1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
|
open Pure
(** Default logger *)
let log = Logging.pure_utils_log
module RegularFunIdOrderedType = struct
type t = regular_fun_id
let compare = compare_regular_fun_id
let to_string = show_regular_fun_id
let pp_t = pp_regular_fun_id
let show_t = show_regular_fun_id
end
module RegularFunIdMap = Collections.MakeMap (RegularFunIdOrderedType)
(** We use this type as a key for lookups *)
type regular_fun_id_not_loop = A.fun_id * T.RegionGroupId.id option
[@@deriving show, ord]
(** We use this type as a key for lookups *)
type fun_loop_id = A.FunDeclId.id * LoopId.id option [@@deriving show, ord]
module RegularFunIdNotLoopOrderedType = struct
type t = regular_fun_id_not_loop
let compare = compare_regular_fun_id_not_loop
let to_string = show_regular_fun_id_not_loop
let pp_t = pp_regular_fun_id_not_loop
let show_t = show_regular_fun_id_not_loop
end
module RegularFunIdNotLoopMap =
Collections.MakeMap (RegularFunIdNotLoopOrderedType)
module FunOrOpIdOrderedType = struct
type t = fun_or_op_id
let compare = compare_fun_or_op_id
let to_string = show_fun_or_op_id
let pp_t = pp_fun_or_op_id
let show_t = show_fun_or_op_id
end
module FunOrOpIdMap = Collections.MakeMap (FunOrOpIdOrderedType)
module FunOrOpIdSet = Collections.MakeSet (FunOrOpIdOrderedType)
module FunLoopIdOrderedType = struct
type t = fun_loop_id
let compare = compare_fun_loop_id
let to_string = show_fun_loop_id
let pp_t = pp_fun_loop_id
let show_t = show_fun_loop_id
end
module FunLoopIdMap = Collections.MakeMap (FunLoopIdOrderedType)
module FunLoopIdSet = Collections.MakeSet (FunLoopIdOrderedType)
let dest_arrow_ty (ty : ty) : ty * ty =
match ty with
| Arrow (arg_ty, ret_ty) -> (arg_ty, ret_ty)
| _ -> raise (Failure "Unreachable")
let compute_primitive_value_ty (cv : primitive_value) : ty =
match cv with
| PV.Scalar sv -> Integer sv.PV.int_ty
| Bool _ -> Bool
| Char _ -> Char
| String _ -> Str
let var_get_id (v : var) : VarId.id = v.id
let mk_typed_pattern_from_primitive_value (cv : primitive_value) : typed_pattern
=
let ty = compute_primitive_value_ty cv in
{ value = PatConstant cv; ty }
let mk_let (monadic : bool) (lv : typed_pattern) (re : texpression)
(next_e : texpression) : texpression =
let e = Let (monadic, lv, re, next_e) in
let ty = next_e.ty in
{ e; ty }
let mk_tag (msg : string) (next_e : texpression) : texpression =
let e = Meta (Tag msg, next_e) in
let ty = next_e.ty in
{ e; ty }
let mk_mplace (var_id : E.VarId.id) (name : string option)
(projection : mprojection) : mplace =
{ var_id; name; projection }
(** Type substitution *)
let ty_substitute (tsubst : TypeVarId.id -> ty) (ty : ty) : ty =
let obj =
object
inherit [_] map_ty
method! visit_TypeVar _ var_id = tsubst var_id
end
in
obj#visit_ty () ty
let make_type_subst (vars : type_var list) (tys : ty list) : TypeVarId.id -> ty
=
let ls = List.combine vars tys in
let mp =
List.fold_left
(fun mp (k, v) -> TypeVarId.Map.add (k : type_var).index v mp)
TypeVarId.Map.empty ls
in
fun id -> TypeVarId.Map.find id mp
(** Retrieve the list of fields for the given variant of a {!type:Aeneas.Pure.type_decl}.
Raises [Invalid_argument] if the arguments are incorrect.
*)
let type_decl_get_fields (def : type_decl)
(opt_variant_id : VariantId.id option) : field list =
match (def.kind, opt_variant_id) with
| Enum variants, Some variant_id -> (VariantId.nth variants variant_id).fields
| Struct fields, None -> fields
| _ ->
let opt_variant_id =
match opt_variant_id with None -> "None" | Some _ -> "Some"
in
raise
(Invalid_argument
("The variant id should be [Some] if and only if the definition is \
an enumeration:\n\
- def: " ^ show_type_decl def ^ "\n- opt_variant_id: "
^ opt_variant_id))
(** Instantiate the type variables for the chosen variant in an ADT definition,
and return the list of the types of its fields *)
let type_decl_get_instantiated_fields_types (def : type_decl)
(opt_variant_id : VariantId.id option) (types : ty list) : ty list =
let ty_subst = make_type_subst def.type_params types in
let fields = type_decl_get_fields def opt_variant_id in
List.map (fun f -> ty_substitute ty_subst f.field_ty) fields
let fun_sig_substitute (tsubst : TypeVarId.id -> ty) (sg : fun_sig) :
inst_fun_sig =
let subst = ty_substitute tsubst in
let inputs = List.map subst sg.inputs in
let output = subst sg.output in
let doutputs = List.map subst sg.doutputs in
let info = sg.info in
{ inputs; output; doutputs; info }
(** We use this to check whether we need to add parentheses around expressions.
We only look for outer monadic let-bindings.
This is used when printing the branches of [if ... then ... else ...].
Rem.: this function will *fail* if there are {!constructor:Aeneas.Pure.expression.Loop} nodes (you should call
it on an expression where those nodes have been eliminated).
*)
let rec let_group_requires_parentheses (e : texpression) : bool =
match e.e with
| Var _ | Const _ | App _ | Abs _ | Qualif _ -> false
| Let (monadic, _, _, next_e) ->
if monadic then true else let_group_requires_parentheses next_e
| Switch (_, _) -> false
| Meta (_, next_e) -> let_group_requires_parentheses next_e
| Loop _ ->
(* Should have been eliminated *)
raise (Failure "Unreachable")
let is_var (e : texpression) : bool =
match e.e with Var _ -> true | _ -> false
let as_var (e : texpression) : VarId.id =
match e.e with Var v -> v | _ -> raise (Failure "Unreachable")
let is_global (e : texpression) : bool =
match e.e with Qualif { id = Global _; _ } -> true | _ -> false
let is_const (e : texpression) : bool =
match e.e with Const _ -> true | _ -> false
let ty_as_adt (ty : ty) : type_id * ty list =
match ty with
| Adt (id, tys) -> (id, tys)
| _ -> raise (Failure "Unreachable")
(** Remove the external occurrences of {!Meta} *)
let rec unmeta (e : texpression) : texpression =
match e.e with Meta (_, e) -> unmeta e | _ -> e
(** Remove *all* the meta information *)
let remove_meta (e : texpression) : texpression =
let obj =
object
inherit [_] map_expression as super
method! visit_Meta env _ e = super#visit_expression env e.e
end
in
obj#visit_texpression () e
let mk_arrow (ty0 : ty) (ty1 : ty) : ty = Arrow (ty0, ty1)
(** Construct a type as a list of arrows: ty1 -> ... tyn *)
let mk_arrows (inputs : ty list) (output : ty) =
let rec aux (tys : ty list) : ty =
match tys with [] -> output | ty :: tys' -> Arrow (ty, aux tys')
in
aux inputs
(** Destruct an expression into a list of nested lets *)
let rec destruct_lets (e : texpression) :
(bool * typed_pattern * texpression) list * texpression =
match e.e with
| Let (monadic, lv, re, next_e) ->
let lets, last_e = destruct_lets next_e in
((monadic, lv, re) :: lets, last_e)
| _ -> ([], e)
(** Destruct an [App] expression into an expression and a list of arguments.
We simply destruct the expression as long as it is of the form [App (f, x)].
*)
let destruct_apps (e : texpression) : texpression * texpression list =
let rec aux (args : texpression list) (e : texpression) :
texpression * texpression list =
match e.e with App (f, x) -> aux (x :: args) f | _ -> (e, args)
in
aux [] e
(** Make an [App (app, arg)] expression *)
let mk_app (app : texpression) (arg : texpression) : texpression =
match app.ty with
| Arrow (ty0, ty1) ->
(* Sanity check *)
assert (ty0 = arg.ty);
let e = App (app, arg) in
let ty = ty1 in
{ e; ty }
| _ -> raise (Failure "Expected an arrow type")
(** The reverse of {!destruct_apps} *)
let mk_apps (app : texpression) (args : texpression list) : texpression =
List.fold_left (fun app arg -> mk_app app arg) app args
(** Destruct an expression into a qualif identifier and a list of arguments,
* if possible *)
let opt_destruct_qualif_app (e : texpression) :
(qualif * texpression list) option =
let app, args = destruct_apps e in
match app.e with Qualif qualif -> Some (qualif, args) | _ -> None
(** Destruct an expression into a qualif identifier and a list of arguments *)
let destruct_qualif_app (e : texpression) : qualif * texpression list =
Option.get (opt_destruct_qualif_app e)
(** Destruct an expression into a function call, if possible *)
let opt_destruct_function_call (e : texpression) :
(fun_or_op_id * ty list * texpression list) option =
match opt_destruct_qualif_app e with
| None -> None
| Some (qualif, args) -> (
match qualif.id with
| FunOrOp fun_id -> Some (fun_id, qualif.type_args, args)
| _ -> None)
let opt_destruct_result (ty : ty) : ty option =
match ty with
| Adt (Assumed Result, tys) -> Some (Collections.List.to_cons_nil tys)
| _ -> None
let destruct_result (ty : ty) : ty = Option.get (opt_destruct_result ty)
let opt_destruct_tuple (ty : ty) : ty list option =
match ty with Adt (Tuple, tys) -> Some tys | _ -> None
let mk_abs (x : typed_pattern) (e : texpression) : texpression =
let ty = Arrow (x.ty, e.ty) in
let e = Abs (x, e) in
{ e; ty }
let rec destruct_abs_list (e : texpression) : typed_pattern list * texpression =
match e.e with
| Abs (x, e') ->
let xl, e'' = destruct_abs_list e' in
(x :: xl, e'')
| _ -> ([], e)
let destruct_arrow (ty : ty) : ty * ty =
match ty with
| Arrow (ty0, ty1) -> (ty0, ty1)
| _ -> raise (Failure "Not an arrow type")
let rec destruct_arrows (ty : ty) : ty list * ty =
match ty with
| Arrow (ty0, ty1) ->
let tys, out_ty = destruct_arrows ty1 in
(ty0 :: tys, out_ty)
| _ -> ([], ty)
let get_switch_body_ty (sb : switch_body) : ty =
match sb with
| If (e_then, _) -> e_then.ty
| Match branches ->
(* There should be at least one branch *)
(List.hd branches).branch.ty
let map_switch_body_branches (f : texpression -> texpression) (sb : switch_body)
: switch_body =
match sb with
| If (e_then, e_else) -> If (f e_then, f e_else)
| Match branches ->
Match
(List.map
(fun (b : match_branch) -> { b with branch = f b.branch })
branches)
let iter_switch_body_branches (f : texpression -> unit) (sb : switch_body) :
unit =
match sb with
| If (e_then, e_else) ->
f e_then;
f e_else
| Match branches -> List.iter (fun (b : match_branch) -> f b.branch) branches
let mk_switch (scrut : texpression) (sb : switch_body) : texpression =
(* Sanity check: the scrutinee has the proper type *)
(match sb with
| If (_, _) -> assert (scrut.ty = Bool)
| Match branches ->
List.iter
(fun (b : match_branch) -> assert (b.pat.ty = scrut.ty))
branches);
(* Sanity check: all the branches have the same type *)
let ty = get_switch_body_ty sb in
iter_switch_body_branches (fun e -> assert (e.ty = ty)) sb;
(* Put together *)
let e = Switch (scrut, sb) in
{ e; ty }
(** Make a "simplified" tuple type from a list of types:
- if there is exactly one type, just return it
- if there is > one type: wrap them in a tuple
*)
let mk_simpl_tuple_ty (tys : ty list) : ty =
match tys with [ ty ] -> ty | _ -> Adt (Tuple, tys)
let mk_bool_ty : ty = Bool
let mk_unit_ty : ty = Adt (Tuple, [])
let mk_unit_rvalue : texpression =
let id = AdtCons { adt_id = Tuple; variant_id = None } in
let qualif = { id; type_args = [] } in
let e = Qualif qualif in
let ty = mk_unit_ty in
{ e; ty }
let mk_texpression_from_var (v : var) : texpression =
let e = Var v.id in
let ty = v.ty in
{ e; ty }
let mk_typed_pattern_from_var (v : var) (mp : mplace option) : typed_pattern =
let value = PatVar (v, mp) in
let ty = v.ty in
{ value; ty }
let mk_dummy_pattern (ty : ty) : typed_pattern =
let value = PatDummy in
{ value; ty }
let mk_meta (m : meta) (e : texpression) : texpression =
let ty = e.ty in
let e = Meta (m, e) in
{ e; ty }
let mk_mplace_texpression (mp : mplace) (e : texpression) : texpression =
mk_meta (MPlace mp) e
let mk_opt_mplace_texpression (mp : mplace option) (e : texpression) :
texpression =
match mp with None -> e | Some mp -> mk_mplace_texpression mp e
(** Make a "simplified" tuple value from a list of values:
- if there is exactly one value, just return it
- if there is > one value: wrap them in a tuple
*)
let mk_simpl_tuple_pattern (vl : typed_pattern list) : typed_pattern =
match vl with
| [ v ] -> v
| _ ->
let tys = List.map (fun (v : typed_pattern) -> v.ty) vl in
let ty = Adt (Tuple, tys) in
let value = PatAdt { variant_id = None; field_values = vl } in
{ value; ty }
(** Similar to {!mk_simpl_tuple_pattern} *)
let mk_simpl_tuple_texpression (vl : texpression list) : texpression =
match vl with
| [ v ] -> v
| _ ->
(* Compute the types of the fields, and the type of the tuple constructor *)
let tys = List.map (fun (v : texpression) -> v.ty) vl in
let ty = Adt (Tuple, tys) in
let ty = mk_arrows tys ty in
(* Construct the tuple constructor qualifier *)
let id = AdtCons { adt_id = Tuple; variant_id = None } in
let qualif = { id; type_args = tys } in
(* Put everything together *)
let cons = { e = Qualif qualif; ty } in
mk_apps cons vl
let mk_adt_pattern (adt_ty : ty) (variant_id : VariantId.id option)
(vl : typed_pattern list) : typed_pattern =
let value = PatAdt { variant_id; field_values = vl } in
{ value; ty = adt_ty }
let ty_as_integer (t : ty) : T.integer_type =
match t with Integer int_ty -> int_ty | _ -> raise (Failure "Unreachable")
(* TODO: move *)
let type_decl_is_enum (def : T.type_decl) : bool =
match def.kind with T.Struct _ -> false | Enum _ -> true | Opaque -> false
let mk_state_ty : ty = Adt (Assumed State, [])
let mk_result_ty (ty : ty) : ty = Adt (Assumed Result, [ ty ])
let mk_error_ty : ty = Adt (Assumed Error, [])
let mk_fuel_ty : ty = Adt (Assumed Fuel, [])
let mk_error (error : VariantId.id) : texpression =
let ty = mk_error_ty in
let id = AdtCons { adt_id = Assumed Error; variant_id = Some error } in
let qualif = { id; type_args = [] } in
let e = Qualif qualif in
{ e; ty }
let unwrap_result_ty (ty : ty) : ty =
match ty with
| Adt (Assumed Result, [ ty ]) -> ty
| _ -> raise (Failure "not a result type")
let mk_result_fail_texpression (error : texpression) (ty : ty) : texpression =
let type_args = [ ty ] in
let ty = Adt (Assumed Result, type_args) in
let id =
AdtCons { adt_id = Assumed Result; variant_id = Some result_fail_id }
in
let qualif = { id; type_args } in
let cons_e = Qualif qualif in
let cons_ty = mk_arrow error.ty ty in
let cons = { e = cons_e; ty = cons_ty } in
mk_app cons error
let mk_result_fail_texpression_with_error_id (error : VariantId.id) (ty : ty) :
texpression =
let error = mk_error error in
mk_result_fail_texpression error ty
let mk_result_return_texpression (v : texpression) : texpression =
let type_args = [ v.ty ] in
let ty = Adt (Assumed Result, type_args) in
let id =
AdtCons { adt_id = Assumed Result; variant_id = Some result_return_id }
in
let qualif = { id; type_args } in
let cons_e = Qualif qualif in
let cons_ty = mk_arrow v.ty ty in
let cons = { e = cons_e; ty = cons_ty } in
mk_app cons v
(** Create a [Fail err] pattern which captures the error *)
let mk_result_fail_pattern (error_pat : pattern) (ty : ty) : typed_pattern =
let error_pat : typed_pattern = { value = error_pat; ty = mk_error_ty } in
let ty = Adt (Assumed Result, [ ty ]) in
let value =
PatAdt { variant_id = Some result_fail_id; field_values = [ error_pat ] }
in
{ value; ty }
(** Create a [Fail _] pattern (we ignore the error) *)
let mk_result_fail_pattern_ignore_error (ty : ty) : typed_pattern =
let error_pat : pattern = PatDummy in
mk_result_fail_pattern error_pat ty
let mk_result_return_pattern (v : typed_pattern) : typed_pattern =
let ty = Adt (Assumed Result, [ v.ty ]) in
let value =
PatAdt { variant_id = Some result_return_id; field_values = [ v ] }
in
{ value; ty }
let opt_unmeta_mplace (e : texpression) : mplace option * texpression =
match e.e with Meta (MPlace mp, e) -> (Some mp, e) | _ -> (None, e)
let mk_state_var (id : VarId.id) : var =
{ id; basename = Some ConstStrings.state_basename; ty = mk_state_ty }
let mk_state_texpression (id : VarId.id) : texpression =
{ e = Var id; ty = mk_state_ty }
let mk_fuel_var (id : VarId.id) : var =
{ id; basename = Some ConstStrings.fuel_basename; ty = mk_fuel_ty }
let mk_fuel_texpression (id : VarId.id) : texpression =
{ e = Var id; ty = mk_fuel_ty }
let rec typed_pattern_to_texpression (pat : typed_pattern) : texpression option
=
let e_opt =
match pat.value with
| PatConstant pv -> Some (Const pv)
| PatVar (v, _) -> Some (Var v.id)
| PatDummy -> None
| PatAdt av ->
let fields = List.map typed_pattern_to_texpression av.field_values in
if List.mem None fields then None
else
let fields_values = List.map (fun e -> Option.get e) fields in
(* Retrieve the type id and the type args from the pat type (simpler this way *)
let adt_id, type_args = ty_as_adt pat.ty in
(* Create the constructor *)
let qualif_id = AdtCons { adt_id; variant_id = av.variant_id } in
let qualif = { id = qualif_id; type_args } in
let cons_e = Qualif qualif in
let field_tys =
List.map (fun (v : texpression) -> v.ty) fields_values
in
let cons_ty = mk_arrows field_tys pat.ty in
let cons = { e = cons_e; ty = cons_ty } in
(* Apply the constructor *)
Some (mk_apps cons fields_values).e
in
match e_opt with None -> None | Some e -> Some { e; ty = pat.ty }
|