1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
|
open Utils
open LlbcAstUtils
open Pure
open PureUtils
module Id = Identifiers
module C = Contexts
module S = SymbolicAst
module TA = TypesAnalysis
module L = Logging
module PP = PrintPure
module FA = FunsAnalysis
module IU = InterpreterUtils
(** The local logger *)
let log = L.symbolic_to_pure_log
type type_context = {
llbc_type_decls : T.type_decl TypeDeclId.Map.t;
type_decls : type_decl TypeDeclId.Map.t;
(** We use this for type-checking (for sanity checks) when translating
values and functions.
This map is empty when we translate the types, then contains all
the translated types when we translate the functions.
*)
types_infos : TA.type_infos; (* TODO: rename to type_infos *)
}
[@@deriving show]
type fun_sig_named_outputs = {
sg : fun_sig; (** A function signature *)
output_names : string option list;
(** In case the signature is for a backward function, we may provides names
for the outputs. The reason is that the outputs of backward functions
come from (in case there are no nested borrows) borrows present in the
inputs of the original rust function. In this situation, we can use the
names of those inputs to name the outputs. Those names are very useful
to generate beautiful codes (we may need to introduce temporary variables
in the bodies of the backward functions to store the returned values, in
which case we use those names).
*)
}
[@@deriving show]
type fun_context = {
llbc_fun_decls : A.fun_decl A.FunDeclId.Map.t;
fun_sigs : fun_sig_named_outputs RegularFunIdMap.t; (** *)
fun_infos : FA.fun_info A.FunDeclId.Map.t;
}
[@@deriving show]
type global_context = { llbc_global_decls : A.global_decl A.GlobalDeclId.Map.t }
[@@deriving show]
(** Whenever we translate a function call or an ended abstraction, we
store the related information (this is useful when translating ended
children abstractions).
*)
type call_info = {
forward : S.call;
forward_inputs : texpression list;
(** Remember the list of inputs given to the forward function.
Those inputs include the fuel and the state, if pertinent.
*)
backwards : (V.abs * texpression list) T.RegionGroupId.Map.t;
(** A map from region group id (i.e., backward function id) to
pairs (abstraction, additional arguments received by the backward function)
TODO: remove? it is also in the bs_ctx ("abstractions" field)
*)
}
[@@deriving show]
(** Contains information about a loop we entered.
Note that a path in a translated function body can have at most one call to
a loop, because the loop function takes care of the end of the execution
(and always happen at the end of the function). To be more precise, if we
translate a function body which contains a loop, one of the leaves will be a
call to the loop translation. The same happens for loop bodies.
For instance, if in Rust we have:
{[
fn get(...) {
let x = f(...);
loop {
...
}
}
]}
Then in the translation we have:
{[
let get_fwd ... =
let x = f_fwd ... in
(* We end the function by calling the loop translation *)
get_fwd_loop ...
]}
The various input and output fields are for this unique loop call, if
there is one.
*)
type loop_info = {
loop_id : LoopId.id;
input_svl : V.symbolic_value list;
type_args : ty list;
forward_inputs : texpression list option;
(** The forward inputs are initialized at [None] *)
forward_output_no_state_no_result : var option;
(** The forward outputs are initialized at [None] *)
}
[@@deriving show]
(** Body synthesis context *)
type bs_ctx = {
type_context : type_context;
fun_context : fun_context;
global_context : global_context;
fun_decl : A.fun_decl;
bid : T.RegionGroupId.id option; (** TODO: rename *)
sg : fun_sig;
(** The function signature - useful in particular to translate [Panic] *)
fwd_sg : fun_sig; (** The signature of the forward function *)
sv_to_var : var V.SymbolicValueId.Map.t;
(** Whenever we encounter a new symbolic value (introduced because of
a symbolic expansion or upon ending an abstraction, for instance)
we introduce a new variable (with a let-binding).
*)
var_counter : VarId.generator;
state_var : VarId.id;
(** The current state variable, in case the function is stateful *)
back_state_var : VarId.id;
(** The additional input state variable received by a stateful backward function.
When generating stateful functions, we generate code of the following
form:
{[
(st1, y) <-- f_fwd x st0; // st0 is the state upon calling f_fwd
... // the state may be updated
(st3, x') <-- f_back x st0 y' st2; // st2 is the state upon calling f_back
]}
When translating a backward function, we need at some point to update
[state_var] with [back_state_var], to account for the fact that the
state may have been updated by the caller between the call to the
forward function and the call to the backward function.
*)
fuel0 : VarId.id;
(** The original fuel taken as input by the function (if we use fuel) *)
fuel : VarId.id;
(* The fuel to use for the recursive calls (if we use fuel) *)
forward_inputs : var list;
(** The input parameters for the forward function corresponding to the
translated Rust inputs (no fuel, no state).
*)
backward_inputs : var list T.RegionGroupId.Map.t;
(** The additional input parameters for the backward functions coming
from the borrows consumed upon ending the lifetime (as a consequence
those don't include the backward state, if there is one).
*)
backward_outputs : var list T.RegionGroupId.Map.t;
(** The variables that the backward functions will output, corresponding
to the borrows they give back (don't include the backward state)
*)
calls : call_info V.FunCallId.Map.t;
(** The function calls we encountered so far *)
abstractions : (V.abs * texpression list) V.AbstractionId.Map.t;
(** The ended abstractions we encountered so far, with their additional input arguments *)
loop_ids_map : LoopId.id V.LoopId.Map.t; (** Ids to use for the loops *)
loops : loop_info LoopId.Map.t;
(** The loops we encountered so far.
We are using a map to be general - in practice we will fail if we encounter
more than one loop on a single path.
*)
loop_id : LoopId.id option;
(** [Some] if we reached a loop (we are synthesizing a function, and reached a loop, or are
synthesizing the loop body itself)
*)
inside_loop : bool;
(** In case {!loop_id} is [Some]:
- if [true]: we are synthesizing a loop body
- if [false]: we reached a loop and are synthesizing the end of the function (after the loop body)
Note that when a function contains a loop, we group the function symbolic AST and the loop symbolic
AST in a single function.
*)
}
[@@deriving show]
let type_check_pattern (ctx : bs_ctx) (v : typed_pattern) : unit =
let env = VarId.Map.empty in
let ctx =
{
PureTypeCheck.type_decls = ctx.type_context.type_decls;
global_decls = ctx.global_context.llbc_global_decls;
env;
}
in
let _ = PureTypeCheck.check_typed_pattern ctx v in
()
let type_check_texpression (ctx : bs_ctx) (e : texpression) : unit =
let env = VarId.Map.empty in
let ctx =
{
PureTypeCheck.type_decls = ctx.type_context.type_decls;
global_decls = ctx.global_context.llbc_global_decls;
env;
}
in
PureTypeCheck.check_texpression ctx e
(* TODO: move *)
let bs_ctx_to_ast_formatter (ctx : bs_ctx) : Print.Ast.ast_formatter =
Print.Ast.decls_and_fun_decl_to_ast_formatter ctx.type_context.llbc_type_decls
ctx.fun_context.llbc_fun_decls ctx.global_context.llbc_global_decls
ctx.fun_decl
let bs_ctx_to_ctx_formatter (ctx : bs_ctx) : Print.Contexts.ctx_formatter =
let rvar_to_string = Print.Types.region_var_id_to_string in
let r_to_string = Print.Types.region_id_to_string in
let type_var_id_to_string = Print.Types.type_var_id_to_string in
let var_id_to_string = Print.Expressions.var_id_to_string in
let ast_fmt = bs_ctx_to_ast_formatter ctx in
{
Print.Values.rvar_to_string;
r_to_string;
type_var_id_to_string;
type_decl_id_to_string = ast_fmt.type_decl_id_to_string;
adt_variant_to_string = ast_fmt.adt_variant_to_string;
var_id_to_string;
adt_field_names = ast_fmt.adt_field_names;
}
let bs_ctx_to_pp_ast_formatter (ctx : bs_ctx) : PrintPure.ast_formatter =
let type_params = ctx.fun_decl.signature.type_params in
let type_decls = ctx.type_context.llbc_type_decls in
let fun_decls = ctx.fun_context.llbc_fun_decls in
let global_decls = ctx.global_context.llbc_global_decls in
PrintPure.mk_ast_formatter type_decls fun_decls global_decls type_params
let symbolic_value_to_string (ctx : bs_ctx) (sv : V.symbolic_value) : string =
let fmt = bs_ctx_to_ctx_formatter ctx in
let fmt = Print.PC.ctx_to_rtype_formatter fmt in
Print.PV.symbolic_value_to_string fmt sv
let typed_value_to_string (ctx : bs_ctx) (v : V.typed_value) : string =
let fmt = bs_ctx_to_ctx_formatter ctx in
Print.PV.typed_value_to_string fmt v
let ty_to_string (ctx : bs_ctx) (ty : ty) : string =
let fmt = bs_ctx_to_pp_ast_formatter ctx in
let fmt = PrintPure.ast_to_type_formatter fmt in
PrintPure.ty_to_string fmt false ty
let type_decl_to_string (ctx : bs_ctx) (def : type_decl) : string =
let type_params = def.type_params in
let type_decls = ctx.type_context.llbc_type_decls in
let fmt = PrintPure.mk_type_formatter type_decls type_params in
PrintPure.type_decl_to_string fmt def
let texpression_to_string (ctx : bs_ctx) (e : texpression) : string =
let fmt = bs_ctx_to_pp_ast_formatter ctx in
PrintPure.texpression_to_string fmt false "" " " e
let fun_sig_to_string (ctx : bs_ctx) (sg : fun_sig) : string =
let type_params = sg.type_params in
let type_decls = ctx.type_context.llbc_type_decls in
let fun_decls = ctx.fun_context.llbc_fun_decls in
let global_decls = ctx.global_context.llbc_global_decls in
let fmt =
PrintPure.mk_ast_formatter type_decls fun_decls global_decls type_params
in
PrintPure.fun_sig_to_string fmt sg
let fun_decl_to_string (ctx : bs_ctx) (def : Pure.fun_decl) : string =
let type_params = def.signature.type_params in
let type_decls = ctx.type_context.llbc_type_decls in
let fun_decls = ctx.fun_context.llbc_fun_decls in
let global_decls = ctx.global_context.llbc_global_decls in
let fmt =
PrintPure.mk_ast_formatter type_decls fun_decls global_decls type_params
in
PrintPure.fun_decl_to_string fmt def
let typed_pattern_to_string (ctx : bs_ctx) (p : Pure.typed_pattern) : string =
let fmt = bs_ctx_to_pp_ast_formatter ctx in
PrintPure.typed_pattern_to_string fmt p
(* TODO: move *)
let abs_to_string (ctx : bs_ctx) (abs : V.abs) : string =
let fmt = bs_ctx_to_ast_formatter ctx in
let fmt = Print.Contexts.ast_to_value_formatter fmt in
let verbose = false in
let indent = "" in
let indent_incr = " " in
Print.Values.abs_to_string fmt verbose indent indent_incr abs
let get_instantiated_fun_sig (fun_id : A.fun_id)
(back_id : T.RegionGroupId.id option) (tys : ty list) (ctx : bs_ctx) :
inst_fun_sig =
(* Lookup the non-instantiated function signature *)
let sg =
(RegularFunIdMap.find (fun_id, back_id) ctx.fun_context.fun_sigs).sg
in
(* Create the substitution *)
let tsubst = make_type_subst sg.type_params tys in
(* Apply *)
fun_sig_substitute tsubst sg
let bs_ctx_lookup_llbc_type_decl (id : TypeDeclId.id) (ctx : bs_ctx) :
T.type_decl =
TypeDeclId.Map.find id ctx.type_context.llbc_type_decls
let bs_ctx_lookup_llbc_fun_decl (id : A.FunDeclId.id) (ctx : bs_ctx) :
A.fun_decl =
A.FunDeclId.Map.find id ctx.fun_context.llbc_fun_decls
(* TODO: move *)
let bs_ctx_lookup_local_function_sig (def_id : A.FunDeclId.id)
(back_id : T.RegionGroupId.id option) (ctx : bs_ctx) : fun_sig =
let id = (A.Regular def_id, back_id) in
(RegularFunIdMap.find id ctx.fun_context.fun_sigs).sg
let bs_ctx_register_forward_call (call_id : V.FunCallId.id) (forward : S.call)
(args : texpression list) (ctx : bs_ctx) : bs_ctx =
let calls = ctx.calls in
assert (not (V.FunCallId.Map.mem call_id calls));
let info =
{ forward; forward_inputs = args; backwards = T.RegionGroupId.Map.empty }
in
let calls = V.FunCallId.Map.add call_id info calls in
{ ctx with calls }
(** [back_args]: the *additional* list of inputs received by the backward function *)
let bs_ctx_register_backward_call (abs : V.abs) (call_id : V.FunCallId.id)
(back_id : T.RegionGroupId.id) (back_args : texpression list) (ctx : bs_ctx)
: bs_ctx * fun_or_op_id =
(* Insert the abstraction in the call informations *)
let info = V.FunCallId.Map.find call_id ctx.calls in
assert (not (T.RegionGroupId.Map.mem back_id info.backwards));
let backwards =
T.RegionGroupId.Map.add back_id (abs, back_args) info.backwards
in
let info = { info with backwards } in
let calls = V.FunCallId.Map.add call_id info ctx.calls in
(* Insert the abstraction in the abstractions map *)
let abstractions = ctx.abstractions in
assert (not (V.AbstractionId.Map.mem abs.abs_id abstractions));
let abstractions =
V.AbstractionId.Map.add abs.abs_id (abs, back_args) abstractions
in
(* Retrieve the fun_id *)
let fun_id =
match info.forward.call_id with
| S.Fun (fid, _) -> Fun (FromLlbc (fid, None, Some back_id))
| S.Unop _ | S.Binop _ -> raise (Failure "Unreachable")
in
(* Update the context and return *)
({ ctx with calls; abstractions }, fun_id)
let rec translate_sty (ty : T.sty) : ty =
let translate = translate_sty in
match ty with
| T.Adt (type_id, regions, tys) -> (
(* Can't translate types with regions for now *)
assert (regions = []);
let tys = List.map translate tys in
match type_id with
| T.AdtId adt_id -> Adt (AdtId adt_id, tys)
| T.Tuple -> mk_simpl_tuple_ty tys
| T.Assumed aty -> (
match aty with
| T.Vec -> Adt (Assumed Vec, tys)
| T.Option -> Adt (Assumed Option, tys)
| T.Box -> (
(* Eliminate the boxes *)
match tys with
| [ ty ] -> ty
| _ ->
raise
(Failure
"Box/vec/option type with incorrect number of arguments")
)))
| TypeVar vid -> TypeVar vid
| Bool -> Bool
| Char -> Char
| Never -> raise (Failure "Unreachable")
| Integer int_ty -> Integer int_ty
| Str -> Str
| Array ty -> Array (translate ty)
| Slice ty -> Slice (translate ty)
| Ref (_, rty, _) -> translate rty
let translate_field (f : T.field) : field =
let field_name = f.field_name in
let field_ty = translate_sty f.field_ty in
{ field_name; field_ty }
let translate_fields (fl : T.field list) : field list =
List.map translate_field fl
let translate_variant (v : T.variant) : variant =
let variant_name = v.variant_name in
let fields = translate_fields v.fields in
{ variant_name; fields }
let translate_variants (vl : T.variant list) : variant list =
List.map translate_variant vl
(** Translate a type def kind to IM *)
let translate_type_decl_kind (kind : T.type_decl_kind) : type_decl_kind =
match kind with
| T.Struct fields -> Struct (translate_fields fields)
| T.Enum variants -> Enum (translate_variants variants)
| T.Opaque -> Opaque
(** Translate a type definition from IM
TODO: this is not symbolic to pure but IM to pure. Still, I don't see the
point of moving this definition for now.
*)
let translate_type_decl (def : T.type_decl) : type_decl =
(* Translate *)
let def_id = def.T.def_id in
let name = def.name in
(* Can't translate types with regions for now *)
assert (def.region_params = []);
let type_params = def.type_params in
let kind = translate_type_decl_kind def.T.kind in
{ def_id; name; type_params; kind }
(** Translate a type, seen as an input/output of a forward function
(preserve all borrows, etc.)
*)
let rec translate_fwd_ty (types_infos : TA.type_infos) (ty : 'r T.ty) : ty =
let translate = translate_fwd_ty types_infos in
match ty with
| T.Adt (type_id, regions, tys) -> (
(* Can't translate types with regions for now *)
assert (regions = []);
(* Translate the type parameters *)
let t_tys = List.map translate tys in
(* Eliminate boxes and simplify tuples *)
match type_id with
| AdtId _ | T.Assumed (T.Vec | T.Option) ->
(* No general parametricity for now *)
assert (not (List.exists (TypesUtils.ty_has_borrows types_infos) tys));
let type_id =
match type_id with
| AdtId adt_id -> AdtId adt_id
| T.Assumed T.Vec -> Assumed Vec
| T.Assumed T.Option -> Assumed Option
| _ -> raise (Failure "Unreachable")
in
Adt (type_id, t_tys)
| Tuple ->
(* Note that if there is exactly one type, [mk_simpl_tuple_ty] is the
identity *)
mk_simpl_tuple_ty t_tys
| T.Assumed T.Box -> (
(* We eliminate boxes *)
(* No general parametricity for now *)
assert (not (List.exists (TypesUtils.ty_has_borrows types_infos) tys));
match t_tys with
| [ bty ] -> bty
| _ ->
raise
(Failure
"Unreachable: box/vec/option receives exactly one type \
parameter")))
| TypeVar vid -> TypeVar vid
| Bool -> Bool
| Char -> Char
| Never -> raise (Failure "Unreachable")
| Integer int_ty -> Integer int_ty
| Str -> Str
| Array ty ->
assert (not (TypesUtils.ty_has_borrows types_infos ty));
Array (translate ty)
| Slice ty ->
assert (not (TypesUtils.ty_has_borrows types_infos ty));
Slice (translate ty)
| Ref (_, rty, _) -> translate rty
(** Simply calls [translate_fwd_ty] *)
let ctx_translate_fwd_ty (ctx : bs_ctx) (ty : 'r T.ty) : ty =
let types_infos = ctx.type_context.types_infos in
translate_fwd_ty types_infos ty
(** Translate a type, when some regions may have ended.
We return an option, because the translated type may be empty.
[inside_mut]: are we inside a mutable borrow?
*)
let rec translate_back_ty (types_infos : TA.type_infos)
(keep_region : 'r -> bool) (inside_mut : bool) (ty : 'r T.ty) : ty option =
let translate = translate_back_ty types_infos keep_region inside_mut in
(* A small helper for "leave" types *)
let wrap ty = if inside_mut then Some ty else None in
match ty with
| T.Adt (type_id, _, tys) -> (
match type_id with
| T.AdtId _ | Assumed (T.Vec | T.Option) ->
(* Don't accept ADTs (which are not tuples) with borrows for now *)
assert (not (TypesUtils.ty_has_borrows types_infos ty));
let type_id =
match type_id with
| T.AdtId id -> AdtId id
| T.Assumed T.Vec -> Assumed Vec
| T.Assumed T.Option -> Assumed Option
| T.Tuple | T.Assumed T.Box -> raise (Failure "Unreachable")
in
if inside_mut then
let tys_t = List.filter_map translate tys in
Some (Adt (type_id, tys_t))
else None
| Assumed T.Box -> (
(* Don't accept ADTs (which are not tuples) with borrows for now *)
assert (not (TypesUtils.ty_has_borrows types_infos ty));
(* Eliminate the box *)
match tys with
| [ bty ] -> translate bty
| _ ->
raise
(Failure "Unreachable: boxes receive exactly one type parameter")
)
| T.Tuple -> (
(* Tuples can contain borrows (which we eliminated) *)
let tys_t = List.filter_map translate tys in
match tys_t with
| [] -> None
| _ ->
(* Note that if there is exactly one type, [mk_simpl_tuple_ty]
* is the identity *)
Some (mk_simpl_tuple_ty tys_t)))
| TypeVar vid -> wrap (TypeVar vid)
| Bool -> wrap Bool
| Char -> wrap Char
| Never -> raise (Failure "Unreachable")
| Integer int_ty -> wrap (Integer int_ty)
| Str -> wrap Str
| Array ty -> (
assert (not (TypesUtils.ty_has_borrows types_infos ty));
match translate ty with None -> None | Some ty -> Some (Array ty))
| Slice ty -> (
assert (not (TypesUtils.ty_has_borrows types_infos ty));
match translate ty with None -> None | Some ty -> Some (Slice ty))
| Ref (r, rty, rkind) -> (
match rkind with
| T.Shared ->
(* Ignore shared references, unless we are below a mutable borrow *)
if inside_mut then translate rty else None
| T.Mut ->
(* Dive in, remembering the fact that we are inside a mutable borrow *)
let inside_mut = true in
if keep_region r then
translate_back_ty types_infos keep_region inside_mut rty
else None)
(** Simply calls [translate_back_ty] *)
let ctx_translate_back_ty (ctx : bs_ctx) (keep_region : 'r -> bool)
(inside_mut : bool) (ty : 'r T.ty) : ty option =
let types_infos = ctx.type_context.types_infos in
translate_back_ty types_infos keep_region inside_mut ty
(** List the ancestors of an abstraction *)
let list_ancestor_abstractions_ids (ctx : bs_ctx) (abs : V.abs)
(call_id : V.FunCallId.id) : V.AbstractionId.id list =
(* We could do something more "elegant" without references, but it is
* so much simpler to use references... *)
let abs_set = ref V.AbstractionId.Set.empty in
let rec gather (abs_id : V.AbstractionId.id) : unit =
if V.AbstractionId.Set.mem abs_id !abs_set then ()
else (
abs_set := V.AbstractionId.Set.add abs_id !abs_set;
let abs, _ = V.AbstractionId.Map.find abs_id ctx.abstractions in
List.iter gather abs.original_parents)
in
List.iter gather abs.original_parents;
let ids = !abs_set in
(* List the ancestors, in the proper order *)
let call_info = V.FunCallId.Map.find call_id ctx.calls in
List.filter
(fun id -> V.AbstractionId.Set.mem id ids)
call_info.forward.abstractions
(** List the ancestor abstractions of an abstraction introduced because of
a function call *)
let list_ancestor_abstractions (ctx : bs_ctx) (abs : V.abs)
(call_id : V.FunCallId.id) : (V.abs * texpression list) list =
let abs_ids = list_ancestor_abstractions_ids ctx abs call_id in
List.map (fun id -> V.AbstractionId.Map.find id ctx.abstractions) abs_ids
(** Small utility.
Does the function *decrease* the fuel? [true] if recursive.
*)
let function_decreases_fuel (info : fun_effect_info) : bool =
!Config.use_fuel && info.is_rec
(** Small utility.
Does the function *use* the fuel? [true] if can diverge.
*)
let function_uses_fuel (info : fun_effect_info) : bool =
!Config.use_fuel && info.can_diverge
(** Small utility *)
let mk_fuel_input_ty_as_list (info : fun_effect_info) : ty list =
if function_uses_fuel info then [ mk_fuel_ty ] else []
(** Small utility *)
let mk_fuel_input_as_list (ctx : bs_ctx) (info : fun_effect_info) :
texpression list =
if function_uses_fuel info then [ mk_fuel_texpression ctx.fuel ] else []
(** Small utility. *)
let get_fun_effect_info (fun_infos : FA.fun_info A.FunDeclId.Map.t)
(fun_id : A.fun_id) (lid : V.LoopId.id option)
(gid : T.RegionGroupId.id option) : fun_effect_info =
match fun_id with
| A.Regular fid ->
let info = A.FunDeclId.Map.find fid fun_infos in
let stateful_group = info.stateful in
let stateful =
stateful_group && ((not !Config.backward_no_state_update) || gid = None)
in
{
can_fail = info.can_fail;
stateful_group;
stateful;
can_diverge = info.can_diverge;
is_rec = info.is_rec || Option.is_some lid;
}
| A.Assumed aid ->
assert (lid = None);
{
can_fail = Assumed.assumed_can_fail aid;
stateful_group = false;
stateful = false;
can_diverge = false;
is_rec = false;
}
(** Translate a function signature.
Note that the function also takes a list of names for the inputs, and
computes, for every output for the backward functions, a corresponding
name (outputs for backward functions come from borrows in the inputs
of the forward function) which we use as hints to generate pretty names.
*)
let translate_fun_sig (fun_infos : FA.fun_info A.FunDeclId.Map.t)
(fun_id : A.fun_id) (types_infos : TA.type_infos) (sg : A.fun_sig)
(input_names : string option list) (bid : T.RegionGroupId.id option) :
fun_sig_named_outputs =
(* Retrieve the list of parent backward functions *)
let gid, parents =
match bid with
| None -> (None, T.RegionGroupId.Set.empty)
| Some bid ->
let parents = list_ancestor_region_groups sg bid in
(Some bid, parents)
in
(* Is the function stateful, and can it fail? *)
let lid = None in
let effect_info = get_fun_effect_info fun_infos fun_id lid bid in
(* List the inputs for:
* - the fuel
* - the forward function
* - the parent backward functions, in proper order
* - the current backward function (if it is a backward function)
*)
let fuel = mk_fuel_input_ty_as_list effect_info in
let fwd_inputs = List.map (translate_fwd_ty types_infos) sg.inputs in
(* For the backward functions: for now we don't supported nested borrows,
* so just check that there aren't parent regions *)
assert (T.RegionGroupId.Set.is_empty parents);
(* Small helper to translate types for backward functions *)
let translate_back_ty_for_gid (gid : T.RegionGroupId.id) : T.sty -> ty option
=
let rg = T.RegionGroupId.nth sg.regions_hierarchy gid in
let regions = T.RegionVarId.Set.of_list rg.regions in
let keep_region r =
match r with
| T.Static -> raise Unimplemented
| T.Var r -> T.RegionVarId.Set.mem r regions
in
let inside_mut = false in
translate_back_ty types_infos keep_region inside_mut
in
(* Compute the additinal inputs for the current function, if it is a backward
* function *)
let back_inputs =
match gid with
| None -> []
| Some gid ->
(* For now, we don't allow nested borrows, so the additional inputs to the
backward function can only come from borrows that were returned like
in (for the backward function we introduce for 'a):
{[
fn f<'a>(...) -> &'a mut u32;
]}
Upon ending the abstraction for 'a, we need to get back the borrow
the function returned.
*)
List.filter_map (translate_back_ty_for_gid gid) [ sg.output ]
in
(* If the function is stateful, the inputs are:
- forward: [fwd_ty0, ..., fwd_tyn, state]
- backward:
- if {!Config.backward_no_state_update}: [fwd_ty0, ..., fwd_tyn, state, back_ty, state]
- otherwise: [fwd_ty0, ..., fwd_tyn, state, back_ty]
The backward takes the same state as input as the forward function,
together with the state at the point where it gets called, if it is
stateful.
See the comments for {!Config.backward_no_state_update}
*)
let fwd_state_ty =
(* For the forward state, we check if the *whole group* is stateful.
See {!effect_info}. *)
if effect_info.stateful_group then [ mk_state_ty ] else []
in
let back_state_ty =
(* For the backward state, we check if the function is a backward function,
and it is stateful *)
if effect_info.stateful && Option.is_some gid then [ mk_state_ty ] else []
in
(* Concatenate the inputs, in the following order:
* - forward inputs
* - forward state input
* - backward inputs
* - backward state input
*)
let inputs =
List.concat [ fuel; fwd_inputs; fwd_state_ty; back_inputs; back_state_ty ]
in
(* Outputs *)
let output_names, doutputs =
match gid with
| None ->
(* This is a forward function: there is one (unnamed) output *)
([ None ], [ translate_fwd_ty types_infos sg.output ])
| Some gid ->
(* This is a backward function: there might be several outputs.
The outputs are the borrows inside the regions of the abstractions
and which are present in the input values. For instance, see:
{[
fn f<'a>(x : &'a mut u32) -> ...;
]}
Upon ending the abstraction for 'a, we give back the borrow which
was consumed through the [x] parameter.
*)
let outputs =
List.map
(fun (name, input_ty) ->
(name, translate_back_ty_for_gid gid input_ty))
(List.combine input_names sg.inputs)
in
(* Filter *)
let outputs =
List.filter (fun (_, opt_ty) -> Option.is_some opt_ty) outputs
in
let outputs =
List.map (fun (name, opt_ty) -> (name, Option.get opt_ty)) outputs
in
List.split outputs
in
(* Create the return type *)
let output =
(* Group the outputs together *)
let output = mk_simpl_tuple_ty doutputs in
(* Add the output state *)
let output =
if effect_info.stateful then mk_simpl_tuple_ty [ mk_state_ty; output ]
else output
in
(* Wrap in a result type *)
if effect_info.can_fail then mk_result_ty output else output
in
(* Type parameters *)
let type_params = sg.type_params in
(* Return *)
let has_fuel = fuel <> [] in
let num_fwd_inputs_no_state = List.length fwd_inputs in
let num_fwd_inputs_with_fuel_no_state =
(* We use the fact that [fuel] has length 1 if we use some fuel, 0 otherwise *)
List.length fuel + num_fwd_inputs_no_state
in
let num_back_inputs_no_state =
if bid = None then None else Some (List.length back_inputs)
in
let info =
{
has_fuel;
num_fwd_inputs_with_fuel_no_state;
num_fwd_inputs_with_fuel_with_state =
(* We use the fact that [fwd_state_ty] has length 1 if there is a state,
and 0 otherwise *)
num_fwd_inputs_with_fuel_no_state + List.length fwd_state_ty;
num_back_inputs_no_state;
num_back_inputs_with_state =
(* Length of [back_state_ty]: similar trick as for [fwd_state_ty] *)
Option.map
(fun n -> n + List.length back_state_ty)
num_back_inputs_no_state;
effect_info;
}
in
let sg = { type_params; inputs; output; doutputs; info } in
{ sg; output_names }
let bs_ctx_fresh_state_var (ctx : bs_ctx) : bs_ctx * typed_pattern =
(* Generate the fresh variable *)
let id, var_counter = VarId.fresh ctx.var_counter in
let state_var =
{ id; basename = Some ConstStrings.state_basename; ty = mk_state_ty }
in
let state_pat = mk_typed_pattern_from_var state_var None in
(* Update the context *)
let ctx = { ctx with var_counter; state_var = id } in
(* Return *)
(ctx, state_pat)
let fresh_var (basename : string option) (ty : 'r T.ty) (ctx : bs_ctx) :
bs_ctx * var =
(* Generate the fresh variable *)
let id, var_counter = VarId.fresh ctx.var_counter in
let ty = ctx_translate_fwd_ty ctx ty in
let var = { id; basename; ty } in
(* Update the context *)
let ctx = { ctx with var_counter } in
(* Return *)
(ctx, var)
let fresh_named_var_for_symbolic_value (basename : string option)
(sv : V.symbolic_value) (ctx : bs_ctx) : bs_ctx * var =
(* Generate the fresh variable *)
let ctx, var = fresh_var basename sv.sv_ty ctx in
(* Insert in the map *)
let sv_to_var = V.SymbolicValueId.Map.add_strict sv.sv_id var ctx.sv_to_var in
(* Update the context *)
let ctx = { ctx with sv_to_var } in
(* Return *)
(ctx, var)
let fresh_var_for_symbolic_value (sv : V.symbolic_value) (ctx : bs_ctx) :
bs_ctx * var =
fresh_named_var_for_symbolic_value None sv ctx
let fresh_vars_for_symbolic_values (svl : V.symbolic_value list) (ctx : bs_ctx)
: bs_ctx * var list =
List.fold_left_map (fun ctx sv -> fresh_var_for_symbolic_value sv ctx) ctx svl
let fresh_named_vars_for_symbolic_values
(svl : (string option * V.symbolic_value) list) (ctx : bs_ctx) :
bs_ctx * var list =
List.fold_left_map
(fun ctx (name, sv) -> fresh_named_var_for_symbolic_value name sv ctx)
ctx svl
(** This generates a fresh variable **which is not to be linked to any symbolic value** *)
let fresh_var (basename : string option) (ty : ty) (ctx : bs_ctx) : bs_ctx * var
=
(* Generate the fresh variable *)
let id, var_counter = VarId.fresh ctx.var_counter in
let var = { id; basename; ty } in
(* Update the context *)
let ctx = { ctx with var_counter } in
(* Return *)
(ctx, var)
let fresh_vars (vars : (string option * ty) list) (ctx : bs_ctx) :
bs_ctx * var list =
List.fold_left_map (fun ctx (name, ty) -> fresh_var name ty ctx) ctx vars
let lookup_var_for_symbolic_value (sv : V.symbolic_value) (ctx : bs_ctx) : var =
match V.SymbolicValueId.Map.find_opt sv.sv_id ctx.sv_to_var with
| Some v -> v
| None ->
raise
(Failure
("Could not find var for symbolic value: "
^ V.SymbolicValueId.to_string sv.sv_id))
(** Peel boxes as long as the value is of the form [Box<T>] *)
let rec unbox_typed_value (v : V.typed_value) : V.typed_value =
match (v.value, v.ty) with
| V.Adt av, T.Adt (T.Assumed T.Box, _, _) -> (
match av.field_values with
| [ bv ] -> unbox_typed_value bv
| _ -> raise (Failure "Unreachable"))
| _ -> v
(** Translate a typed value.
It is used, for instance, on values used as inputs for function calls.
**IMPORTANT**: this function makes the assumption that the typed value
doesn't contain ⊥. This means in particular that symbolic values don't
contain ended regions.
TODO: we might want to remember in the symbolic AST the set of ended
regions, at the points where we need it, for sanity checks (though the
sanity checks in the symbolic interpreter should be enough).
The points where we need this set so far:
- function call
- end abstraction
- return
*)
let rec typed_value_to_texpression (ctx : bs_ctx) (ectx : C.eval_ctx)
(v : V.typed_value) : texpression =
(* We need to ignore boxes *)
let v = unbox_typed_value v in
let translate = typed_value_to_texpression ctx ectx in
(* Translate the type *)
let ty = ctx_translate_fwd_ty ctx v.ty in
(* Translate the value *)
let value =
match v.value with
| V.Primitive cv -> { e = Const cv; ty }
| Adt av -> (
let variant_id = av.variant_id in
let field_values = List.map translate av.field_values in
(* Eliminate the tuple wrapper if it is a tuple with exactly one field *)
match v.ty with
| T.Adt (T.Tuple, _, _) ->
assert (variant_id = None);
mk_simpl_tuple_texpression field_values
| _ ->
(* Retrieve the type and the translated type arguments from the
* translated type (simpler this way) *)
let adt_id, type_args =
match ty with
| Adt (type_id, tys) -> (type_id, tys)
| _ -> raise (Failure "Unreachable")
in
(* Create the constructor *)
let qualif_id = AdtCons { adt_id; variant_id = av.variant_id } in
let qualif = { id = qualif_id; type_args } in
let cons_e = Qualif qualif in
let field_tys =
List.map (fun (v : texpression) -> v.ty) field_values
in
let cons_ty = mk_arrows field_tys ty in
let cons = { e = cons_e; ty = cons_ty } in
(* Apply the constructor *)
mk_apps cons field_values)
| Bottom -> raise (Failure "Unreachable")
| Loan lc -> (
match lc with
| SharedLoan (_, v) -> translate v
| MutLoan _ -> raise (Failure "Unreachable"))
| Borrow bc -> (
match bc with
| V.SharedBorrow bid ->
(* Lookup the shared value in the context, and continue *)
let sv = InterpreterBorrowsCore.lookup_shared_value ectx bid in
translate sv
| V.ReservedMutBorrow bid ->
(* Same as for shared borrows. However, note that we use reserved borrows
* only in *meta-data*: a value *actually used* in the translation can't come
* from an unpromoted reserved borrow *)
let sv = InterpreterBorrowsCore.lookup_shared_value ectx bid in
translate sv
| V.MutBorrow (_, v) ->
(* Borrows are the identity in the extraction *)
translate v)
| Symbolic sv ->
let var = lookup_var_for_symbolic_value sv ctx in
mk_texpression_from_var var
in
(* Debugging *)
log#ldebug
(lazy
("typed_value_to_texpression: result:" ^ "\n- input value:\n"
^ V.show_typed_value v ^ "\n- translated expression:\n"
^ show_texpression value));
(* Sanity check *)
type_check_texpression ctx value;
(* Return *)
value
(** Explore an abstraction value and convert it to a consumed value
by collecting all the meta-values from the ended *loans*.
Consumed values are rvalues because when an abstraction ends we
introduce a call to a backward function in the synthesized program,
which takes as inputs those consumed values:
{[
// Rust:
fn choose<'a>(b: bool, x : &'a mut u32, y : &'a mut u32) -> &'a mut u32;
// Synthesis:
let ... = choose_back b x y nz in
^^
]}
*)
let rec typed_avalue_to_consumed (ctx : bs_ctx) (ectx : C.eval_ctx)
(av : V.typed_avalue) : texpression option =
let translate = typed_avalue_to_consumed ctx ectx in
let value =
match av.value with
| AAdt adt_v -> (
(* Translate the field values *)
let field_values = List.filter_map translate adt_v.field_values in
(* For now, only tuples can contain borrows *)
let adt_id, _, _ = TypesUtils.ty_as_adt av.ty in
match adt_id with
| T.AdtId _ | T.Assumed (T.Box | T.Vec | T.Option) ->
assert (field_values = []);
None
| T.Tuple ->
(* Return *)
if field_values = [] then None
else
(* Note that if there is exactly one field value,
* [mk_simpl_tuple_rvalue] is the identity *)
let rv = mk_simpl_tuple_texpression field_values in
Some rv)
| ABottom -> raise (Failure "Unreachable")
| ALoan lc -> aloan_content_to_consumed ctx ectx lc
| ABorrow bc -> aborrow_content_to_consumed ctx bc
| ASymbolic aproj -> aproj_to_consumed ctx aproj
| AIgnored -> None
in
(* Sanity check - Rk.: we do this at every recursive call, which is a bit
* expansive... *)
(match value with
| None -> ()
| Some value -> type_check_texpression ctx value);
(* Return *)
value
and aloan_content_to_consumed (ctx : bs_ctx) (ectx : C.eval_ctx)
(lc : V.aloan_content) : texpression option =
match lc with
| AMutLoan (_, _) | ASharedLoan (_, _, _) -> raise (Failure "Unreachable")
| AEndedMutLoan { child = _; given_back = _; given_back_meta } ->
(* Return the meta-value *)
Some (typed_value_to_texpression ctx ectx given_back_meta)
| AEndedSharedLoan (_, _) ->
(* We don't dive into shared loans: there is nothing to give back
* inside (note that there could be a mutable borrow in the shared
* value, pointing to a mutable loan in the child avalue, but this
* borrow is in practice immutable) *)
None
| AIgnoredMutLoan (_, _) ->
(* There can be *inner* not ended mutable loans, but not outer ones *)
raise (Failure "Unreachable")
| AEndedIgnoredMutLoan _ ->
(* This happens with nested borrows: we need to dive in *)
raise Unimplemented
| AIgnoredSharedLoan _ ->
(* Ignore *)
None
and aborrow_content_to_consumed (_ctx : bs_ctx) (bc : V.aborrow_content) :
texpression option =
match bc with
| V.AMutBorrow (_, _) | ASharedBorrow _ | AIgnoredMutBorrow (_, _) ->
raise (Failure "Unreachable")
| AEndedMutBorrow (_, _) ->
(* We collect consumed values: ignore *)
None
| AEndedIgnoredMutBorrow _ ->
(* This happens with nested borrows: we need to dive in *)
raise Unimplemented
| AEndedSharedBorrow | AProjSharedBorrow _ ->
(* Ignore *)
None
and aproj_to_consumed (ctx : bs_ctx) (aproj : V.aproj) : texpression option =
match aproj with
| V.AEndedProjLoans (msv, []) ->
(* The symbolic value was left unchanged *)
let var = lookup_var_for_symbolic_value msv ctx in
Some (mk_texpression_from_var var)
| V.AEndedProjLoans (_, [ (mnv, child_aproj) ]) ->
assert (child_aproj = AIgnoredProjBorrows);
(* The symbolic value was updated *)
let var = lookup_var_for_symbolic_value mnv ctx in
Some (mk_texpression_from_var var)
| V.AEndedProjLoans (_, _) ->
(* The symbolic value was updated, and the given back values come from sevearl
* abstractions *)
raise Unimplemented
| AEndedProjBorrows _ -> (* We consider consumed values *) None
| AIgnoredProjBorrows | AProjLoans (_, _) | AProjBorrows (_, _) ->
raise (Failure "Unreachable")
(** Convert the abstraction values in an abstraction to consumed values.
See [typed_avalue_to_consumed].
*)
let abs_to_consumed (ctx : bs_ctx) (ectx : C.eval_ctx) (abs : V.abs) :
texpression list =
log#ldebug (lazy ("abs_to_consumed:\n" ^ abs_to_string ctx abs));
List.filter_map (typed_avalue_to_consumed ctx ectx) abs.avalues
let translate_mprojection_elem (pe : E.projection_elem) :
mprojection_elem option =
match pe with
| Deref | DerefBox -> None
| Field (pkind, field_id) -> Some { pkind; field_id }
let translate_mprojection (p : E.projection) : mprojection =
List.filter_map translate_mprojection_elem p
(** Translate a "meta"-place *)
let translate_mplace (p : S.mplace) : mplace =
let var_id = p.bv.index in
let name = p.bv.name in
let projection = translate_mprojection p.projection in
{ var_id; name; projection }
let translate_opt_mplace (p : S.mplace option) : mplace option =
match p with None -> None | Some p -> Some (translate_mplace p)
(** Explore an abstraction value and convert it to a given back value
by collecting all the meta-values from the ended *borrows*.
Given back values are patterns, because when an abstraction ends, we
introduce a call to a backward function in the synthesized program,
which introduces new values:
{[
let (nx, ny) = f_back ... in
^^^^^^^^
]}
[mp]: it is possible to provide some meta-place information, to guide
the heuristics which later find pretty names for the variables.
*)
let rec typed_avalue_to_given_back (mp : mplace option) (av : V.typed_avalue)
(ctx : bs_ctx) : bs_ctx * typed_pattern option =
let ctx, value =
match av.value with
| AAdt adt_v -> (
(* Translate the field values *)
(* For now we forget the meta-place information so that it doesn't get used
* by several fields (which would then all have the same name...), but we
* might want to do something smarter *)
let mp = None in
let ctx, field_values =
List.fold_left_map
(fun ctx fv -> typed_avalue_to_given_back mp fv ctx)
ctx adt_v.field_values
in
let field_values = List.filter_map (fun x -> x) field_values in
(* For now, only tuples can contain borrows - note that if we gave
* something like a [&mut Vec] to a function, we give give back the
* vector value upon visiting the "abstraction borrow" node *)
let adt_id, _, _ = TypesUtils.ty_as_adt av.ty in
match adt_id with
| T.AdtId _ | T.Assumed (T.Box | T.Vec | T.Option) ->
assert (field_values = []);
(ctx, None)
| T.Tuple ->
(* Return *)
let variant_id = adt_v.variant_id in
assert (variant_id = None);
if field_values = [] then (ctx, None)
else
(* Note that if there is exactly one field value, [mk_simpl_tuple_pattern]
* is the identity *)
let lv = mk_simpl_tuple_pattern field_values in
(ctx, Some lv))
| ABottom -> raise (Failure "Unreachable")
| ALoan lc -> aloan_content_to_given_back mp lc ctx
| ABorrow bc -> aborrow_content_to_given_back mp bc ctx
| ASymbolic aproj -> aproj_to_given_back mp aproj ctx
| AIgnored -> (ctx, None)
in
(* Sanity check - Rk.: we do this at every recursive call, which is a bit
* expansive... *)
(match value with None -> () | Some value -> type_check_pattern ctx value);
(* Return *)
(ctx, value)
and aloan_content_to_given_back (_mp : mplace option) (lc : V.aloan_content)
(ctx : bs_ctx) : bs_ctx * typed_pattern option =
match lc with
| AMutLoan (_, _) | ASharedLoan (_, _, _) -> raise (Failure "Unreachable")
| AEndedMutLoan { child = _; given_back = _; given_back_meta = _ }
| AEndedSharedLoan (_, _) ->
(* We consider given back values, and thus ignore those *)
(ctx, None)
| AIgnoredMutLoan (_, _) ->
(* There can be *inner* not ended mutable loans, but not outer ones *)
raise (Failure "Unreachable")
| AEndedIgnoredMutLoan _ ->
(* This happens with nested borrows: we need to dive in *)
raise Unimplemented
| AIgnoredSharedLoan _ ->
(* Ignore *)
(ctx, None)
and aborrow_content_to_given_back (mp : mplace option) (bc : V.aborrow_content)
(ctx : bs_ctx) : bs_ctx * typed_pattern option =
match bc with
| V.AMutBorrow (_, _) | ASharedBorrow _ | AIgnoredMutBorrow (_, _) ->
raise (Failure "Unreachable")
| AEndedMutBorrow (msv, _) ->
(* Return the meta-symbolic-value *)
let ctx, var = fresh_var_for_symbolic_value msv ctx in
(ctx, Some (mk_typed_pattern_from_var var mp))
| AEndedIgnoredMutBorrow _ ->
(* This happens with nested borrows: we need to dive in *)
raise Unimplemented
| AEndedSharedBorrow | AProjSharedBorrow _ ->
(* Ignore *)
(ctx, None)
and aproj_to_given_back (mp : mplace option) (aproj : V.aproj) (ctx : bs_ctx) :
bs_ctx * typed_pattern option =
match aproj with
| V.AEndedProjLoans (_, child_projs) ->
(* There may be children borrow projections in case of nested borrows,
* in which case we need to dive in - we disallow nested borrows for now *)
assert (
List.for_all
(fun (_, aproj) -> aproj = V.AIgnoredProjBorrows)
child_projs);
(ctx, None)
| AEndedProjBorrows mv ->
(* Return the meta-value *)
let ctx, var = fresh_var_for_symbolic_value mv ctx in
(ctx, Some (mk_typed_pattern_from_var var mp))
| AIgnoredProjBorrows | AProjLoans (_, _) | AProjBorrows (_, _) ->
raise (Failure "Unreachable")
(** Convert the abstraction values in an abstraction to given back values.
See [typed_avalue_to_given_back].
*)
let abs_to_given_back (mpl : mplace option list option) (abs : V.abs)
(ctx : bs_ctx) : bs_ctx * typed_pattern list =
let avalues =
match mpl with
| None -> List.map (fun av -> (None, av)) abs.avalues
| Some mpl -> List.combine mpl abs.avalues
in
let ctx, values =
List.fold_left_map
(fun ctx (mp, av) -> typed_avalue_to_given_back mp av ctx)
ctx avalues
in
let values = List.filter_map (fun x -> x) values in
(ctx, values)
(** Simply calls [abs_to_given_back] *)
let abs_to_given_back_no_mp (abs : V.abs) (ctx : bs_ctx) :
bs_ctx * typed_pattern list =
let mpl = List.map (fun _ -> None) abs.avalues in
abs_to_given_back (Some mpl) abs ctx
(** Return the ordered list of the (transitive) parents of a given abstraction.
Is used for instance when collecting the input values given to all the
parent functions, in order to properly instantiate an
*)
let get_abs_ancestors (ctx : bs_ctx) (abs : V.abs) (call_id : V.FunCallId.id) :
S.call * (V.abs * texpression list) list =
let call_info = V.FunCallId.Map.find call_id ctx.calls in
let abs_ancestors = list_ancestor_abstractions ctx abs call_id in
(call_info.forward, abs_ancestors)
let rec translate_expression (e : S.expression) (ctx : bs_ctx) : texpression =
match e with
| S.Return (ectx, opt_v) -> translate_return ectx opt_v ctx
| ReturnWithLoop (loop_id, is_continue) ->
translate_return_with_loop loop_id is_continue ctx
| Panic -> translate_panic ctx
| FunCall (call, e) -> translate_function_call call e ctx
| EndAbstraction (ectx, abs, e) -> translate_end_abstraction ectx abs e ctx
| EvalGlobal (gid, sv, e) -> translate_global_eval gid sv e ctx
| Assertion (ectx, v, e) -> translate_assertion ectx v e ctx
| Expansion (p, sv, exp) -> translate_expansion p sv exp ctx
| IntroSymbolic (ectx, p, sv, v, e) ->
translate_intro_symbolic ectx p sv v e ctx
| Meta (meta, e) -> translate_meta meta e ctx
| ForwardEnd (ectx, loop_input_values, e, back_e) ->
translate_forward_end ectx loop_input_values e back_e ctx
| Loop loop -> translate_loop loop ctx
and translate_panic (ctx : bs_ctx) : texpression =
(* Here we use the function return type - note that it is ok because
* we don't match on panics which happen inside the function body -
* but it won't be true anymore once we translate individual blocks *)
(* If we use a state monad, we need to add a lambda for the state variable *)
(* Note that only forward functions return a state *)
let output_ty = mk_simpl_tuple_ty ctx.sg.doutputs in
(* TODO: we should use a [Fail] function *)
if ctx.sg.info.effect_info.stateful then
(* Create the [Fail] value *)
let ret_ty = mk_simpl_tuple_ty [ mk_state_ty; output_ty ] in
let ret_v =
mk_result_fail_texpression_with_error_id error_failure_id ret_ty
in
ret_v
else mk_result_fail_texpression_with_error_id error_failure_id output_ty
(** [opt_v]: the value to return, in case we translate a forward body *)
and translate_return (ectx : C.eval_ctx) (opt_v : V.typed_value option)
(ctx : bs_ctx) : texpression =
(* There are two cases:
- either we reach the return of a forward function or a forward loop body,
in which case the optional value should be [Some] (it is the returned value)
- or we are translating a backward function, in which case it should be [None]
*)
(* Compute the values that we should return *without the state and the result
* wrapper* *)
let output =
match ctx.bid with
| None ->
(* Forward function *)
let v = Option.get opt_v in
typed_value_to_texpression ctx ectx v
| Some bid ->
(* Backward function *)
(* Sanity check *)
assert (opt_v = None);
(* Group the variables in which we stored the values we need to give back.
* See the explanations for the [SynthInput] case in [translate_end_abstraction] *)
let backward_outputs =
T.RegionGroupId.Map.find bid ctx.backward_outputs
in
let field_values = List.map mk_texpression_from_var backward_outputs in
mk_simpl_tuple_texpression field_values
in
(* We may need to return a state
* - error-monad: Return x
* - state-error: Return (state, x)
* *)
let effect_info = ctx.sg.info.effect_info in
let output =
if effect_info.stateful then
let state_rvalue = mk_state_texpression ctx.state_var in
mk_simpl_tuple_texpression [ state_rvalue; output ]
else output
in
(* Wrap in a result - TODO: check effect_info.can_fail to not always wrap *)
mk_result_return_texpression output
and translate_return_with_loop (loop_id : V.LoopId.id) (is_continue : bool)
(ctx : bs_ctx) : texpression =
assert (is_continue = ctx.inside_loop);
let loop_id = V.LoopId.Map.find loop_id ctx.loop_ids_map in
assert (loop_id = Option.get ctx.loop_id);
(* Lookup the loop information *)
let loop_id = Option.get ctx.loop_id in
let loop_info = LoopId.Map.find loop_id ctx.loops in
(* There are two cases depending on whether we translate a backward function
or not.
*)
let output =
match ctx.bid with
| None ->
(* Forward *)
mk_texpression_from_var
(Option.get loop_info.forward_output_no_state_no_result)
| Some bid ->
(* Backward *)
(* Group the variables in which we stored the values we need to give back.
* See the explanations for the [SynthInput] case in [translate_end_abstraction] *)
let backward_outputs =
T.RegionGroupId.Map.find bid ctx.backward_outputs
in
let field_values = List.map mk_texpression_from_var backward_outputs in
mk_simpl_tuple_texpression field_values
in
(* We may need to return a state
* - error-monad: Return x
* - state-error: Return (state, x)
* Note that the loop function and the parent function live in the same
* effect - in particular, one manipulates a state iff the other does
* the same.
* *)
let effect_info = ctx.sg.info.effect_info in
let output =
if effect_info.stateful then
let state_rvalue = mk_state_texpression ctx.state_var in
mk_simpl_tuple_texpression [ state_rvalue; output ]
else output
in
(* Wrap in a result - TODO: check effect_info.can_fail to not always wrap *)
mk_result_return_texpression output
and translate_function_call (call : S.call) (e : S.expression) (ctx : bs_ctx) :
texpression =
(* Translate the function call *)
let type_args = List.map (ctx_translate_fwd_ty ctx) call.type_params in
let args =
let args = List.map (typed_value_to_texpression ctx call.ctx) call.args in
let args_mplaces = List.map translate_opt_mplace call.args_places in
List.map
(fun (arg, mp) -> mk_opt_mplace_texpression mp arg)
(List.combine args args_mplaces)
in
let dest_mplace = translate_opt_mplace call.dest_place in
let ctx, dest = fresh_var_for_symbolic_value call.dest ctx in
(* Retrieve the function id, and register the function call in the context
* if necessary. *)
let ctx, fun_id, effect_info, args, out_state =
match call.call_id with
| S.Fun (fid, call_id) ->
(* Regular function call *)
let func = Fun (FromLlbc (fid, None, None)) in
(* Retrieve the effect information about this function (can fail,
* takes a state as input, etc.) *)
let effect_info =
get_fun_effect_info ctx.fun_context.fun_infos fid None None
in
(* Depending on the function effects:
* - add the fuel
* - add the state input argument
* - generate a fresh state variable for the returned state
*)
let args, ctx, out_state =
let fuel = mk_fuel_input_as_list ctx effect_info in
if effect_info.stateful then
let state_var = mk_state_texpression ctx.state_var in
let ctx, nstate_var = bs_ctx_fresh_state_var ctx in
(List.concat [ fuel; args; [ state_var ] ], ctx, Some nstate_var)
else (List.concat [ fuel; args ], ctx, None)
in
(* Register the function call *)
let ctx = bs_ctx_register_forward_call call_id call args ctx in
(ctx, func, effect_info, args, out_state)
| S.Unop E.Not ->
let effect_info =
{
can_fail = false;
stateful_group = false;
stateful = false;
can_diverge = false;
is_rec = false;
}
in
(ctx, Unop Not, effect_info, args, None)
| S.Unop E.Neg -> (
match args with
| [ arg ] ->
let int_ty = ty_as_integer arg.ty in
(* Note that negation can lead to an overflow and thus fail (it
* is thus monadic) *)
let effect_info =
{
can_fail = true;
stateful_group = false;
stateful = false;
can_diverge = false;
is_rec = false;
}
in
(ctx, Unop (Neg int_ty), effect_info, args, None)
| _ -> raise (Failure "Unreachable"))
| S.Unop (E.Cast (src_ty, tgt_ty)) ->
(* Note that cast can fail *)
let effect_info =
{
can_fail = true;
stateful_group = false;
stateful = false;
can_diverge = false;
is_rec = false;
}
in
(ctx, Unop (Cast (src_ty, tgt_ty)), effect_info, args, None)
| S.Binop binop -> (
match args with
| [ arg0; arg1 ] ->
let int_ty0 = ty_as_integer arg0.ty in
let int_ty1 = ty_as_integer arg1.ty in
assert (int_ty0 = int_ty1);
let effect_info =
{
can_fail = ExpressionsUtils.binop_can_fail binop;
stateful_group = false;
stateful = false;
can_diverge = false;
is_rec = false;
}
in
(ctx, Binop (binop, int_ty0), effect_info, args, None)
| _ -> raise (Failure "Unreachable"))
in
let dest_v =
let dest = mk_typed_pattern_from_var dest dest_mplace in
match out_state with
| None -> dest
| Some out_state -> mk_simpl_tuple_pattern [ out_state; dest ]
in
let func = { id = FunOrOp fun_id; type_args } in
let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
let ret_ty =
if effect_info.can_fail then mk_result_ty dest_v.ty else dest_v.ty
in
let func_ty = mk_arrows input_tys ret_ty in
let func = { e = Qualif func; ty = func_ty } in
let call = mk_apps func args in
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Put together *)
mk_let effect_info.can_fail dest_v call next_e
and translate_end_abstraction (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) : texpression =
log#ldebug
(lazy
("translate_end_abstraction: abstraction kind: "
^ V.show_abs_kind abs.kind));
match abs.kind with
| V.SynthInput rg_id ->
translate_end_abstraction_synth_input ectx abs e ctx rg_id
| V.FunCall (call_id, rg_id) ->
translate_end_abstraction_fun_call ectx abs e ctx call_id rg_id
| V.SynthRet rg_id -> translate_end_abstraction_synth_ret ectx abs e ctx rg_id
| V.Loop (loop_id, rg_id, abs_kind) ->
translate_end_abstraction_loop ectx abs e ctx loop_id rg_id abs_kind
| V.Identity -> translate_end_abstraction_identity ectx abs e ctx
and translate_end_abstraction_synth_input (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) (rg_id : T.RegionGroupId.id) : texpression
=
log#ldebug
(lazy
("translate_end_abstraction_synth_input:" ^ "\n- eval_ctx:\n"
^ IU.eval_ctx_to_string ectx ^ "\n- abs:\n" ^ IU.abs_to_string ectx abs
^ "\n"));
(* When we end an input abstraction, this input abstraction gets back
* the borrows which it introduced in the context through the input
* values: by listing those values, we get the values which are given
* back by one of the backward functions we are synthesizing. *)
(* Note that we don't support nested borrows for now: if we find
* an ended synthesized input abstraction, it must be the one corresponding
* to the backward function wer are synthesizing, it can't be the one
* for a parent backward function.
*)
let bid = Option.get ctx.bid in
assert (rg_id = bid);
(* The translation is done as follows:
* - for a given backward function, we choose a set of variables [v_i]
* - when we detect the ended input abstraction which corresponds
* to the backward function, and which consumed the values [consumed_i],
* we introduce:
* {[
* let v_i = consumed_i in
* ...
* ]}
* Then, when we reach the [Return] node, we introduce:
* {[
* (v_i)
* ]}
* *)
(* First, get the given back variables *)
let given_back_variables =
T.RegionGroupId.Map.find bid ctx.backward_outputs
in
(* Get the list of values consumed by the abstraction upon ending *)
let consumed_values = abs_to_consumed ctx ectx abs in
(* Group the two lists *)
let variables_values = List.combine given_back_variables consumed_values in
(* Sanity check: the two lists match (same types) *)
List.iter
(fun (var, v) -> assert ((var : var).ty = (v : texpression).ty))
variables_values;
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Generate the assignemnts *)
let monadic = false in
List.fold_right
(fun (var, value) (e : texpression) ->
mk_let monadic (mk_typed_pattern_from_var var None) value e)
variables_values next_e
and translate_end_abstraction_fun_call (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) (call_id : V.FunCallId.id)
(rg_id : T.RegionGroupId.id) : texpression =
let call_info = V.FunCallId.Map.find call_id ctx.calls in
let call = call_info.forward in
let fun_id =
match call.call_id with
| S.Fun (fun_id, _) -> fun_id
| Unop _ | Binop _ ->
(* Those don't have backward functions *)
raise (Failure "Unreachable")
in
let effect_info =
get_fun_effect_info ctx.fun_context.fun_infos fun_id None (Some rg_id)
in
let type_args = List.map (ctx_translate_fwd_ty ctx) call.type_params in
(* Retrieve the original call and the parent abstractions *)
let _forward, backwards = get_abs_ancestors ctx abs call_id in
(* Retrieve the values consumed when we called the forward function and
* ended the parent backward functions: those give us part of the input
* values (rem: for now, as we disallow nested lifetimes, there can't be
* parent backward functions).
* Note that the forward inputs **include the fuel and the input state**
* (if we use those). *)
let fwd_inputs = call_info.forward_inputs in
let back_ancestors_inputs =
List.concat (List.map (fun (_abs, args) -> args) backwards)
in
(* Retrieve the values consumed upon ending the loans inside this
* abstraction: those give us the remaining input values *)
let back_inputs = abs_to_consumed ctx ectx abs in
(* If the function is stateful:
* - add the state input argument
* - generate a fresh state variable for the returned state
*)
let back_state, ctx, nstate =
if effect_info.stateful then
let back_state = mk_state_texpression ctx.state_var in
let ctx, nstate = bs_ctx_fresh_state_var ctx in
([ back_state ], ctx, Some nstate)
else ([], ctx, None)
in
(* Concatenate all the inpus *)
let inputs =
List.concat [ fwd_inputs; back_ancestors_inputs; back_inputs; back_state ]
in
(* Retrieve the values given back by this function: those are the output
* values. We rely on the fact that there are no nested borrows to use the
* meta-place information from the input values given to the forward function
* (we need to add [None] for the return avalue) *)
let output_mpl =
List.append (List.map translate_opt_mplace call.args_places) [ None ]
in
let ctx, outputs = abs_to_given_back (Some output_mpl) abs ctx in
(* Group the output values together: first the updated inputs *)
let output = mk_simpl_tuple_pattern outputs in
(* Add the returned state if the function is stateful *)
let output =
match nstate with
| None -> output
| Some nstate -> mk_simpl_tuple_pattern [ nstate; output ]
in
(* Sanity check: there is the proper number of inputs and outputs, and they have the proper type *)
let _ =
let inst_sg = get_instantiated_fun_sig fun_id (Some rg_id) type_args ctx in
log#ldebug
(lazy
("\n- fun_id: " ^ A.show_fun_id fun_id ^ "\n- inputs ("
^ string_of_int (List.length inputs)
^ "): "
^ String.concat ", " (List.map show_texpression inputs)
^ "\n- inst_sg.inputs ("
^ string_of_int (List.length inst_sg.inputs)
^ "): "
^ String.concat ", " (List.map show_ty inst_sg.inputs)));
List.iter
(fun (x, ty) -> assert ((x : texpression).ty = ty))
(List.combine inputs inst_sg.inputs);
log#ldebug
(lazy
("\n- outputs: "
^ string_of_int (List.length outputs)
^ "\n- expected outputs: "
^ string_of_int (List.length inst_sg.doutputs)));
List.iter
(fun (x, ty) -> assert ((x : typed_pattern).ty = ty))
(List.combine outputs inst_sg.doutputs)
in
(* Retrieve the function id, and register the function call in the context
* if necessary *)
let ctx, func =
bs_ctx_register_backward_call abs call_id rg_id back_inputs ctx
in
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Put everything together *)
let args_mplaces = List.map (fun _ -> None) inputs in
let args =
List.map
(fun (arg, mp) -> mk_opt_mplace_texpression mp arg)
(List.combine inputs args_mplaces)
in
let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
let ret_ty =
if effect_info.can_fail then mk_result_ty output.ty else output.ty
in
let func_ty = mk_arrows input_tys ret_ty in
let func = { id = FunOrOp func; type_args } in
let func = { e = Qualif func; ty = func_ty } in
let call = mk_apps func args in
(* **Optimization**:
* =================
* We do a small optimization here: if the backward function doesn't
* have any output, we don't introduce any function call.
* See the comment in {!Config.filter_useless_monadic_calls}.
*
* TODO: use an option to disallow backward functions from updating the state.
* TODO: a backward function which only gives back shared borrows shouldn't
* update the state (state updates should only be used for mutable borrows,
* with objects like Rc for instance).
*)
if !Config.filter_useless_monadic_calls && outputs = [] && nstate = None then (
(* No outputs - we do a small sanity check: the backward function
* should have exactly the same number of inputs as the forward:
* this number can be different only if the forward function returned
* a value containing mutable borrows, which can't be the case... *)
assert (List.length inputs = List.length fwd_inputs);
next_e)
else mk_let effect_info.can_fail output call next_e
and translate_end_abstraction_identity (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) : texpression =
(* We simply check that the abstraction only contains shared borrows/loans,
and translate the next expression *)
(* We can do this simply by checking that it consumes and gives back nothing *)
let inputs = abs_to_consumed ctx ectx abs in
let ctx, outputs = abs_to_given_back None abs ctx in
assert (inputs = []);
assert (outputs = []);
(* Translate the next expression *)
translate_expression e ctx
and translate_end_abstraction_synth_ret (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) (rg_id : T.RegionGroupId.id) : texpression
=
(* If we end the abstraction which consumed the return value of the function
we are synthesizing, we get back the borrows which were inside. Those borrows
are actually input arguments of the backward function we are synthesizing.
So we simply need to introduce proper let bindings.
For instance:
{[
fn id<'a>(x : &'a mut u32) -> &'a mut u32 {
x
}
]}
Upon ending the return abstraction for 'a, we get back the borrow for [x].
This new value is the second argument of the backward function:
{[
let id_back x nx = nx
]}
In practice, upon ending this abstraction we introduce a useless
let-binding:
{[
let id_back x nx =
let s = nx in // the name [s] is not important (only collision matters)
...
]}
This let-binding later gets inlined, during a micro-pass.
*)
(* First, retrieve the list of variables used for the inputs for the
* backward function *)
let inputs = T.RegionGroupId.Map.find rg_id ctx.backward_inputs in
(* Retrieve the values consumed upon ending the loans inside this
* abstraction: as there are no nested borrows, there should be none. *)
let consumed = abs_to_consumed ctx ectx abs in
assert (consumed = []);
(* Retrieve the values given back upon ending this abstraction - note that
* we don't provide meta-place information, because those assignments will
* be inlined anyway... *)
log#ldebug (lazy ("abs: " ^ abs_to_string ctx abs));
let ctx, given_back = abs_to_given_back_no_mp abs ctx in
(* Link the inputs to those given back values - note that this also
* checks we have the same number of values, of course *)
let given_back_inputs = List.combine given_back inputs in
(* Sanity check *)
List.iter
(fun ((given_back, input) : typed_pattern * var) ->
log#ldebug
(lazy
("\n- given_back ty: "
^ ty_to_string ctx given_back.ty
^ "\n- sig input ty: " ^ ty_to_string ctx input.ty));
assert (given_back.ty = input.ty))
given_back_inputs;
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Generate the assignments *)
let monadic = false in
List.fold_right
(fun (given_back, input_var) e ->
mk_let monadic given_back (mk_texpression_from_var input_var) e)
given_back_inputs next_e
and translate_end_abstraction_loop (ectx : C.eval_ctx) (abs : V.abs)
(e : S.expression) (ctx : bs_ctx) (loop_id : V.LoopId.id)
(rg_id : T.RegionGroupId.id option) (abs_kind : V.loop_abs_kind) :
texpression =
let vloop_id = loop_id in
let loop_id = V.LoopId.Map.find loop_id ctx.loop_ids_map in
assert (loop_id = Option.get ctx.loop_id);
let rg_id = Option.get rg_id in
(* There are two cases depending on the [abs_kind] (whether this is a
synth input or a regular loop call) *)
match abs_kind with
| V.LoopSynthInput ->
(* Actually the same case as [SynthInput] *)
translate_end_abstraction_synth_input ectx abs e ctx rg_id
| V.LoopCall ->
let fun_id = A.Regular ctx.fun_decl.A.def_id in
let effect_info =
get_fun_effect_info ctx.fun_context.fun_infos fun_id (Some vloop_id)
(Some rg_id)
in
let loop_info = LoopId.Map.find loop_id ctx.loops in
let type_args = loop_info.type_args in
let fwd_inputs = Option.get loop_info.forward_inputs in
(* Retrieve the additional backward inputs. Note that those are actually
the backward inputs of the function we are synthesizing (and that we
need to *transmit* to the loop backward function): they are not the
values consumed upon ending the abstraction (i.e., we don't use
[abs_to_consumed]) *)
let back_inputs = T.RegionGroupId.Map.find rg_id ctx.backward_inputs in
let back_inputs = List.map mk_texpression_from_var back_inputs in
(* If the function is stateful:
* - add the state input argument
* - generate a fresh state variable for the returned state
*)
let back_state, ctx, nstate =
if effect_info.stateful then
let back_state = mk_state_texpression ctx.state_var in
let ctx, nstate = bs_ctx_fresh_state_var ctx in
([ back_state ], ctx, Some nstate)
else ([], ctx, None)
in
(* Concatenate all the inputs *)
let inputs = List.concat [ fwd_inputs; back_inputs; back_state ] in
(* Retrieve the values given back by this function *)
let ctx, outputs = abs_to_given_back None abs ctx in
(* Group the output values together: first the updated inputs *)
let output = mk_simpl_tuple_pattern outputs in
(* Add the returned state if the function is stateful *)
let output =
match nstate with
| None -> output
| Some nstate -> mk_simpl_tuple_pattern [ nstate; output ]
in
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Put everything together *)
let args_mplaces = List.map (fun _ -> None) inputs in
let args =
List.map
(fun (arg, mp) -> mk_opt_mplace_texpression mp arg)
(List.combine inputs args_mplaces)
in
let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
let ret_ty =
if effect_info.can_fail then mk_result_ty output.ty else output.ty
in
let func_ty = mk_arrows input_tys ret_ty in
let func = Fun (FromLlbc (fun_id, Some loop_id, Some rg_id)) in
let func = { id = FunOrOp func; type_args } in
let func = { e = Qualif func; ty = func_ty } in
let call = mk_apps func args in
(* **Optimization**:
* =================
* We do a small optimization here: if the backward function doesn't
* have any output, we don't introduce any function call.
* See the comment in {!Config.filter_useless_monadic_calls}.
*
* TODO: use an option to disallow backward functions from updating the state.
* TODO: a backward function which only gives back shared borrows shouldn't
* update the state (state updates should only be used for mutable borrows,
* with objects like Rc for instance).
*)
if !Config.filter_useless_monadic_calls && outputs = [] && nstate = None
then (
(* No outputs - we do a small sanity check: the backward function
* should have exactly the same number of inputs as the forward:
* this number can be different only if the forward function returned
* a value containing mutable borrows, which can't be the case... *)
assert (List.length inputs = List.length fwd_inputs);
next_e)
else mk_let effect_info.can_fail output call next_e
and translate_global_eval (gid : A.GlobalDeclId.id) (sval : V.symbolic_value)
(e : S.expression) (ctx : bs_ctx) : texpression =
let ctx, var = fresh_var_for_symbolic_value sval ctx in
let decl = A.GlobalDeclId.Map.find gid ctx.global_context.llbc_global_decls in
let global_expr = { id = Global gid; type_args = [] } in
(* We use translate_fwd_ty to translate the global type *)
let ty = ctx_translate_fwd_ty ctx decl.ty in
let gval = { e = Qualif global_expr; ty } in
let e = translate_expression e ctx in
mk_let false (mk_typed_pattern_from_var var None) gval e
and translate_assertion (ectx : C.eval_ctx) (v : V.typed_value)
(e : S.expression) (ctx : bs_ctx) : texpression =
let next_e = translate_expression e ctx in
let monadic = true in
let v = typed_value_to_texpression ctx ectx v in
let args = [ v ] in
let func = { id = FunOrOp (Fun (Pure Assert)); type_args = [] } in
let func_ty = mk_arrow Bool mk_unit_ty in
let func = { e = Qualif func; ty = func_ty } in
let assertion = mk_apps func args in
mk_let monadic (mk_dummy_pattern mk_unit_ty) assertion next_e
and translate_expansion (p : S.mplace option) (sv : V.symbolic_value)
(exp : S.expansion) (ctx : bs_ctx) : texpression =
(* Translate the scrutinee *)
let scrutinee_var = lookup_var_for_symbolic_value sv ctx in
let scrutinee = mk_texpression_from_var scrutinee_var in
let scrutinee_mplace = translate_opt_mplace p in
(* Translate the branches *)
match exp with
| ExpandNoBranch (sexp, e) -> (
match sexp with
| V.SePrimitive _ ->
(* Actually, we don't *register* symbolic expansions to constant
* values in the symbolic ADT *)
raise (Failure "Unreachable")
| SeMutRef (_, nsv) | SeSharedRef (_, nsv) ->
(* The (mut/shared) borrow type is extracted to identity: we thus simply
* introduce an reassignment *)
let ctx, var = fresh_var_for_symbolic_value nsv ctx in
let next_e = translate_expression e ctx in
let monadic = false in
mk_let monadic
(mk_typed_pattern_from_var var None)
(mk_opt_mplace_texpression scrutinee_mplace scrutinee)
next_e
| SeAdt _ ->
(* Should be in the [ExpandAdt] case *)
raise (Failure "Unreachable"))
| ExpandAdt branches -> (
(* We don't do the same thing if there is a branching or not *)
match branches with
| [] -> raise (Failure "Unreachable")
| [ (variant_id, svl, branch) ]
(* TODO: always introduce a match, and use micro-passes to turn the
the match into a let *)
when not
(TypesUtils.ty_is_custom_adt sv.V.sv_ty
&& !Config.always_deconstruct_adts_with_matches) -> (
(* There is exactly one branch: no branching.
We can decompose the ADT value with a let-binding, unless
the backend doesn't support this (see {!Config.always_deconstruct_adts_with_matches}):
we *ignore* this branch (and go to the next one) if the ADT is a custom
adt, and [always_deconstruct_adts_with_matches] is true.
*)
let type_id, _, _ = TypesUtils.ty_as_adt sv.V.sv_ty in
let ctx, vars = fresh_vars_for_symbolic_values svl ctx in
let branch = translate_expression branch ctx in
match type_id with
| T.AdtId adt_id ->
(* Detect if this is an enumeration or not *)
let tdef = bs_ctx_lookup_llbc_type_decl adt_id ctx in
let is_enum = type_decl_is_enum tdef in
(* We deconstruct the ADT with a let-binding in two situations:
- if the ADT is an enumeration (which must have exactly one branch)
- if we forbid using field projectors.
We forbid using field projectors in some situations, for example
if the backend is Coq. See '!Config.dont_use_field_projectors}.
*)
let use_let = is_enum || !Config.dont_use_field_projectors in
if use_let then
(* Introduce a let binding which expands the ADT *)
let lvars =
List.map (fun v -> mk_typed_pattern_from_var v None) vars
in
let lv = mk_adt_pattern scrutinee.ty variant_id lvars in
let monadic = false in
mk_let monadic lv
(mk_opt_mplace_texpression scrutinee_mplace scrutinee)
branch
else
(* This is not an enumeration: introduce let-bindings for every
* field.
* We use the [dest] variable in order not to have to recompute
* the type of the result of the projection... *)
let adt_id, type_args =
match scrutinee.ty with
| Adt (adt_id, tys) -> (adt_id, tys)
| _ -> raise (Failure "Unreachable")
in
let gen_field_proj (field_id : FieldId.id) (dest : var) :
texpression =
let proj_kind = { adt_id; field_id } in
let qualif = { id = Proj proj_kind; type_args } in
let proj_e = Qualif qualif in
let proj_ty = mk_arrow scrutinee.ty dest.ty in
let proj = { e = proj_e; ty = proj_ty } in
mk_app proj scrutinee
in
let id_var_pairs = FieldId.mapi (fun fid v -> (fid, v)) vars in
let monadic = false in
List.fold_right
(fun (fid, var) e ->
let field_proj = gen_field_proj fid var in
mk_let monadic
(mk_typed_pattern_from_var var None)
field_proj e)
id_var_pairs branch
| T.Tuple ->
let vars =
List.map (fun x -> mk_typed_pattern_from_var x None) vars
in
let monadic = false in
mk_let monadic
(mk_simpl_tuple_pattern vars)
(mk_opt_mplace_texpression scrutinee_mplace scrutinee)
branch
| T.Assumed T.Box ->
(* There should be exactly one variable *)
let var =
match vars with
| [ v ] -> v
| _ -> raise (Failure "Unreachable")
in
(* We simply introduce an assignment - the box type is the
* identity when extracted ([box a = a]) *)
let monadic = false in
mk_let monadic
(mk_typed_pattern_from_var var None)
(mk_opt_mplace_texpression scrutinee_mplace scrutinee)
branch
| T.Assumed T.Vec ->
(* We can't expand vector values: we can access the fields only
* through the functions provided by the API (note that we don't
* know how to expand a vector, because it has a variable number
* of fields!) *)
raise (Failure "Can't expand a vector value")
| T.Assumed T.Option ->
(* We shouldn't get there in the "one-branch" case: options have
* two variants *)
raise (Failure "Unreachable"))
| branches ->
let translate_branch (variant_id : T.VariantId.id option)
(svl : V.symbolic_value list) (branch : S.expression) :
match_branch =
let ctx, vars = fresh_vars_for_symbolic_values svl ctx in
let vars =
List.map (fun x -> mk_typed_pattern_from_var x None) vars
in
let pat_ty = scrutinee.ty in
let pat = mk_adt_pattern pat_ty variant_id vars in
let branch = translate_expression branch ctx in
{ pat; branch }
in
let branches =
List.map (fun (vid, svl, e) -> translate_branch vid svl e) branches
in
let e =
Switch
( mk_opt_mplace_texpression scrutinee_mplace scrutinee,
Match branches )
in
(* There should be at least one branch *)
let branch = List.hd branches in
let ty = branch.branch.ty in
(* Sanity check *)
assert (List.for_all (fun br -> br.branch.ty = ty) branches);
(* Return *)
{ e; ty })
| ExpandBool (true_e, false_e) ->
(* We don't need to update the context: we don't introduce any
* new values/variables *)
let true_e = translate_expression true_e ctx in
let false_e = translate_expression false_e ctx in
let e =
Switch
( mk_opt_mplace_texpression scrutinee_mplace scrutinee,
If (true_e, false_e) )
in
let ty = true_e.ty in
assert (ty = false_e.ty);
{ e; ty }
| ExpandInt (int_ty, branches, otherwise) ->
let translate_branch ((v, branch_e) : V.scalar_value * S.expression) :
match_branch =
(* We don't need to update the context: we don't introduce any
* new values/variables *)
let branch = translate_expression branch_e ctx in
let pat = mk_typed_pattern_from_primitive_value (PV.Scalar v) in
{ pat; branch }
in
let branches = List.map translate_branch branches in
let otherwise = translate_expression otherwise ctx in
let pat_ty = Integer int_ty in
let otherwise_pat : typed_pattern = { value = PatDummy; ty = pat_ty } in
let otherwise : match_branch =
{ pat = otherwise_pat; branch = otherwise }
in
let all_branches = List.append branches [ otherwise ] in
let e =
Switch
( mk_opt_mplace_texpression scrutinee_mplace scrutinee,
Match all_branches )
in
let ty = otherwise.branch.ty in
assert (
List.for_all (fun (br : match_branch) -> br.branch.ty = ty) branches);
{ e; ty }
and translate_intro_symbolic (ectx : C.eval_ctx) (p : S.mplace option)
(sv : V.symbolic_value) (v : V.typed_value) (e : S.expression)
(ctx : bs_ctx) : texpression =
let mplace = translate_opt_mplace p in
(* Introduce a fresh variable for the symbolic value *)
let ctx, var = fresh_var_for_symbolic_value sv ctx in
(* Translate the value *)
let v = typed_value_to_texpression ctx ectx v in
(* Translate the next expression *)
let next_e = translate_expression e ctx in
(* Make the let-binding *)
let monadic = false in
let var = mk_typed_pattern_from_var var mplace in
mk_let monadic var v next_e
and translate_forward_end (ectx : C.eval_ctx)
(loop_input_values : V.typed_value S.symbolic_value_id_map option)
(e : S.expression) (back_e : S.expression S.region_group_id_map)
(ctx : bs_ctx) : texpression =
(* Update the current state with the additional state received by the backward
function, if needs be, and lookup the proper expression *)
let translate_end ctx =
(* Update the current state with the additional state received by the backward
function, if needs be, and lookup the proper expression *)
let ctx, e =
match ctx.bid with
| None -> (ctx, e)
| Some bid ->
let ctx = { ctx with state_var = ctx.back_state_var } in
let e = T.RegionGroupId.Map.find bid back_e in
(ctx, e)
in
translate_expression e ctx
in
(* If we are (re-)entering a loop, we need to introduce a call to the
forward translation of the loop. *)
match loop_input_values with
| None ->
(* "Regular" case: we reached a return *)
translate_end ctx
| Some loop_input_values ->
(* Loop *)
let loop_id = Option.get ctx.loop_id in
(* Lookup the loop information *)
let loop_info = LoopId.Map.find loop_id ctx.loops in
log#ldebug
(lazy
("translate_forward_end:\n- loop_input_values:\n"
^ V.SymbolicValueId.Map.show
(typed_value_to_string ctx)
loop_input_values
^ "\n- loop_info.input_svl:\n"
^ Print.list_to_string
(symbolic_value_to_string ctx)
loop_info.input_svl
^ "\n"));
(* Translate the input values *)
let loop_input_values =
List.map
(fun sv ->
log#ldebug
(lazy
("translate_forward_end: looking up input_svl: "
^ V.SymbolicValueId.to_string sv.V.sv_id
^ "\n"));
V.SymbolicValueId.Map.find sv.V.sv_id loop_input_values)
loop_info.input_svl
in
let args =
List.map (typed_value_to_texpression ctx ectx) loop_input_values
in
(* Lookup the effect info for the loop function *)
let fid = A.Regular ctx.fun_decl.A.def_id in
let effect_info =
get_fun_effect_info ctx.fun_context.fun_infos fid None ctx.bid
in
(* Introduce a fresh output value for the forward function *)
let ctx, output_var =
let output_ty = mk_simpl_tuple_ty ctx.fwd_sg.doutputs in
fresh_var None output_ty ctx
in
let args, ctx, out_pats =
let output_pat = mk_typed_pattern_from_var output_var None in
(* Depending on the function effects:
* - add the fuel
* - add the state input argument
* - generate a fresh state variable for the returned state
*)
let fuel = mk_fuel_input_as_list ctx effect_info in
if effect_info.stateful then
let state_var = mk_state_texpression ctx.state_var in
let ctx, nstate_pat = bs_ctx_fresh_state_var ctx in
( List.concat [ fuel; args; [ state_var ] ],
ctx,
[ nstate_pat; output_pat ] )
else (List.concat [ fuel; args ], ctx, [ output_pat ])
in
(* Update the loop information in the context *)
let loop_info =
{
loop_info with
forward_inputs = Some args;
forward_output_no_state_no_result = Some output_var;
}
in
let ctx =
{ ctx with loops = LoopId.Map.add loop_id loop_info ctx.loops }
in
(* Translate the end of the function *)
let next_e = translate_end ctx in
(* Introduce the call to the loop forward function in the generated AST *)
let out_pat = mk_simpl_tuple_pattern out_pats in
let loop_call =
let fun_id = Fun (FromLlbc (fid, Some loop_id, None)) in
let func = { id = FunOrOp fun_id; type_args = loop_info.type_args } in
let input_tys = (List.map (fun (x : texpression) -> x.ty)) args in
let ret_ty =
if effect_info.can_fail then mk_result_ty out_pat.ty else out_pat.ty
in
let func_ty = mk_arrows input_tys ret_ty in
let func = { e = Qualif func; ty = func_ty } in
let call = mk_apps func args in
call
in
mk_let effect_info.can_fail out_pat loop_call next_e
and translate_loop (loop : S.loop) (ctx : bs_ctx) : texpression =
let loop_id = V.LoopId.Map.find loop.loop_id ctx.loop_ids_map in
(* Translate the loop inputs - some inputs are symbolic values already
in the context, some inputs are introduced by the loop fixed point:
we need to introduce fresh variables for those. *)
(* First introduce fresh variables for the new inputs *)
let ctx =
(* We have to filter the list of symbolic values, to remove the not fresh ones *)
let svl =
List.filter
(fun (sv : V.symbolic_value) ->
V.SymbolicValueId.Set.mem sv.sv_id loop.fresh_svalues)
loop.input_svalues
in
log#ldebug
(lazy
("translate_loop:" ^ "\n- input_svalues: "
^ (Print.list_to_string (symbolic_value_to_string ctx))
loop.input_svalues
^ "\n- filtered svl: "
^ (Print.list_to_string (symbolic_value_to_string ctx)) svl
^ "\n"));
let ctx, _ = fresh_vars_for_symbolic_values svl ctx in
ctx
in
(* Sanity check: all the non-fresh symbolic values are in the context *)
assert (
List.for_all
(fun (sv : V.symbolic_value) ->
V.SymbolicValueId.Map.mem sv.sv_id ctx.sv_to_var)
loop.input_svalues);
(* Translate the loop inputs *)
let inputs =
List.map
(fun sv -> V.SymbolicValueId.Map.find sv.V.sv_id ctx.sv_to_var)
loop.input_svalues
in
let inputs_lvs =
List.map (fun var -> mk_typed_pattern_from_var var None) inputs
in
(* Add the loop information in the context *)
let ctx =
assert (not (LoopId.Map.mem loop_id ctx.loops));
(* Note that we will retrieve the input values later in the [ForwardEnd]
(and will introduce the outputs at that moment, together with the actual
call to the loop forward function *)
let type_args =
List.map (fun ty -> TypeVar ty.T.index) ctx.sg.type_params
in
let loop_info =
{
loop_id;
input_svl = loop.input_svalues;
type_args;
forward_inputs = None;
forward_output_no_state_no_result = None;
}
in
let loops = LoopId.Map.add loop_id loop_info ctx.loops in
{ ctx with loops }
in
(* Update the context to translate the function end *)
let ctx_end = { ctx with loop_id = Some loop_id } in
let fun_end = translate_expression loop.end_expr ctx_end in
(* Update the context for the loop body *)
let ctx_loop = { ctx_end with inside_loop = true } in
(* Translate the loop body *)
let loop_body = translate_expression loop.loop_expr ctx_loop in
(* Create the loop node and return *)
let loop =
Loop
{
fun_end;
loop_id;
fuel0 = ctx.fuel0;
fuel = ctx.fuel;
input_state = (if !Config.use_state then Some ctx.state_var else None);
inputs;
inputs_lvs;
loop_body;
}
in
assert (fun_end.ty = loop_body.ty);
let ty = fun_end.ty in
{ e = loop; ty }
and translate_meta (meta : S.meta) (e : S.expression) (ctx : bs_ctx) :
texpression =
let next_e = translate_expression e ctx in
let meta =
match meta with
| S.Assignment (ectx, lp, rv, rp) ->
let lp = translate_mplace lp in
let rv = typed_value_to_texpression ctx ectx rv in
let rp = translate_opt_mplace rp in
Assignment (lp, rv, rp)
in
let e = Meta (meta, next_e) in
let ty = next_e.ty in
{ e; ty }
(** Wrap a function body in a match over the fuel to control termination. *)
let wrap_in_match_fuel (fuel0 : VarId.id) (fuel : VarId.id) (body : texpression)
: texpression =
let fuel0_var : var = mk_fuel_var fuel0 in
let fuel0 = mk_texpression_from_var fuel0_var in
let nfuel_var : var = mk_fuel_var fuel in
let nfuel_pat = mk_typed_pattern_from_var nfuel_var None in
let fail_branch =
mk_result_fail_texpression_with_error_id error_out_of_fuel_id body.ty
in
match !Config.backend with
| FStar ->
(* Generate an expression:
{[
if fuel0 = 0 then Fail OutOfFuel
else
let fuel = decrease fuel0 in
...
}]
*)
(* Create the expression: [fuel0 = 0] *)
let check_fuel =
let func = { id = FunOrOp (Fun (Pure FuelEqZero)); type_args = [] } in
let func_ty = mk_arrow mk_fuel_ty mk_bool_ty in
let func = { e = Qualif func; ty = func_ty } in
mk_app func fuel0
in
(* Create the expression: [decrease fuel0] *)
let decrease_fuel =
let func = { id = FunOrOp (Fun (Pure FuelDecrease)); type_args = [] } in
let func_ty = mk_arrow mk_fuel_ty mk_fuel_ty in
let func = { e = Qualif func; ty = func_ty } in
mk_app func fuel0
in
(* Create the success branch *)
let monadic = false in
let success_branch = mk_let monadic nfuel_pat decrease_fuel body in
(* Put everything together *)
let match_e = Switch (check_fuel, If (fail_branch, success_branch)) in
let match_ty = body.ty in
{ e = match_e; ty = match_ty }
| Coq ->
(* Generate an expression:
{[
match fuel0 with
| O -> Fail OutOfFuel
| S fuel ->
...
}]
*)
(* Create the fail branch *)
let fail_pat = mk_adt_pattern mk_fuel_ty (Some fuel_zero_id) [] in
let fail_branch = { pat = fail_pat; branch = fail_branch } in
(* Create the success branch *)
let success_pat =
mk_adt_pattern mk_fuel_ty (Some fuel_succ_id) [ nfuel_pat ]
in
let success_branch = body in
let success_branch = { pat = success_pat; branch = success_branch } in
(* Put everything together *)
let match_ty = body.ty in
let match_e = Switch (fuel0, Match [ fail_branch; success_branch ]) in
{ e = match_e; ty = match_ty }
let translate_fun_decl (ctx : bs_ctx) (body : S.expression option) : fun_decl =
(* Translate *)
let def = ctx.fun_decl in
let bid = ctx.bid in
log#ldebug
(lazy
("SymbolicToPure.translate_fun_decl: "
^ Print.fun_name_to_string def.A.name
^ " ("
^ Print.option_to_string T.RegionGroupId.to_string bid
^ ")\n"));
(* Translate the declaration *)
let def_id = def.A.def_id in
let basename = def.name in
(* Retrieve the signature *)
let signature = ctx.sg in
(* Translate the body, if there is *)
let body =
match body with
| None -> None
| Some body ->
let effect_info =
get_fun_effect_info ctx.fun_context.fun_infos (Regular def_id) None
bid
in
let body = translate_expression body ctx in
(* Add a match over the fuel, if necessary *)
let body =
if function_decreases_fuel effect_info then
wrap_in_match_fuel ctx.fuel0 ctx.fuel body
else body
in
(* Sanity check *)
type_check_texpression ctx body;
(* Introduce the fuel parameter, if necessary *)
let fuel =
if function_uses_fuel effect_info then
let fuel_var =
if function_decreases_fuel effect_info then ctx.fuel0
else ctx.fuel
in
[ mk_fuel_var fuel_var ]
else []
in
(* Introduce the forward input state (the state at call site of the
* *forward* function), if necessary. *)
let fwd_state =
(* We check if the *whole group* is stateful. See {!effect_info} *)
if effect_info.stateful_group then [ mk_state_var ctx.state_var ]
else []
in
(* Compute the list of (properly ordered) backward input variables *)
let backward_inputs : var list =
match bid with
| None -> []
| Some back_id ->
let parents_ids =
list_ordered_ancestor_region_groups def.signature back_id
in
let backward_ids = List.append parents_ids [ back_id ] in
List.concat
(List.map
(fun id -> T.RegionGroupId.Map.find id ctx.backward_inputs)
backward_ids)
in
(* Introduce the backward input state (the state at call site of the
* *backward* function), if necessary *)
let back_state =
if effect_info.stateful && Option.is_some bid then
[ mk_state_var ctx.back_state_var ]
else []
in
(* Group the inputs together *)
let inputs =
List.concat
[ fuel; ctx.forward_inputs; fwd_state; backward_inputs; back_state ]
in
let inputs_lvs =
List.map (fun v -> mk_typed_pattern_from_var v None) inputs
in
(* Sanity check *)
log#ldebug
(lazy
("SymbolicToPure.translate_fun_decl: "
^ Print.fun_name_to_string def.A.name
^ " ("
^ Print.option_to_string T.RegionGroupId.to_string bid
^ ")" ^ "\n- forward_inputs: "
^ String.concat ", " (List.map show_var ctx.forward_inputs)
^ "\n- fwd_state: "
^ String.concat ", " (List.map show_var fwd_state)
^ "\n- backward_inputs: "
^ String.concat ", " (List.map show_var backward_inputs)
^ "\n- back_state: "
^ String.concat ", " (List.map show_var back_state)
^ "\n- signature.inputs: "
^ String.concat ", " (List.map show_ty signature.inputs)));
assert (
List.for_all
(fun (var, ty) -> (var : var).ty = ty)
(List.combine inputs signature.inputs));
Some { inputs; inputs_lvs; body }
in
(* Note that for now, the loops are still *inside* the function body (and we
haven't counted them): we will extract them from there later, in {!PureMicroPasses}
(by "splitting" the definition).
*)
let num_loops = 0 in
let loop_id = None in
(* Assemble the declaration *)
let def =
{
def_id;
num_loops;
loop_id;
back_id = bid;
basename;
signature;
is_global_decl_body = def.is_global_decl_body;
body;
}
in
(* Debugging *)
log#ldebug
(lazy
("SymbolicToPure.translate_fun_decl: translated:\n"
^ fun_decl_to_string ctx def));
(* return *)
def
let translate_type_decls (type_decls : T.type_decl list) : type_decl list =
List.map translate_type_decl type_decls
(** Translates function signatures.
Takes as input a list of function information containing:
- the function id
- a list of optional names for the inputs
- the function signature
Returns a map from forward/backward functions identifiers to:
- translated function signatures
- optional names for the outputs values (we derive them for the backward
functions)
*)
let translate_fun_signatures (fun_infos : FA.fun_info A.FunDeclId.Map.t)
(types_infos : TA.type_infos)
(functions : (A.fun_id * string option list * A.fun_sig) list) :
fun_sig_named_outputs RegularFunIdMap.t =
(* For every function, translate the signatures of:
- the forward function
- the backward functions
*)
let translate_one (fun_id : A.fun_id) (input_names : string option list)
(sg : A.fun_sig) : (regular_fun_id * fun_sig_named_outputs) list =
(* The forward function *)
let fwd_sg =
translate_fun_sig fun_infos fun_id types_infos sg input_names None
in
let fwd_id = (fun_id, None) in
(* The backward functions *)
let back_sgs =
List.map
(fun (rg : T.region_var_group) ->
let tsg =
translate_fun_sig fun_infos fun_id types_infos sg input_names
(Some rg.id)
in
let id = (fun_id, Some rg.id) in
(id, tsg))
sg.regions_hierarchy
in
(* Return *)
(fwd_id, fwd_sg) :: back_sgs
in
let translated =
List.concat
(List.map (fun (id, names, sg) -> translate_one id names sg) functions)
in
List.fold_left
(fun m (id, sg) -> RegularFunIdMap.add id sg m)
RegularFunIdMap.empty translated
|