1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
module C = Collections
module T = Types
module PV = PrimitiveValues
module V = Values
module E = Expressions
module A = LlbcAst
open SymbolicAst
let mk_mplace (p : E.place) (ctx : Contexts.eval_ctx) : mplace =
let bv = Contexts.ctx_lookup_var_binder ctx p.var_id in
{ bv; projection = p.projection }
let mk_opt_mplace (p : E.place option) (ctx : Contexts.eval_ctx) : mplace option
=
Option.map (fun p -> mk_mplace p ctx) p
let mk_opt_place_from_op (op : E.operand) (ctx : Contexts.eval_ctx) :
mplace option =
match op with
| E.Copy p | E.Move p -> Some (mk_mplace p ctx)
| E.Constant _ -> None
let synthesize_symbolic_expansion (sv : V.symbolic_value)
(place : mplace option) (seel : V.symbolic_expansion option list)
(el : expression list option) : expression option =
match el with
| None -> None
| Some el ->
let ls = List.combine seel el in
(* Match on the symbolic value type to know which can of expansion happened *)
let expansion =
match sv.V.sv_ty with
| T.Bool -> (
(* Boolean expansion: there should be two branches *)
match ls with
| [
(Some (V.SePrimitive (PV.Bool true)), true_exp);
(Some (V.SePrimitive (PV.Bool false)), false_exp);
] ->
ExpandBool (true_exp, false_exp)
| _ -> raise (Failure "Ill-formed boolean expansion"))
| T.Integer int_ty ->
(* Switch over an integer: split between the "regular" branches
and the "otherwise" branch (which should be the last branch) *)
let branches, otherwise = C.List.pop_last ls in
(* For all the regular branches, the symbolic value should have
* been expanded to a constant *)
let get_scalar (see : V.symbolic_expansion option) : V.scalar_value
=
match see with
| Some (V.SePrimitive (PV.Scalar cv)) ->
assert (cv.PV.int_ty = int_ty);
cv
| _ -> raise (Failure "Unreachable")
in
let branches =
List.map (fun (see, exp) -> (get_scalar see, exp)) branches
in
(* For the otherwise branch, the symbolic value should have been left
* unchanged *)
let otherwise_see, otherwise = otherwise in
assert (otherwise_see = None);
(* Return *)
ExpandInt (int_ty, branches, otherwise)
| T.Adt (_, _, _) ->
(* Branching: it is necessarily an enumeration expansion *)
let get_variant (see : V.symbolic_expansion option) :
T.VariantId.id option * V.symbolic_value list =
match see with
| Some (V.SeAdt (vid, fields)) -> (vid, fields)
| _ -> raise (Failure "Ill-formed branching ADT expansion")
in
let exp =
List.map
(fun (see, exp) ->
let vid, fields = get_variant see in
(vid, fields, exp))
ls
in
ExpandAdt exp
| T.Ref (_, _, _) -> (
(* Reference expansion: there should be one branch *)
match ls with
| [ (Some see, exp) ] -> ExpandNoBranch (see, exp)
| _ -> raise (Failure "Ill-formed borrow expansion"))
| T.TypeVar _ | Char | Never | Str | Array _ | Slice _ ->
raise (Failure "Ill-formed symbolic expansion")
in
Some (Expansion (place, sv, expansion))
let synthesize_symbolic_expansion_no_branching (sv : V.symbolic_value)
(place : mplace option) (see : V.symbolic_expansion) (e : expression option)
: expression option =
let el = Option.map (fun e -> [ e ]) e in
synthesize_symbolic_expansion sv place [ Some see ] el
let synthesize_function_call (call_id : call_id)
(abstractions : V.AbstractionId.id list) (type_params : T.ety list)
(args : V.typed_value list) (args_places : mplace option list)
(dest : V.symbolic_value) (dest_place : mplace option)
(e : expression option) : expression option =
Option.map
(fun e ->
let call =
{
call_id;
abstractions;
type_params;
args;
dest;
args_places;
dest_place;
}
in
FunCall (call, e))
e
let synthesize_global_eval (gid : A.GlobalDeclId.id) (dest : V.symbolic_value)
(e : expression option) : expression option =
Option.map (fun e -> EvalGlobal (gid, dest, e)) e
let synthesize_regular_function_call (fun_id : A.fun_id)
(call_id : V.FunCallId.id) (abstractions : V.AbstractionId.id list)
(type_params : T.ety list) (args : V.typed_value list)
(args_places : mplace option list) (dest : V.symbolic_value)
(dest_place : mplace option) (e : expression option) : expression option =
synthesize_function_call
(Fun (fun_id, call_id))
abstractions type_params args args_places dest dest_place e
let synthesize_unary_op (unop : E.unop) (arg : V.typed_value)
(arg_place : mplace option) (dest : V.symbolic_value)
(dest_place : mplace option) (e : expression option) : expression option =
synthesize_function_call (Unop unop) [] [] [ arg ] [ arg_place ] dest
dest_place e
let synthesize_binary_op (binop : E.binop) (arg0 : V.typed_value)
(arg0_place : mplace option) (arg1 : V.typed_value)
(arg1_place : mplace option) (dest : V.symbolic_value)
(dest_place : mplace option) (e : expression option) : expression option =
synthesize_function_call (Binop binop) [] [] [ arg0; arg1 ]
[ arg0_place; arg1_place ] dest dest_place e
let synthesize_end_abstraction (abs : V.abs) (e : expression option) :
expression option =
Option.map (fun e -> EndAbstraction (abs, e)) e
let synthesize_assignment (lplace : mplace) (rvalue : V.typed_value)
(rplace : mplace option) (e : expression option) : expression option =
Option.map (fun e -> Meta (Assignment (lplace, rvalue, rplace), e)) e
let synthesize_assertion (v : V.typed_value) (e : expression option) =
Option.map (fun e -> Assertion (v, e)) e
let synthesize_forward_end (e : expression)
(el : expression T.RegionGroupId.Map.t) =
Some (ForwardEnd (e, el))
|