fsti" else ".fst"
| Coq -> ".v"
| Lean -> ".lean"
| HOL4 -> "Script.sml"
in
let types_filename =
extract_filebasename ^ file_delimiter ^ "Types" ^ types_filename_ext
in
let types_module = crate_name ^ module_delimiter ^ "Types" in
let types_config =
{
base_gen_config with
extract_types = true;
extract_trait_decls = true;
extract_opaque = true;
extract_state_type = !Config.use_state;
interface = has_opaque_types;
}
in
let file_info =
{
filename = types_filename;
namespace;
in_namespace = true;
crate_name;
rust_module_name = crate.A.name;
module_name = types_module;
custom_msg = ": type definitions";
custom_imports = [];
custom_includes = [];
}
in
extract_file types_config ctx file_info;
(* Extract the template clauses *)
(if needs_clauses_module && !Config.extract_template_decreases_clauses then
let template_clauses_filename =
extract_filebasename ^ file_delimiter ^ "Clauses" ^ file_delimiter
^ "Template" ^ ext
in
let template_clauses_module =
crate_name ^ module_delimiter ^ "Clauses" ^ module_delimiter
^ "Template"
in
let template_clauses_config =
{ base_gen_config with extract_template_decreases_clauses = true }
in
let file_info =
{
filename = template_clauses_filename;
namespace;
in_namespace = true;
crate_name;
rust_module_name = crate.A.name;
module_name = template_clauses_module;
custom_msg = ": templates for the decreases clauses";
custom_imports = [ types_module ];
custom_includes = [];
}
in
extract_file template_clauses_config ctx file_info);
(* Extract the opaque declarations, if needed *)
let opaque_funs_module =
if has_opaque_funs then (
(* In the case of Lean we generate a template file *)
let module_suffix, opaque_imported_suffix, custom_msg =
match !Config.backend with
| FStar | Coq | HOL4 ->
("Opaque", "Opaque", ": external function declarations")
| Lean ->
( "FunsExternal_Template",
"FunsExternal",
": external functions.\n\
-- This is a template file: rename it to \
\"FunsExternal.lean\" and fill the holes." )
in
let opaque_filename =
extract_filebasename ^ file_delimiter ^ module_suffix ^ opaque_ext
in
let opaque_module = crate_name ^ module_delimiter ^ module_suffix in
let opaque_imported_module =
if !Config.backend = Lean then
crate_name ^ module_delimiter ^ opaque_imported_suffix
else opaque_module
in
let opaque_config =
{
base_gen_config with
extract_fun_decls = true;
extract_trait_impls = true;
extract_globals = true;
extract_transparent = false;
extract_opaque = true;
interface = true;
}
in
let ctx = { ctx with use_opaque_pre = false } in
let file_info =
{
filename = opaque_filename;
namespace;
in_namespace = false;
crate_name;
rust_module_name = crate.A.name;
module_name = opaque_module;
custom_msg;
custom_imports = [];
custom_includes = [ types_module ];
}
in
extract_file opaque_config ctx file_info;
(* Return the additional dependencies *)
[ opaque_imported_module ])
else []
in
(* Extract the functions *)
let fun_filename = extract_filebasename ^ file_delimiter ^ "Funs" ^ ext in
let fun_module = crate_name ^ module_delimiter ^ "Funs" in
let fun_config =
{
base_gen_config with
extract_fun_decls = true;
extract_trait_impls = true;
extract_globals = true;
test_trans_unit_functions = !Config.test_trans_unit_functions;
}
in
let clauses_module =
if needs_clauses_module then
let clauses_submodule =
if !Config.backend = Lean then module_delimiter ^ "Clauses" else ""
in
[ crate_name ^ clauses_submodule ^ module_delimiter ^ "Clauses" ]
else []
in
let file_info =
{
filename = fun_filename;
namespace;
in_namespace = true;
crate_name;
rust_module_name = crate.A.name;
module_name = fun_module;
custom_msg = ": function definitions";
custom_imports = [];
custom_includes =
[ types_module ] @ opaque_funs_module @ clauses_module;
}
in
extract_file fun_config ctx file_info)
else
let gen_config =
{
extract_types = true;
extract_decreases_clauses = !Config.extract_decreases_clauses;
extract_template_decreases_clauses =
!Config.extract_template_decreases_clauses;
extract_fun_decls = true;
extract_trait_decls = true;
extract_trait_impls = true;
extract_transparent = true;
extract_opaque = true;
extract_state_type = !Config.use_state;
extract_globals = true;
interface = false;
test_trans_unit_functions = !Config.test_trans_unit_functions;
}
in
let file_info =
{
filename = extract_filebasename ^ ext;
namespace;
in_namespace = true;
crate_name;
rust_module_name = crate.A.name;
module_name = crate_name;
custom_msg = "";
custom_imports = [];
custom_includes = [];
}
in
extract_file gen_config ctx file_info);
(* Generate the build file *)
match !Config.backend with
| Coq | FStar | HOL4 ->
()
(* Nothing to do - TODO: we might want to generate the _CoqProject file for Coq.
But then we can't modify it if we want to add more files for the proofs
for instance. But we might want to put the proofs elsewhere anyway.
Remark: there is the same problem for Lean actually.
Maybe generate it if the user asks for it?
*)
| Lean ->
(*
* Generate the library entry point, if the crate is split between
* different files.
*)
if !Config.split_files && !Config.generate_lib_entry_point then (
let filename = Filename.concat dest_dir (crate_name ^ ".lean") in
let out = open_out filename in
(* Write *)
Printf.fprintf out "import %s.Funs\n" crate_name;
(* Flush and close the file, log *)
close_out out;
log#linfo (lazy ("Generated: " ^ filename)));
(*
* Generate the lakefile.lean file, if the user asks for it
*)
if !Config.lean_gen_lakefile then (
(* Open the file *)
let filename = Filename.concat dest_dir "lakefile.lean" in
let out = open_out filename in
(* Generate the content *)
Printf.fprintf out "import Lake\nopen Lake DSL\n\n";
Printf.fprintf out "require mathlib from git\n";
Printf.fprintf out
" \"https://github.com/leanprover-community/mathlib4.git\"\n\n";
let package_name = StringUtils.to_snake_case crate_name in
Printf.fprintf out "package «%s» {}\n\n" package_name;
Printf.fprintf out "@[default_target]\nlean_lib «%s» {}\n" crate_name;
(* No default target for now.
Format would be:
{[
@[default_target]
lean_exe «package_name» {
root := `Main
}
]}
*)
(* Flush and close the file *)
close_out out;
(* Logging *)
log#linfo (lazy ("Generated: " ^ filename)))
|