1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
(** The "symbolic" AST is the AST directly generated by the symbolic execution.
It is very rough and meant to be extremely straightforward to build during
the symbolic execution: we later apply transformations to generate the
pure AST that we export. *)
module T = Types
module V = Values
module E = Expressions
module A = LlbcAst
(** "Meta"-place: a place stored as meta-data.
Whenever we need to introduce new symbolic variables, for instance because
of symbolic expansions, we try to store a "place", which gives information
about the origin of the values (this place information comes from assignment
information, etc.).
We later use this place information to generate meaningful name, to prettify
the generated code.
*)
type mplace = {
bv : Contexts.var_binder;
(** It is important that we store the binder, and not just the variable id,
because the most important information in a place is the name of the
variable!
*)
projection : E.projection;
(** We store the projection because we can, but it is actually not that useful *)
}
[@@deriving show]
type call_id =
| Fun of A.fun_id * V.FunCallId.id
(** A "regular" function (i.e., a function which is not a primitive operation) *)
| Unop of E.unop
| Binop of E.binop
[@@deriving show, ord]
type call = {
call_id : call_id;
ctx : Contexts.eval_ctx;
(** The context upon calling the function (after the operands have been
evaluated). We need it to compute the translated values for shared
borrows (we need to perform lookups).
*)
abstractions : V.AbstractionId.id list;
type_params : T.ety list;
args : V.typed_value list;
args_places : mplace option list; (** Meta information *)
dest : V.symbolic_value;
dest_place : mplace option; (** Meta information *)
}
[@@deriving show]
(** Meta information, not necessary for synthesis but useful to guide it to
generate a pretty output.
*)
type meta =
| Assignment of Contexts.eval_ctx * mplace * V.typed_value * mplace option
(** We generated an assignment (destination, assigned value, src) *)
[@@deriving show]
type variant_id = T.VariantId.id [@@deriving show]
type global_decl_id = A.GlobalDeclId.id [@@deriving show]
type 'a symbolic_value_id_map = 'a V.SymbolicValueId.Map.t [@@deriving show]
type 'a region_group_id_map = 'a T.RegionGroupId.Map.t [@@deriving show]
(** Ancestor for {!expression} iter visitor *)
class ['self] iter_expression_base =
object (self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_eval_ctx : 'env -> Contexts.eval_ctx -> unit = fun _ _ -> ()
method visit_typed_value : 'env -> V.typed_value -> unit = fun _ _ -> ()
method visit_call : 'env -> call -> unit = fun _ _ -> ()
method visit_abs : 'env -> V.abs -> unit = fun _ _ -> ()
method visit_loop_id : 'env -> V.loop_id -> unit = fun _ _ -> ()
method visit_variant_id : 'env -> variant_id -> unit = fun _ _ -> ()
method visit_symbolic_value_id : 'env -> V.symbolic_value_id -> unit =
fun _ _ -> ()
method visit_symbolic_value : 'env -> V.symbolic_value -> unit =
fun _ _ -> ()
method visit_region_group_id : 'env -> T.RegionGroupId.id -> unit =
fun _ _ -> ()
method visit_global_decl_id : 'env -> global_decl_id -> unit = fun _ _ -> ()
method visit_mplace : 'env -> mplace -> unit = fun _ _ -> ()
method visit_meta : 'env -> meta -> unit = fun _ _ -> ()
method visit_region_group_id_map
: 'a. ('env -> 'a -> unit) -> 'env -> 'a region_group_id_map -> unit =
fun f env m ->
T.RegionGroupId.Map.iter
(fun id x ->
self#visit_region_group_id env id;
f env x)
m
method visit_symbolic_value_id_map
: 'a. ('env -> 'a -> unit) -> 'env -> 'a symbolic_value_id_map -> unit =
fun f env m ->
V.SymbolicValueId.Map.iter
(fun id x ->
self#visit_symbolic_value_id env id;
f env x)
m
method visit_symbolic_value_id_set : 'env -> V.symbolic_value_id_set -> unit
=
fun env s ->
V.SymbolicValueId.Set.iter (self#visit_symbolic_value_id env) s
method visit_integer_type : 'env -> T.integer_type -> unit = fun _ _ -> ()
method visit_scalar_value : 'env -> V.scalar_value -> unit = fun _ _ -> ()
method visit_symbolic_expansion : 'env -> V.symbolic_expansion -> unit =
fun _ _ -> ()
end
(** **Rem.:** here, {!expression} is not at all equivalent to the expressions
used in LLBC or in lambda-calculus: they are simply a first step towards
lambda-calculus expressions.
*)
type expression =
| Return of Contexts.eval_ctx * V.typed_value option
(** There are two cases:
- the AST is for a forward function: the typed value should contain
the value which was in the return variable
- the AST is for a backward function: the typed value should be [None]
The context is the evaluation context upon reaching the return, We
need it to translate shared borrows to pure values (we need to be able
to look up the shared values in the context).
*)
| Panic
| FunCall of call * expression
| EndAbstraction of Contexts.eval_ctx * V.abs * expression
(** The context is the evaluation context upon ending the abstraction,
just after we removed the abstraction from the context.
The context is the evaluation context from after evaluating the asserted
value. It has the same purpose as for the {!Return} case.
*)
| EvalGlobal of global_decl_id * V.symbolic_value * expression
(** Evaluate a global to a fresh symbolic value *)
| Assertion of Contexts.eval_ctx * V.typed_value * expression
(** An assertion.
The context is the evaluation context from after evaluating the asserted
value. It has the same purpose as for the {!Return} case.
*)
| Expansion of mplace option * V.symbolic_value * expansion
(** Expansion of a symbolic value.
The place is "meta": it gives the path to the symbolic value (if available)
which got expanded (this path is available when the symbolic expansion
comes from a path evaluation, during an assignment for instance).
We use it to compute meaningful names for the variables we introduce,
to prettify the generated code.
*)
| IntroSymbolic of
Contexts.eval_ctx
* mplace option
* V.symbolic_value
* V.typed_value
* expression
(** We introduce a new symbolic value, equal to some other value.
This is used for instance when reorganizing the environment to compute
fixed points: we duplicate some shared symbolic values to destructure
the shared values, in order to make the environment a bit more general
(while losing precision of course).
The context is the evaluation context from before introducing the new
value. It has the same purpose as for the {!Return} case.
*)
| ForwardEnd of
Contexts.eval_ctx
* V.typed_value symbolic_value_id_map option
* expression
* expression region_group_id_map
(** We use this delimiter to indicate at which point we switch to the
generation of code specific to the backward function(s). This allows
us in particular to factor the work out: we don't need to replay the
symbolic execution up to this point, and can reuse it for the forward
function and all the backward functions.
The first expression gives the end of the translation for the forward
function, the map from region group ids to expressions gives the end
of the translation for the backward functions.
The optional map from symbolic values to input values are input values
for loops: upon entering a loop, in the translation we call the loop
translation function, which takes care of the end of the execution.
The evaluation context is the context at the moment we introduce the
[ForwardEnd], and is used to translate the input values (see the
comments for the {!Return} variant).
*)
| Loop of loop (** Loop *)
| ReturnWithLoop of V.loop_id * bool
(** End the function with a call to a loop function.
This encompasses the cases when we synthesize a function body
and enter a loop for the first time, or when we synthesize a
loop body and reach a [Continue].
The boolean is [is_continue].
*)
| Meta of meta * expression (** Meta information *)
and loop = {
loop_id : V.loop_id;
input_svalues : V.symbolic_value list; (** The input symbolic values *)
fresh_svalues : V.symbolic_value_id_set;
(** The symbolic values introduced by the loop fixed-point *)
rg_to_given_back_tys :
((T.RegionId.Set.t * T.rty list) T.RegionGroupId.Map.t[@opaque]);
(** The map from region group ids to the types of the values given back
by the corresponding loop abstractions.
*)
end_expr : expression;
(** The end of the function (upon the moment it enters the loop) *)
loop_expr : expression; (** The symbolically executed loop body *)
}
and expansion =
| ExpandNoBranch of V.symbolic_expansion * expression
(** A symbolic expansion which doesn't generate a branching.
Includes:
- concrete expansion
- borrow expansion
*Doesn't* include:
- expansion of ADTs with one variant
*)
| ExpandAdt of (variant_id option * V.symbolic_value list * expression) list
(** ADT expansion *)
| ExpandBool of expression * expression
(** A boolean expansion (i.e, an [if ... then ... else ...]) *)
| ExpandInt of
T.integer_type * (V.scalar_value * expression) list * expression
(** An integer expansion (i.e, a switch over an integer). The last
expression is for the "otherwise" branch. *)
[@@deriving
show,
visitors
{
name = "iter_expression";
variety = "iter";
ancestors = [ "iter_expression_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
polymorphic = false;
}]
|