1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
open InterpreterStatements
open Interpreter
module L = Logging
module T = Types
module A = LlbcAst
module SA = SymbolicAst
module Micro = PureMicroPasses
open PureUtils
open TranslateCore
(** The local logger *)
let log = TranslateCore.log
(** The result of running the symbolic interpreter on a function:
- the list of symbolic values used for the input values
- the generated symbolic AST
*)
type symbolic_fun_translation = V.symbolic_value list * SA.expression
(** Execute the symbolic interpreter on a function to generate a list of symbolic ASTs,
for the forward function and the backward functions.
*)
let translate_function_to_symbolics (trans_ctx : trans_ctx) (fdef : A.fun_decl)
: symbolic_fun_translation option =
(* Debug *)
log#ldebug
(lazy
("translate_function_to_symbolics: "
^ Print.fun_name_to_string fdef.A.name));
let { type_context; fun_context; global_context } = trans_ctx in
let fun_context = { C.fun_decls = fun_context.fun_decls } in
match fdef.body with
| None -> None
| Some _ ->
(* Evaluate *)
let synthesize = true in
let inputs, symb =
evaluate_function_symbolic synthesize type_context fun_context
global_context fdef
in
Some (inputs, Option.get symb)
(** Translate a function, by generating its forward and backward translations.
[fun_sigs]: maps the forward/backward functions to their signatures. In case
of backward functions, we also provide names for the outputs.
TODO: maybe we should introduce a record for this.
*)
let translate_function_to_pure (trans_ctx : trans_ctx)
(fun_sigs : SymbolicToPure.fun_sig_named_outputs RegularFunIdMap.t)
(pure_type_decls : Pure.type_decl Pure.TypeDeclId.Map.t) (fdef : A.fun_decl)
: pure_fun_translation =
(* Debug *)
log#ldebug
(lazy
("translate_function_to_pure: " ^ Print.fun_name_to_string fdef.A.name));
let { type_context; fun_context; global_context } = trans_ctx in
let def_id = fdef.def_id in
(* Compute the symbolic ASTs, if the function is transparent *)
let symbolic_trans = translate_function_to_symbolics trans_ctx fdef in
(* Convert the symbolic ASTs to pure ASTs: *)
(* Initialize the context *)
let forward_sig = RegularFunIdMap.find (A.Regular def_id, None) fun_sigs in
let sv_to_var = V.SymbolicValueId.Map.empty in
let var_counter = Pure.VarId.generator_zero in
let state_var, var_counter = Pure.VarId.fresh var_counter in
let back_state_var, var_counter = Pure.VarId.fresh var_counter in
let fuel0, var_counter = Pure.VarId.fresh var_counter in
let fuel, var_counter = Pure.VarId.fresh var_counter in
let calls = V.FunCallId.Map.empty in
let abstractions = V.AbstractionId.Map.empty in
let type_context =
{
SymbolicToPure.types_infos = type_context.type_infos;
llbc_type_decls = type_context.type_decls;
type_decls = pure_type_decls;
}
in
let fun_context =
{
SymbolicToPure.llbc_fun_decls = fun_context.fun_decls;
fun_sigs;
fun_infos = fun_context.fun_infos;
}
in
let global_context =
{ SymbolicToPure.llbc_global_decls = global_context.global_decls }
in
let ctx =
{
SymbolicToPure.bid = None;
(* Dummy for now *)
sg = forward_sig.sg;
(* Will need to be updated for the backward functions *)
sv_to_var;
var_counter;
state_var;
back_state_var;
fuel0;
fuel;
type_context;
fun_context;
global_context;
fun_decl = fdef;
forward_inputs = [];
(* Empty for now *)
backward_inputs = T.RegionGroupId.Map.empty;
(* Empty for now *)
backward_outputs = T.RegionGroupId.Map.empty;
(* Empty for now *)
calls;
abstractions;
loop_id = None;
inside_loop = false;
}
in
(* Add the forward inputs (the initialized input variables for the forward
function)
*)
let ctx =
match (fdef.body, symbolic_trans) with
| None, None -> ctx
| Some body, Some (input_svs, _) ->
let forward_input_vars = LlbcAstUtils.fun_body_get_input_vars body in
let forward_input_varnames =
List.map (fun (v : A.var) -> v.name) forward_input_vars
in
let input_svs = List.combine forward_input_varnames input_svs in
let ctx, forward_inputs =
SymbolicToPure.fresh_named_vars_for_symbolic_values input_svs ctx
in
{ ctx with forward_inputs }
| _ -> raise (Failure "Unreachable")
in
(* Translate the forward function *)
let pure_forward =
match symbolic_trans with
| None -> SymbolicToPure.translate_fun_decl ctx None
| Some (_, ast) -> SymbolicToPure.translate_fun_decl ctx (Some ast)
in
(* Translate the backward functions *)
let translate_backward (rg : T.region_var_group) : Pure.fun_decl =
(* For the backward inputs/outputs initialization: we use the fact that
* there are no nested borrows for now, and so that the region groups
* can't have parents *)
assert (rg.parents = []);
let back_id = rg.id in
match symbolic_trans with
| None ->
(* Initialize the context - note that the ret_ty is not really
* useful as we don't translate a body *)
let backward_sg =
RegularFunIdMap.find (A.Regular def_id, Some back_id) fun_sigs
in
let ctx = { ctx with bid = Some back_id; sg = backward_sg.sg } in
(* Translate *)
SymbolicToPure.translate_fun_decl ctx None
| Some (_, symbolic) ->
(* Finish initializing the context by adding the additional input
variables required by the backward function.
*)
let backward_sg =
RegularFunIdMap.find (A.Regular def_id, Some back_id) fun_sigs
in
(* We need to ignore the forward inputs, and the state input (if there is) *)
let backward_inputs =
let sg = backward_sg.sg in
(* We need to ignore the forward state and the backward state *)
let num_forward_inputs =
sg.info.num_fwd_inputs_with_fuel_with_state
in
let num_back_inputs = Option.get sg.info.num_back_inputs_no_state in
Collections.List.subslice sg.inputs num_forward_inputs num_back_inputs
in
(* As we forbid nested borrows, the additional inputs for the backward
* functions come from the borrows in the return value of the rust function:
* we thus use the name "ret" for those inputs *)
let backward_inputs =
List.map (fun ty -> (Some "ret", ty)) backward_inputs
in
let ctx, backward_inputs =
SymbolicToPure.fresh_vars backward_inputs ctx
in
(* The outputs for the backward functions, however, come from borrows
* present in the input values of the rust function: for those we reuse
* the names of the input values. *)
let backward_outputs =
List.combine backward_sg.output_names backward_sg.sg.doutputs
in
let ctx, backward_outputs =
SymbolicToPure.fresh_vars backward_outputs ctx
in
let backward_inputs =
T.RegionGroupId.Map.singleton back_id backward_inputs
in
let backward_outputs =
T.RegionGroupId.Map.singleton back_id backward_outputs
in
(* Put everything in the context *)
let ctx =
{
ctx with
bid = Some back_id;
sg = backward_sg.sg;
backward_inputs;
backward_outputs;
}
in
(* Translate *)
SymbolicToPure.translate_fun_decl ctx (Some symbolic)
in
let pure_backwards =
List.map translate_backward fdef.signature.regions_hierarchy
in
(* Return *)
(pure_forward, pure_backwards)
let translate_module_to_pure (crate : A.crate) :
trans_ctx * Pure.type_decl list * (bool * pure_fun_translation) list =
(* Debug *)
log#ldebug (lazy "translate_module_to_pure");
(* Compute the type and function contexts *)
let type_context, fun_context, global_context =
compute_type_fun_global_contexts crate
in
let fun_infos =
FA.analyze_module crate fun_context.C.fun_decls
global_context.C.global_decls !Config.use_state
in
let fun_context = { fun_decls = fun_context.fun_decls; fun_infos } in
let trans_ctx = { type_context; fun_context; global_context } in
(* Translate all the type definitions *)
let type_decls = SymbolicToPure.translate_type_decls crate.types in
(* Compute the type definition map *)
let type_decls_map =
Pure.TypeDeclId.Map.of_list
(List.map (fun (def : Pure.type_decl) -> (def.def_id, def)) type_decls)
in
(* Translate all the function *signatures* *)
let assumed_sigs =
List.map
(fun (id, sg, _, _) ->
(A.Assumed id, List.map (fun _ -> None) (sg : A.fun_sig).inputs, sg))
Assumed.assumed_infos
in
let local_sigs =
List.map
(fun (fdef : A.fun_decl) ->
let input_names =
match fdef.body with
| None -> List.map (fun _ -> None) fdef.signature.inputs
| Some body ->
List.map
(fun (v : A.var) -> v.name)
(LlbcAstUtils.fun_body_get_input_vars body)
in
(A.Regular fdef.def_id, input_names, fdef.signature))
crate.functions
in
let sigs = List.append assumed_sigs local_sigs in
let fun_sigs =
SymbolicToPure.translate_fun_signatures fun_context.fun_infos
type_context.type_infos sigs
in
(* Translate all the *transparent* functions *)
let pure_translations =
List.map
(translate_function_to_pure trans_ctx fun_sigs type_decls_map)
crate.functions
in
(* Apply the micro-passes *)
let pure_translations =
List.map
(Micro.apply_passes_to_pure_fun_translation trans_ctx)
pure_translations
in
(* Return *)
(trans_ctx, type_decls, pure_translations)
(** Extraction context *)
type gen_ctx = {
crate : A.crate;
extract_ctx : ExtractBase.extraction_ctx;
trans_types : Pure.type_decl Pure.TypeDeclId.Map.t;
trans_funs : (bool * pure_fun_translation) A.FunDeclId.Map.t;
functions_with_decreases_clause : A.FunDeclId.Set.t;
}
type gen_config = {
extract_types : bool;
extract_decreases_clauses : bool;
extract_template_decreases_clauses : bool;
extract_fun_decls : bool;
extract_transparent : bool;
(** If [true], extract the transparent declarations, otherwise ignore. *)
extract_opaque : bool;
(** If [true], extract the opaque declarations, otherwise ignore. *)
extract_state_type : bool;
(** If [true], generate a definition/declaration for the state type *)
interface : bool;
(** [true] if we generate an interface file, [false] otherwise.
For now, this only impacts whether we use [val] or [assume val] for the
opaque definitions. In the future, we might want to extract all the
declarations in an interface file, together with an implementation file
if needed.
*)
test_trans_unit_functions : bool;
}
(** Returns the pair: (has opaque type decls, has opaque fun decls) *)
let module_has_opaque_decls (ctx : gen_ctx) : bool * bool =
let has_opaque_types =
Pure.TypeDeclId.Map.exists
(fun _ (d : Pure.type_decl) ->
match d.kind with Opaque -> true | _ -> false)
ctx.trans_types
in
let has_opaque_funs =
A.FunDeclId.Map.exists
(fun _ ((_, (t_fwd, _)) : bool * pure_fun_translation) ->
Option.is_none t_fwd.body)
ctx.trans_funs
in
(has_opaque_types, has_opaque_funs)
(** Export a type declaration.
It may happen that we have to extract extra information/instructions.
For instance, we might need to define some projector notations. This is
why we have the two booleans [extract_decl] and [extract_extra_info].
If [extract_decl] is [true], then we extract the type declaration. If
[extract_extra_info] is [true], we extract this extra information (after
the declaration, if both booleans are [true]).
*)
let export_type (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx)
(kind : ExtractBase.decl_kind) (id : Pure.TypeDeclId.id)
(extract_decl : bool) (extract_extra_info : bool) : unit =
(* Retrieve the declaration *)
let def = Pure.TypeDeclId.Map.find id ctx.trans_types in
(* Update the kind, if the type is opaque *)
let is_opaque, kind =
match def.kind with
| Enum _ | Struct _ -> (false, kind)
| Opaque ->
let kind =
if config.interface then ExtractBase.Declared else ExtractBase.Assumed
in
(true, kind)
in
(* Extract, if the config instructs to do so (depending on whether the type
* is opaque or not) *)
if
(is_opaque && config.extract_opaque)
|| ((not is_opaque) && config.extract_transparent)
then (
if extract_decl then Extract.extract_type_decl ctx.extract_ctx fmt kind def;
if extract_extra_info then
Extract.extract_type_decl_extra_info ctx.extract_ctx fmt kind def)
(** Export a group of types.
[is_rec]: [true] if the types are recursive. Necessarily [true] if there is
> 1 type to extract.
*)
let export_types_group (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) (is_rec : bool) (ids : Pure.TypeDeclId.id list) : unit =
let export_type = export_type fmt config ctx in
let export_type_decl kind id = export_type kind id true false in
let export_type_extra_info kind id = export_type kind id false true in
(* Rem.: we shouldn't have (mutually) recursive opaque types *)
let num_decls = List.length ids in
let is_mut_rec = num_decls > 1 in
let kind_from_index i =
if not is_mut_rec then
if is_rec then ExtractBase.SingleRec else ExtractBase.SingleNonRec
else if i = 0 then ExtractBase.MutRecFirst
else if i = num_decls - 1 then ExtractBase.MutRecLast
else ExtractBase.MutRecInner
in
(* Extract the type declarations *)
List.iteri
(fun i id ->
let kind = kind_from_index i in
export_type_decl kind id)
ids;
(* Export the extra information (ex.: [Arguments] instructions in Coq) *)
List.iteri
(fun i id ->
let kind = kind_from_index i in
export_type_extra_info kind id)
ids
(** Export a global declaration.
TODO: check correct behaviour with opaque globals.
*)
let export_global (fmt : Format.formatter) (config : gen_config) (ctx : gen_ctx)
(id : A.GlobalDeclId.id) : unit =
let global_decls = ctx.extract_ctx.trans_ctx.global_context.global_decls in
let global = A.GlobalDeclId.Map.find id global_decls in
let _, (body, body_backs) =
A.FunDeclId.Map.find global.body_id ctx.trans_funs
in
assert (List.length body_backs = 0);
let is_opaque = Option.is_none body.Pure.body in
if
((not is_opaque) && config.extract_transparent)
|| (is_opaque && config.extract_opaque)
then
Extract.extract_global_decl ctx.extract_ctx fmt global body config.interface
(** Utility.
Export a group of functions. See [export_functions_group].
We need this because for every function in Rust we may generate several functions
in the translation (a forward function, several backward functions, loop
functions, etc.). Those functions might call each other in different
ways (in particular, they may be mutually recursive, in which case we might
be able to group them into several groups of mutually recursive definitions,
etc.). For this reason, [export_functions_group] computes the dependency
graph of the functions as well as their strongly connected components, and
gives each SCC at a time to [export_functions].
Rem.: this function only extracts the function *declarations*. It doesn't
extract the decrease clauses, nor does it extract the unit tests.
Rem.: this function doesn't check [config.extract_fun_decls]: it should have
been checked by the caller.
*)
let export_functions_declarations (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) (is_rec : bool) (decls : Pure.fun_decl list) : unit =
(* Utility to check a function has a decrease clause *)
let has_decreases_clause (def : Pure.fun_decl) : bool =
A.FunDeclId.Set.mem def.def_id ctx.functions_with_decreases_clause
in
(* Extract the function declarations *)
(* Check if the functions are mutually recursive *)
let is_mut_rec = List.length decls > 1 in
assert ((not is_mut_rec) || is_rec);
let decls_length = List.length decls in
List.iteri
(fun i def ->
let is_opaque = Option.is_none def.Pure.body in
let kind =
if is_opaque then
if config.interface then ExtractBase.Declared else ExtractBase.Assumed
else if not is_rec then ExtractBase.SingleNonRec
else if is_mut_rec then
(* If the functions are mutually recursive, we need to distinguish:
* - the first of the group
* - the last of the group
* - the inner functions
*)
if i = 0 then ExtractBase.MutRecFirst
else if i = decls_length - 1 then ExtractBase.MutRecLast
else ExtractBase.MutRecInner
else ExtractBase.SingleRec
in
let has_decr_clause =
has_decreases_clause def && config.extract_decreases_clauses
in
(* Check if the definition needs to be filtered or not *)
if
((not is_opaque) && config.extract_transparent)
|| (is_opaque && config.extract_opaque)
then Extract.extract_fun_decl ctx.extract_ctx fmt kind has_decr_clause def)
decls
(** Export a group of function declarations.
In case of (non-mutually) recursive functions, we use a simple procedure to
check if the forward and backward functions are mutually recursive.
*)
let export_functions_group (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) (pure_ls : (bool * pure_fun_translation) list) : unit =
(* Utility to check a function has a decrease clause *)
let has_decreases_clause (def : Pure.fun_decl) : bool =
A.FunDeclId.Set.mem def.def_id ctx.functions_with_decreases_clause
in
(* Extract the decrease clauses template bodies *)
if config.extract_template_decreases_clauses then
List.iter
(fun (_, (fwd, _)) ->
let has_decr_clause = has_decreases_clause fwd in
if has_decr_clause then
Extract.extract_template_decreases_clause ctx.extract_ctx fmt fwd)
pure_ls;
(* Concatenate the function definitions, filtering the useless forward
* functions. *)
let decls =
List.concat
(List.map
(fun (keep_fwd, (fwd, back_ls)) ->
if keep_fwd then fwd :: back_ls else back_ls)
pure_ls)
in
(* Extract the function definitions *)
(if config.extract_fun_decls then
(* Group the mutually recursive definitions *)
let subgroups = ReorderDecls.group_reorder_fun_decls decls in
(* Extract the subgroups *)
let export_subgroup (is_rec : bool) (decls : Pure.fun_decl list) : unit =
export_functions_declarations fmt config ctx is_rec decls
in
List.iter (fun (is_rec, decls) -> export_subgroup is_rec decls) subgroups);
(* Insert unit tests if necessary *)
if config.test_trans_unit_functions then
List.iter
(fun (keep_fwd, (fwd, _)) ->
if keep_fwd then
Extract.extract_unit_test_if_unit_fun ctx.extract_ctx fmt fwd)
pure_ls
(** A generic utility to generate the extracted definitions: as we may want to
split the definitions between different files (or not), we can control
what is precisely extracted.
*)
let extract_definitions (fmt : Format.formatter) (config : gen_config)
(ctx : gen_ctx) : unit =
(* Export the definition groups to the file, in the proper order.
- [extract_decl]: extract the type declaration (if not filtered)
- [extract_extra_info]: extra the extra type information (e.g.,
the [Arguments] information in Coq).
*)
let export_functions_group = export_functions_group fmt config ctx in
let export_global = export_global fmt config ctx in
let export_types_group = export_types_group fmt config ctx in
let export_state_type () : unit =
let kind =
if config.interface then ExtractBase.Declared else ExtractBase.Assumed
in
Extract.extract_state_type fmt ctx.extract_ctx kind
in
let export_decl_group (dg : A.declaration_group) : unit =
match dg with
| Type (NonRec id) ->
if config.extract_types then export_types_group false [ id ]
| Type (Rec ids) -> if config.extract_types then export_types_group true ids
| Fun (NonRec id) ->
(* Lookup *)
let pure_fun = A.FunDeclId.Map.find id ctx.trans_funs in
(* Translate *)
export_functions_group [ pure_fun ]
| Fun (Rec ids) ->
(* General case of mutually recursive functions *)
(* Lookup *)
let pure_funs =
List.map (fun id -> A.FunDeclId.Map.find id ctx.trans_funs) ids
in
(* Translate *)
export_functions_group pure_funs
| Global id -> export_global id
in
(* If we need to export the state type: we try to export it after we defined
* the type definitions, because if the user wants to define a model for the
* type, he might want to reuse those in the state type.
* More specifically: if we extract functions in the same file as the type,
* we have no choice but to define the state type before the functions,
* because they may reuse this state type: in this case, we define/declare
* it at the very beginning. Otherwise, we define/declare it at the very end.
*)
if config.extract_state_type && config.extract_fun_decls then
export_state_type ();
List.iter export_decl_group ctx.crate.declarations;
if config.extract_state_type && not config.extract_fun_decls then
export_state_type ()
let extract_file (config : gen_config) (ctx : gen_ctx) (filename : string)
(rust_module_name : string) (module_name : string) (custom_msg : string)
(custom_imports : string list) (custom_includes : string list) : unit =
(* Open the file and create the formatter *)
let out = open_out filename in
let fmt = Format.formatter_of_out_channel out in
(* Print the headers.
* Note that we don't use the OCaml formatter for purpose: we want to control
* line insertion (we have to make sure that some instructions like [open MODULE]
* are printed on one line!).
* This is ok as long as we end up with a line break, so that the formatter's
* internal count is consistent with the state of the file.
*)
(* Create the header *)
Printf.fprintf out "(** THIS FILE WAS AUTOMATICALLY GENERATED BY AENEAS *)\n";
Printf.fprintf out "(** [%s]%s *)\n" rust_module_name custom_msg;
(match !Config.backend with
| FStar ->
Printf.fprintf out "module %s\n" module_name;
Printf.fprintf out "open Primitives\n";
(* Add the custom imports *)
List.iter (fun m -> Printf.fprintf out "open %s\n" m) custom_imports;
(* Add the custom includes *)
List.iter (fun m -> Printf.fprintf out "include %s\n" m) custom_includes;
(* Z3 options - note that we use fuel 1 because it its useful for the decrease clauses *)
Printf.fprintf out "\n#set-options \"--z3rlimit 50 --fuel 1 --ifuel 1\"\n"
| Coq ->
Printf.fprintf out "Require Import Primitives.\n";
Printf.fprintf out "Import Primitives.\n";
Printf.fprintf out "Require Import Coq.ZArith.ZArith.\n";
Printf.fprintf out "Local Open Scope Primitives_scope.\n";
(* Add the custom imports *)
List.iter
(fun m -> Printf.fprintf out "Require Import %s.\n" m)
custom_imports;
(* Add the custom includes *)
List.iter
(fun m ->
Printf.fprintf out "Require Export %s.\n" m;
Printf.fprintf out "Import %s.\n" m)
custom_includes;
Printf.fprintf out "Module %s.\n" module_name);
(* From now onwards, we use the formatter *)
(* Set the margin *)
Format.pp_set_margin fmt 80;
(* Create a vertical box *)
Format.pp_open_vbox fmt 0;
(* Extract the definitions *)
extract_definitions fmt config ctx;
(* Close the box and end the formatting *)
Format.pp_close_box fmt ();
Format.pp_print_newline fmt ();
(* Close the module *)
(match !Config.backend with
| FStar -> ()
| Coq -> Printf.fprintf out "End %s .\n" module_name);
(* Some logging *)
log#linfo (lazy ("Generated: " ^ filename));
(* Flush and close the file *)
close_out out
(** Translate a module and write the synthesized code to an output file.
TODO: rename to translate_crate
*)
let translate_module (filename : string) (dest_dir : string) (crate : A.crate) :
unit =
(* Translate the module to the pure AST *)
let trans_ctx, trans_types, trans_funs = translate_module_to_pure crate in
(* Initialize the extraction context - for now we extract only to F*.
* We initialize the names map by registering the keywords used in the
* language, as well as some primitive names ("u32", etc.) *)
let variant_concatenate_type_name = true in
let mk_formatter_and_names_map = Extract.mk_formatter_and_names_map in
let fmt, names_map =
mk_formatter_and_names_map trans_ctx crate.name
variant_concatenate_type_name
in
let ctx = { ExtractBase.trans_ctx; names_map; fmt; indent_incr = 2 } in
(* We need to compute which functions are recursive, in order to know
* whether we should generate a decrease clause or not. *)
let rec_functions =
A.FunDeclId.Set.of_list
(List.concat
(List.map
(fun decl -> match decl with A.Fun (Rec ids) -> ids | _ -> [])
crate.declarations))
in
(* Register unique names for all the top-level types, globals and functions.
* Note that the order in which we generate the names doesn't matter:
* we just need to generate a mapping from identifier to name, and make
* sure there are no name clashes. *)
let ctx =
List.fold_left
(fun ctx def -> Extract.extract_type_decl_register_names ctx def)
ctx trans_types
in
let ctx =
List.fold_left
(fun ctx (keep_fwd, def) ->
(* We generate a decrease clause for all the recursive functions *)
let gen_decr_clause =
A.FunDeclId.Set.mem (fst def).Pure.def_id rec_functions
in
(* Register the names, only if the function is not a global body -
* those are handled later *)
let is_global = (fst def).Pure.is_global_decl_body in
if is_global then ctx
else
Extract.extract_fun_decl_register_names ctx keep_fwd gen_decr_clause
def)
ctx trans_funs
in
let ctx =
List.fold_left Extract.extract_global_decl_register_names ctx crate.globals
in
(* Open the output file *)
(* First compute the filename by replacing the extension and converting the
* case (rust module names are snake case) *)
let module_name, extract_filebasename =
match Filename.chop_suffix_opt ~suffix:".llbc" filename with
| None ->
(* Note that we already checked the suffix upon opening the file *)
raise (Failure "Unreachable")
| Some filename ->
(* Retrieve the file basename *)
let basename = Filename.basename filename in
(* Convert the case *)
let module_name = StringUtils.to_camel_case basename in
(* Concatenate *)
(module_name, Filename.concat dest_dir module_name)
in
(* Put the translated definitions in maps *)
let trans_types =
Pure.TypeDeclId.Map.of_list
(List.map (fun (d : Pure.type_decl) -> (d.def_id, d)) trans_types)
in
let trans_funs =
A.FunDeclId.Map.of_list
(List.map
(fun ((keep_fwd, (fd, bdl)) : bool * pure_fun_translation) ->
(fd.def_id, (keep_fwd, (fd, bdl))))
trans_funs)
in
(* Create the directory, if necessary *)
if not (Sys.file_exists dest_dir) then (
log#linfo (lazy ("Creating missing directory: " ^ dest_dir));
(* Create a directory with *default* permissions *)
Core_unix.mkdir_p dest_dir);
(* Copy the "Primitives" file *)
let _ =
(* Retrieve the executable's directory *)
let exe_dir = Filename.dirname Sys.argv.(0) in
let primitives_src, primitives_destname =
match !Config.backend with
| Config.FStar -> ("/backends/fstar/Primitives.fst", "Primitives.fst")
| Config.Coq -> ("/backends/coq/Primitives.v", "Primitives.v")
in
let src = open_in (exe_dir ^ primitives_src) in
let tgt_filename = Filename.concat dest_dir primitives_destname in
let tgt = open_out tgt_filename in
(* Very annoying: I couldn't find a "cp" function in the OCaml libraries... *)
try
while true do
(* We copy line by line *)
let line = input_line src in
Printf.fprintf tgt "%s\n" line
done
with End_of_file ->
close_in src;
close_out tgt;
log#linfo (lazy ("Copied: " ^ tgt_filename))
in
(* Extract the file(s) *)
let gen_ctx =
{
crate;
extract_ctx = ctx;
trans_types;
trans_funs;
functions_with_decreases_clause = rec_functions;
}
in
let module_delimiter =
match !Config.backend with FStar -> "." | Coq -> "_"
in
(* Extract one or several files, depending on the configuration *)
if !Config.split_files then (
let base_gen_config =
{
extract_types = false;
extract_decreases_clauses = !Config.extract_decreases_clauses;
extract_template_decreases_clauses = false;
extract_fun_decls = false;
extract_transparent = true;
extract_opaque = false;
extract_state_type = false;
interface = false;
test_trans_unit_functions = false;
}
in
(* Check if there are opaque types and functions - in which case we need
* to split *)
let has_opaque_types, has_opaque_funs = module_has_opaque_decls gen_ctx in
let has_opaque_types = has_opaque_types || !Config.use_state in
(* Extract the types *)
(* If there are opaque types, we extract in an interface *)
let types_filename_ext =
match !Config.backend with
| FStar -> if has_opaque_types then ".fsti" else ".fst"
| Coq -> if has_opaque_types then ".v" else ".v"
in
let types_file_suffix = module_delimiter ^ "Types" in
let types_filename =
extract_filebasename ^ types_file_suffix ^ types_filename_ext
in
let types_module = module_name ^ types_file_suffix in
let types_config =
{
base_gen_config with
extract_types = true;
extract_opaque = true;
extract_state_type = !Config.use_state;
interface = has_opaque_types;
}
in
extract_file types_config gen_ctx types_filename crate.A.name types_module
": type definitions" [] [];
(* Extract the template clauses *)
let needs_clauses_module =
!Config.extract_decreases_clauses
&& not (A.FunDeclId.Set.is_empty rec_functions)
in
(if needs_clauses_module && !Config.extract_template_decreases_clauses then
let ext = match !Config.backend with FStar -> ".fst" | Coq -> ".v" in
let clauses_file_suffix =
module_delimiter ^ "Clauses" ^ module_delimiter ^ "Template"
in
let clauses_filename = extract_filebasename ^ clauses_file_suffix ^ ext in
let clauses_module = module_name ^ clauses_file_suffix in
let clauses_config =
{ base_gen_config with extract_template_decreases_clauses = true }
in
extract_file clauses_config gen_ctx clauses_filename crate.A.name
clauses_module ": templates for the decreases clauses" [ types_module ]
[]);
(* Extract the opaque functions, if needed *)
let opaque_funs_module =
if has_opaque_funs then (
let ext = match !Config.backend with FStar -> ".fsti" | Coq -> ".v" in
let opaque_file_suffix = module_delimiter ^ "Opaque" in
let opaque_filename = extract_filebasename ^ opaque_file_suffix ^ ext in
let opaque_module = module_name ^ opaque_file_suffix in
let opaque_config =
{
base_gen_config with
extract_fun_decls = true;
extract_transparent = false;
extract_opaque = true;
interface = true;
}
in
extract_file opaque_config gen_ctx opaque_filename crate.A.name
opaque_module ": opaque function definitions" [] [ types_module ];
[ opaque_module ])
else []
in
(* Extract the functions *)
let ext = match !Config.backend with FStar -> ".fst" | Coq -> ".v" in
let fun_file_suffix = module_delimiter ^ "Funs" in
let fun_filename = extract_filebasename ^ fun_file_suffix ^ ext in
let fun_module = module_name ^ fun_file_suffix in
let fun_config =
{
base_gen_config with
extract_fun_decls = true;
test_trans_unit_functions = !Config.test_trans_unit_functions;
}
in
let clauses_module =
if needs_clauses_module then
[ module_name ^ module_delimiter ^ "Clauses" ]
else []
in
extract_file fun_config gen_ctx fun_filename crate.A.name fun_module
": function definitions" []
([ types_module ] @ opaque_funs_module @ clauses_module))
else
let gen_config =
{
extract_types = true;
extract_decreases_clauses = !Config.extract_decreases_clauses;
extract_template_decreases_clauses =
!Config.extract_template_decreases_clauses;
extract_fun_decls = true;
extract_transparent = true;
extract_opaque = true;
extract_state_type = !Config.use_state;
interface = false;
test_trans_unit_functions = !Config.test_trans_unit_functions;
}
in
(* Add the extension for F* *)
let ext = match !Config.backend with FStar -> ".fst" | Coq -> ".v" in
let extract_filename = extract_filebasename ^ ext in
extract_file gen_config gen_ctx extract_filename crate.A.name module_name ""
[] []
|