1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
|
open Identifiers
module T = Types
module V = Values
module E = Expressions
module A = LlbcAst
module TypeDeclId = T.TypeDeclId
module TypeVarId = T.TypeVarId
module RegionGroupId = T.RegionGroupId
module VariantId = T.VariantId
module FieldId = T.FieldId
module SymbolicValueId = V.SymbolicValueId
module FunDeclId = A.FunDeclId
module GlobalDeclId = A.GlobalDeclId
module TraitDeclId = T.TraitDeclId
module TraitImplId = T.TraitImplId
module TraitClauseId = T.TraitClauseId
module Disambiguator = T.Disambiguator
(** We redefine identifiers for loop: in {!Values}, the identifiers are global
(they monotonically increase across functions) while in {!module:Pure} we want
the indices to start at 0 for every function.
*)
module LoopId =
IdGen ()
(** We give an identifier to every phase of the synthesis (forward, backward
for group of regions 0, etc.) *)
module SynthPhaseId =
IdGen ()
(** Pay attention to the fact that we also define a {!E.VarId} module in Values *)
module VarId =
IdGen ()
module ConstGenericVarId = T.ConstGenericVarId
type llbc_name = T.name [@@deriving show, ord]
type integer_type = T.integer_type [@@deriving show, ord]
type const_generic_var = T.const_generic_var [@@deriving show, ord]
type const_generic = T.const_generic [@@deriving show, ord]
type const_generic_var_id = T.const_generic_var_id [@@deriving show, ord]
type trait_decl_id = T.trait_decl_id [@@deriving show, ord]
type trait_impl_id = T.trait_impl_id [@@deriving show, ord]
type trait_clause_id = T.trait_clause_id [@@deriving show, ord]
type trait_item_name = T.trait_item_name [@@deriving show, ord]
type global_decl_id = T.global_decl_id [@@deriving show, ord]
type fun_decl_id = A.fun_decl_id [@@deriving show, ord]
type loop_id = LoopId.id [@@deriving show, ord]
type region_group_id = T.region_group_id [@@deriving show, ord]
type mutability = Mut | Const [@@deriving show, ord]
type loc = Meta.loc [@@deriving show, ord]
type file_name = Meta.file_name [@@deriving show, ord]
type span = Meta.span [@@deriving show, ord]
type meta = Meta.meta [@@deriving show, ord]
(** The assumed types for the pure AST.
In comparison with LLBC:
- we removed [Box] (because it is translated as the identity: [Box T = T])
- we added:
- [Result]: the type used in the error monad. This allows us to have a
unified treatment of expressions (especially when we have to unfold the
monadic binds)
- [Error]: the kind of error, in case of failure (used by [Result])
- [Fuel]: the fuel, to control recursion (some theorem provers like Coq
don't support semantic termination, in which case we can use a fuel
parameter to do partial verification)
- [State]: the type of the state, when using state-error monads. Note that
this state is opaque to Aeneas (the user can define it, or leave it as
assumed)
TODO: add a prefix "T"
*)
type assumed_ty =
| TState
| TResult
| TError
| TFuel
| TArray
| TSlice
| TStr
| TRawPtr of mutability
(** The bool
Raw pointers don't make sense in the pure world, but we don't know
how to translate them yet and we have to handle some functions which
use raw pointers in their signature (for instance some trait declarations
for the slices). For now, we use a dedicated type to "mark" the raw pointers,
and make sure that those functions are actually not used in the translation.
*)
[@@deriving show, ord]
(* TODO: we should never directly manipulate [Return] and [Fail], but rather
* the monadic functions [return] and [fail] (makes treatment of error and
* state-error monads more uniform) *)
let result_return_id = VariantId.of_int 0
let result_fail_id = VariantId.of_int 1
let option_some_id = T.option_some_id
let option_none_id = T.option_none_id
let error_failure_id = VariantId.of_int 0
let error_out_of_fuel_id = VariantId.of_int 1
(* We don't always use those: it depends on the backend (we use natural numbers
for the fuel: in Coq they are enumerations, but in F* they are primitive)
*)
let fuel_zero_id = VariantId.of_int 0
let fuel_succ_id = VariantId.of_int 1
type type_decl_id = TypeDeclId.id [@@deriving show, ord]
type type_var_id = TypeVarId.id [@@deriving show, ord]
(** Ancestor for iter visitor for [ty] *)
class ['self] iter_type_id_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.iter
method visit_type_decl_id : 'env -> type_decl_id -> unit = fun _ _ -> ()
method visit_assumed_ty : 'env -> assumed_ty -> unit = fun _ _ -> ()
end
(** Ancestor for map visitor for [ty] *)
class ['self] map_type_id_base =
object (_self : 'self)
inherit [_] VisitorsRuntime.map
method visit_type_decl_id : 'env -> type_decl_id -> type_decl_id =
fun _ x -> x
method visit_assumed_ty : 'env -> assumed_ty -> assumed_ty = fun _ x -> x
end
(** Ancestor for reduce visitor for [ty] *)
class virtual ['self] reduce_type_id_base =
object (self : 'self)
inherit [_] VisitorsRuntime.reduce
method visit_type_decl_id : 'env -> type_decl_id -> 'a =
fun _ _ -> self#zero
method visit_assumed_ty : 'env -> assumed_ty -> 'a = fun _ _ -> self#zero
end
(** Ancestor for mapreduce visitor for [ty] *)
class virtual ['self] mapreduce_type_id_base =
object (self : 'self)
inherit [_] VisitorsRuntime.mapreduce
method visit_type_decl_id : 'env -> type_decl_id -> type_decl_id * 'a =
fun _ x -> (x, self#zero)
method visit_assumed_ty : 'env -> assumed_ty -> assumed_ty * 'a =
fun _ x -> (x, self#zero)
end
type type_id = TAdtId of type_decl_id | TTuple | TAssumed of assumed_ty
[@@deriving
show,
ord,
visitors
{
name = "iter_type_id";
variety = "iter";
ancestors = [ "iter_type_id_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_type_id";
variety = "map";
ancestors = [ "map_type_id_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_type_id";
variety = "reduce";
ancestors = [ "reduce_type_id_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
polymorphic = false;
},
visitors
{
name = "mapreduce_type_id";
variety = "mapreduce";
ancestors = [ "mapreduce_type_id_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
polymorphic = false;
}]
type literal_type = T.literal_type [@@deriving show, ord]
(** Ancestor for iter visitor for [ty] *)
class ['self] iter_ty_base =
object (_self : 'self)
inherit [_] iter_type_id
inherit! [_] T.iter_const_generic
method visit_type_var_id : 'env -> type_var_id -> unit = fun _ _ -> ()
method visit_trait_decl_id : 'env -> trait_decl_id -> unit = fun _ _ -> ()
method visit_trait_impl_id : 'env -> trait_impl_id -> unit = fun _ _ -> ()
method visit_trait_clause_id : 'env -> trait_clause_id -> unit =
fun _ _ -> ()
method visit_trait_item_name : 'env -> trait_item_name -> unit =
fun _ _ -> ()
end
(** Ancestor for map visitor for [ty] *)
class ['self] map_ty_base =
object (_self : 'self)
inherit [_] map_type_id
inherit! [_] T.map_const_generic
method visit_type_var_id : 'env -> type_var_id -> type_var_id = fun _ x -> x
method visit_trait_decl_id : 'env -> trait_decl_id -> trait_decl_id =
fun _ x -> x
method visit_trait_impl_id : 'env -> trait_impl_id -> trait_impl_id =
fun _ x -> x
method visit_trait_clause_id : 'env -> trait_clause_id -> trait_clause_id =
fun _ x -> x
method visit_trait_item_name : 'env -> trait_item_name -> trait_item_name =
fun _ x -> x
end
(** Ancestor for reduce visitor for [ty] *)
class virtual ['self] reduce_ty_base =
object (self : 'self)
inherit [_] reduce_type_id
inherit! [_] T.reduce_const_generic
method visit_type_var_id : 'env -> type_var_id -> 'a = fun _ _ -> self#zero
method visit_trait_decl_id : 'env -> trait_decl_id -> 'a =
fun _ _ -> self#zero
method visit_trait_impl_id : 'env -> trait_impl_id -> 'a =
fun _ _ -> self#zero
method visit_trait_clause_id : 'env -> trait_clause_id -> 'a =
fun _ _ -> self#zero
method visit_trait_item_name : 'env -> trait_item_name -> 'a =
fun _ _ -> self#zero
end
(** Ancestor for mapreduce visitor for [ty] *)
class virtual ['self] mapreduce_ty_base =
object (self : 'self)
inherit [_] mapreduce_type_id
inherit! [_] T.mapreduce_const_generic
method visit_type_var_id : 'env -> type_var_id -> type_var_id * 'a =
fun _ x -> (x, self#zero)
method visit_trait_decl_id : 'env -> trait_decl_id -> trait_decl_id * 'a =
fun _ x -> (x, self#zero)
method visit_trait_impl_id : 'env -> trait_impl_id -> trait_impl_id * 'a =
fun _ x -> (x, self#zero)
method visit_trait_clause_id
: 'env -> trait_clause_id -> trait_clause_id * 'a =
fun _ x -> (x, self#zero)
method visit_trait_item_name
: 'env -> trait_item_name -> trait_item_name * 'a =
fun _ x -> (x, self#zero)
end
type ty =
| TAdt of type_id * generic_args
(** {!TAdt} encodes ADTs and tuples and assumed types.
TODO: what about the ended regions? (ADTs may be parameterized
with several region variables. When giving back an ADT value, we may
be able to only give back part of the ADT. We need a way to encode
such "partial" ADTs.
*)
| TVar of type_var_id
| TLiteral of literal_type
| TArrow of ty * ty
| TTraitType of trait_ref * generic_args * string
(** The string is for the name of the associated type *)
and trait_ref = {
trait_id : trait_instance_id;
generics : generic_args;
trait_decl_ref : trait_decl_ref;
}
and trait_decl_ref = {
trait_decl_id : trait_decl_id;
decl_generics : generic_args; (* The name: annoying field collisions... *)
}
and generic_args = {
types : ty list;
const_generics : const_generic list;
trait_refs : trait_ref list;
}
and trait_instance_id =
| Self
| TraitImpl of trait_impl_id
| Clause of trait_clause_id
| ParentClause of trait_instance_id * trait_decl_id * trait_clause_id
| ItemClause of
trait_instance_id * trait_decl_id * trait_item_name * trait_clause_id
| TraitRef of trait_ref
| UnknownTrait of string
[@@deriving
show,
ord,
visitors
{
name = "iter_ty";
variety = "iter";
ancestors = [ "iter_ty_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_ty";
variety = "map";
ancestors = [ "map_ty_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.map} *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_ty";
variety = "reduce";
ancestors = [ "reduce_ty_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.reduce} *);
polymorphic = false;
},
visitors
{
name = "mapreduce_ty";
variety = "mapreduce";
ancestors = [ "mapreduce_ty_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.mapreduce} *);
polymorphic = false;
}]
type field = { field_name : string option; field_ty : ty } [@@deriving show]
type variant = { variant_name : string; fields : field list } [@@deriving show]
type type_decl_kind = Struct of field list | Enum of variant list | Opaque
[@@deriving show]
type type_var = T.type_var [@@deriving show]
type trait_clause = {
clause_id : trait_clause_id;
trait_id : trait_decl_id;
generics : generic_args;
}
[@@deriving show]
type generic_params = {
types : type_var list;
const_generics : const_generic_var list;
trait_clauses : trait_clause list;
}
[@@deriving show]
type trait_type_constraint = {
trait_ref : trait_ref;
generics : generic_args;
type_name : trait_item_name;
ty : ty;
}
[@@deriving show, ord]
type predicates = { trait_type_constraints : trait_type_constraint list }
[@@deriving show]
type type_decl = {
def_id : TypeDeclId.id;
is_local : bool;
llbc_name : llbc_name;
(** The original name coming from the LLBC declaration *)
name : string;
(** We use the name only for printing purposes (for debugging):
the name used at extraction time will be derived from the
llbc_name.
*)
meta : meta;
generics : generic_params;
llbc_generics : Types.generic_params;
(** We use the LLBC generics to generate "pretty" names, for instance
for the variables we introduce for the trait clauses: we derive
those names from the types, and when doing so it is more meaningful
to derive them from the original LLBC types from before the
simplification of types like boxes and references. *)
kind : type_decl_kind;
preds : predicates;
}
[@@deriving show]
type scalar_value = V.scalar_value [@@deriving show, ord]
type literal = V.literal [@@deriving show, ord]
(** Because we introduce a lot of temporary variables, the list of variables
is not fixed: we thus must carry all its information with the variable
itself.
*)
type var = {
id : VarId.id;
basename : string option;
(** The "basename" is used to generate a meaningful name for the variable
(by potentially adding an index to uniquely identify it).
*)
ty : ty;
}
[@@deriving show]
(* TODO: we might want to redefine field_proj_kind here, to prevent field accesses
* on enumerations.
* Also: tuples...
* Rmk: projections are actually only used as meta-data.
* *)
type mprojection_elem = { pkind : E.field_proj_kind; field_id : FieldId.id }
[@@deriving show]
type mprojection = mprojection_elem list [@@deriving show]
(** "Meta" place.
Meta-data retrieved from the symbolic execution, which gives provenance
information about the values. We use this to generate names for the variables
we introduce.
*)
type mplace = {
var_id : E.VarId.id;
name : string option;
projection : mprojection;
}
[@@deriving show]
type variant_id = VariantId.id [@@deriving show]
(** Ancestor for {!iter_typed_pattern} visitor *)
class ['self] iter_typed_pattern_base =
object (_self : 'self)
inherit [_] iter_ty
method visit_var : 'env -> var -> unit = fun _ _ -> ()
method visit_mplace : 'env -> mplace -> unit = fun _ _ -> ()
method visit_variant_id : 'env -> variant_id -> unit = fun _ _ -> ()
end
(** Ancestor for {!map_typed_pattern} visitor *)
class ['self] map_typed_pattern_base =
object (_self : 'self)
inherit [_] map_ty
method visit_var : 'env -> var -> var = fun _ x -> x
method visit_mplace : 'env -> mplace -> mplace = fun _ x -> x
method visit_variant_id : 'env -> variant_id -> variant_id = fun _ x -> x
end
(** Ancestor for {!reduce_typed_pattern} visitor *)
class virtual ['self] reduce_typed_pattern_base =
object (self : 'self)
inherit [_] reduce_ty
method visit_var : 'env -> var -> 'a = fun _ _ -> self#zero
method visit_mplace : 'env -> mplace -> 'a = fun _ _ -> self#zero
method visit_variant_id : 'env -> variant_id -> 'a = fun _ _ -> self#zero
end
(** Ancestor for {!mapreduce_typed_pattern} visitor *)
class virtual ['self] mapreduce_typed_pattern_base =
object (self : 'self)
inherit [_] mapreduce_ty
method visit_var : 'env -> var -> var * 'a = fun _ x -> (x, self#zero)
method visit_mplace : 'env -> mplace -> mplace * 'a =
fun _ x -> (x, self#zero)
method visit_variant_id : 'env -> variant_id -> variant_id * 'a =
fun _ x -> (x, self#zero)
end
(** A pattern (which appears on the left of assignments, in matches, etc.). *)
type pattern =
| PatConstant of literal
(** {!PatConstant} is necessary because we merge the switches over integer
values and the matches over enumerations *)
| PatVar of var * mplace option
| PatDummy (** Ignored value: [_]. *)
| PatAdt of adt_pattern
and adt_pattern = {
variant_id : variant_id option;
field_values : typed_pattern list;
}
and typed_pattern = { value : pattern; ty : ty }
[@@deriving
show,
visitors
{
name = "iter_typed_pattern";
variety = "iter";
ancestors = [ "iter_typed_pattern_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "map_typed_pattern";
variety = "map";
ancestors = [ "map_typed_pattern_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
polymorphic = false;
},
visitors
{
name = "reduce_typed_pattern";
variety = "reduce";
ancestors = [ "reduce_typed_pattern_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
polymorphic = false;
},
visitors
{
name = "mapreduce_typed_pattern";
variety = "mapreduce";
ancestors = [ "mapreduce_typed_pattern_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
polymorphic = false;
}]
type unop = Not | Neg of integer_type | Cast of literal_type * literal_type
[@@deriving show, ord]
(** Identifiers of assumed functions that we use only in the pure translation *)
type pure_assumed_fun_id =
| Return (** The monadic return *)
| Fail (** The monadic fail *)
| Assert (** Assertion *)
| FuelDecrease
(** Decrease fuel, provided it is non zero (used for F* ) - TODO: this is ugly *)
| FuelEqZero (** Test if some fuel is equal to 0 - TODO: ugly *)
[@@deriving show, ord]
type fun_id_or_trait_method_ref =
| FunId of A.fun_id
| TraitMethod of trait_ref * string * fun_decl_id
(** The fun decl id is not really needed and here for convenience purposes *)
[@@deriving show, ord]
(** A function id for a non-assumed function *)
type regular_fun_id =
fun_id_or_trait_method_ref * LoopId.id option * RegionGroupId.id option
[@@deriving show, ord]
(** A function identifier *)
type fun_id =
| FromLlbc of regular_fun_id
(** A function coming from LLBC.
The loop id is [None] if the function is actually the auxiliary function
generated from a loop.
The region group id is the backward id:: [Some] if the function is a
backward function, [None] if it is a forward function.
*)
| Pure of pure_assumed_fun_id
(** A function only used in the pure translation *)
[@@deriving show, ord]
(** A function or an operation id *)
type fun_or_op_id =
| Fun of fun_id
| Unop of unop
| Binop of E.binop * integer_type
[@@deriving show, ord]
(** An identifier for an ADT constructor *)
type adt_cons_id = { adt_id : type_id; variant_id : variant_id option }
[@@deriving show]
(** Projection - For now we don't support projection of tuple fields
(because not all the backends have syntax for this).
*)
type projection = { adt_id : type_id; field_id : FieldId.id } [@@deriving show]
type qualif_id =
| FunOrOp of fun_or_op_id (** A function or an operation *)
| Global of global_decl_id
| AdtCons of adt_cons_id (** A function or ADT constructor identifier *)
| Proj of projection (** Field projector *)
| TraitConst of trait_ref * generic_args * string
(** A trait associated constant *)
[@@deriving show]
(** An instantiated qualifier.
Note that for now we have a clear separation between types and expressions,
which explains why we have the [generics] field: a function or ADT
constructor is always fully instantiated.
*)
type qualif = { id : qualif_id; generics : generic_args } [@@deriving show]
type field_id = FieldId.id [@@deriving show, ord]
type var_id = VarId.id [@@deriving show, ord]
(** Ancestor for {!iter_expression} visitor *)
class ['self] iter_expression_base =
object (_self : 'self)
inherit [_] iter_typed_pattern
inherit! [_] iter_type_id
method visit_var_id : 'env -> var_id -> unit = fun _ _ -> ()
method visit_qualif : 'env -> qualif -> unit = fun _ _ -> ()
method visit_loop_id : 'env -> loop_id -> unit = fun _ _ -> ()
method visit_field_id : 'env -> field_id -> unit = fun _ _ -> ()
end
(** Ancestor for {!map_expression} visitor *)
class ['self] map_expression_base =
object (_self : 'self)
inherit [_] map_typed_pattern
inherit! [_] map_type_id
method visit_var_id : 'env -> var_id -> var_id = fun _ x -> x
method visit_qualif : 'env -> qualif -> qualif = fun _ x -> x
method visit_loop_id : 'env -> loop_id -> loop_id = fun _ x -> x
method visit_field_id : 'env -> field_id -> field_id = fun _ x -> x
end
(** Ancestor for {!reduce_expression} visitor *)
class virtual ['self] reduce_expression_base =
object (self : 'self)
inherit [_] reduce_typed_pattern
inherit! [_] reduce_type_id
method visit_var_id : 'env -> var_id -> 'a = fun _ _ -> self#zero
method visit_qualif : 'env -> qualif -> 'a = fun _ _ -> self#zero
method visit_loop_id : 'env -> loop_id -> 'a = fun _ _ -> self#zero
method visit_field_id : 'env -> field_id -> 'a = fun _ _ -> self#zero
end
(** Ancestor for {!mapreduce_expression} visitor *)
class virtual ['self] mapreduce_expression_base =
object (self : 'self)
inherit [_] mapreduce_typed_pattern
inherit! [_] mapreduce_type_id
method visit_var_id : 'env -> var_id -> var_id * 'a =
fun _ x -> (x, self#zero)
method visit_qualif : 'env -> qualif -> qualif * 'a =
fun _ x -> (x, self#zero)
method visit_loop_id : 'env -> loop_id -> loop_id * 'a =
fun _ x -> (x, self#zero)
method visit_field_id : 'env -> field_id -> field_id * 'a =
fun _ x -> (x, self#zero)
end
(** **Rk.:** here, {!expression} is not at all equivalent to the expressions
used in LLBC. They are lambda-calculus expressions, and are thus actually
more general than the LLBC statements, in a sense.
*)
type expression =
| Var of var_id (** a variable *)
| CVar of const_generic_var_id (** a const generic var *)
| Const of literal
| App of texpression * texpression
(** Application of a function to an argument.
The function calls are still quite structured.
Change that?... We might want to have a "normal" lambda calculus
app (with head and argument): this would allow us to replace some
field accesses with calls to projectors over fields (when there
are clashes of field names, some provers like F* get pretty bad...)
*)
| Lambda of typed_pattern * texpression (** Lambda abstraction: [λ x => e] *)
| Qualif of qualif (** A top-level qualifier *)
| Let of bool * typed_pattern * texpression * texpression
(** Let binding.
TODO: the boolean should be replaced by an enum: sometimes we use
the error-monad, sometimes we use the state-error monad (and we
should do this an a per-function basis! For instance, arithmetic
functions are always in the error monad, they shouldn't use the
state-error monad).
The boolean controls whether the let is monadic or not.
For instance, in F*:
- non-monadic: [let x = ... in ...]
- monadic: [x <-- ...; ...]
Note that we are quite general for the left-value on purpose; this
is used in several situations:
1. When deconstructing a tuple:
{[
let (x, y) = p in ...
]}
(not all languages have syntax like [p.0], [p.1]... and it is more
readable anyway).
2. When expanding an enumeration with one variant.
In this case, {!Let} has to be understood as:
{[
let Cons x tl = ls in
...
]}
Note that later, depending on the language we extract to, we can
eventually update it to something like this (for F*, for instance):
{[
let x = Cons?.v ls in
let tl = Cons?.tl ls in
...
]}
*)
| Switch of texpression * switch_body
| Loop of loop (** See the comments for {!loop} *)
| StructUpdate of struct_update (** See the comments for {!struct_update} *)
| Meta of (emeta[@opaque]) * texpression (** Meta-information *)
and switch_body = If of texpression * texpression | Match of match_branch list
and match_branch = { pat : typed_pattern; branch : texpression }
(** In {!SymbolicToPure}, whenever we encounter a loop we insert a {!loop}
node, which contains the end of the function (i.e., the call to the
loop function) as well as the *body* of the loop translation (to be
more precise, the bodies of the loop forward and backward function).
We later split the function definition in {!PureMicroPasses}, to
remove this node.
Note that the loop body is a forward body if the function is
a forward function, and a backward body (for the corresponding region
group) if the function is a backward function.
*)
and loop = {
fun_end : texpression;
loop_id : loop_id;
meta : meta; [@opaque]
fuel0 : var_id;
fuel : var_id;
input_state : var_id option;
inputs : var list;
inputs_lvs : typed_pattern list;
(** The inputs seen as patterns. See {!fun_body}. *)
back_output_tys : ty list option;
(** The types of the given back values, if we ar esynthesizing a backward
function *)
loop_body : texpression;
}
(** Structure creation/update.
This expression is not strictly necessary, but allows for nice syntax, which
is important to work easily with the generated code.
If {!init} is [None], it defines a structure creation:
{[
{ x := 3; y := true; }
]}
If {!init} is [Some], it defines a structure update:
{[
{ s with x := 3 }
]}
We also use struct updates to encode array aggregates, so that whenever
the user writes code like:
{[
let a : [u32; 2] = [0, 1];
...
]}
this gets encoded to:
{[
let a : Array u32 2 = Array.mk [0, 1] in
...
]}
*)
and struct_update = {
struct_id : type_id;
init : var_id option;
updates : (field_id * texpression) list;
}
and texpression = { e : expression; ty : ty }
(** Meta-value (converted to an expression). It is important that the content
is opaque.
TODO: is it possible to mark the whole mvalue type as opaque?
*)
and mvalue = (texpression[@opaque])
(** Meta-information stored in the AST *)
and emeta =
| Assignment of mplace * mvalue * mplace option
(** Information about an assignment which occured in LLBC.
We use this to guide the heuristics which derive pretty names.
The first mplace stores the destination.
The mvalue stores the value which is put in the destination
The second (optional) mplace stores the origin.
*)
| SymbolicAssignment of (var_id[@opaque]) * mvalue
(** Informationg linking a variable (from the pure AST) to an
expression.
We use this to guide the heuristics which derive pretty names.
*)
| MPlace of mplace (** Meta-information about the origin of a value *)
| Tag of string (** A tag - typically used for debugging *)
[@@deriving
show,
visitors
{
name = "iter_expression";
variety = "iter";
ancestors = [ "iter_expression_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
},
visitors
{
name = "map_expression";
variety = "map";
ancestors = [ "map_expression_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
concrete = true;
},
visitors
{
name = "reduce_expression";
variety = "reduce";
ancestors = [ "reduce_expression_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
},
visitors
{
name = "mapreduce_expression";
variety = "mapreduce";
ancestors = [ "mapreduce_expression_base" ];
nude = true (* Don't inherit {!VisitorsRuntime.iter} *);
}]
(** Information about the "effect" of a function *)
type fun_effect_info = {
stateful_group : bool;
(** [true] if the function group is stateful. By *function group*, we mean
the set [{ forward function } U { backward functions }].
We need this because of the option {!val:Config.backward_no_state_update}:
if it is [true], then in case of a backward function {!stateful} might be
[false], but we might need to know whether the corresponding forward function
is stateful or not.
*)
stateful : bool; (** [true] if the function is stateful (updates a state) *)
can_fail : bool; (** [true] if the return type is a [result] *)
can_diverge : bool;
(** [true] if the function can diverge (i.e., not terminate) *)
is_rec : bool;
(** [true] if the function is recursive (or in a mutually recursive group) *)
}
[@@deriving show]
type inputs_info = {
has_fuel : bool;
num_inputs_no_fuel_no_state : int;
(** The number of input types ignoring the fuel (if used)
and ignoring the state (if used) *)
num_inputs_with_fuel_no_state : int;
(** The number of input types, with the fuel (if used)
and ignoring the state (if used) *)
num_inputs_with_fuel_with_state : int;
(** The number of input types, with fuel and state (if used) *)
}
[@@deriving show]
type ('a, 'b) back_info =
| SingleBack of 'a
(** Information about a single backward function, if pertinent.
We use this variant if we split the forward and the backward functions.
*)
| AllBacks of 'b RegionGroupId.Map.t
(** Information about the various backward functions.
We use this if we *do not* split the forward and the backward functions.
All the information is then carried by the forward function.
*)
[@@deriving show]
type back_inputs_info = (inputs_info option, inputs_info) back_info
[@@deriving show]
(** Meta information about a function signature *)
type fun_sig_info = {
fwd_info : inputs_info;
(** Information about the inputs of the forward function *)
effect_info : fun_effect_info;
ignore_output : bool;
(** In case we merge the forward/backward functions: should we ignore
the output (happens for forward functions if the output type is
[unit] and there are non-filtered backward functions)?
*)
}
[@@deriving show]
type back_sg_info = {
inputs : (string option * ty) list;
(** The additional inputs of the backward function *)
inputs_no_state : (string option * ty) list;
outputs : ty list;
(** The "decomposed" list of outputs.
The list contains all the types of
all the given back values (there is at most one type per forward
input argument).
Ex.:
{[
fn choose<'a, T>(b : bool, x : &'a mut T, y : &'a mut T) -> &'a mut T;
]}
Decomposed outputs:
- forward function: [[T]]
- backward function: [[T; T]] (for "x" and "y")
Non-decomposed ouputs (if the function can fail, but is not stateful):
- [result T]
- [[result (T * T)]]
*)
output_names : string option list;
(** The optional names for the backward outputs.
We derive those from the names of the inputs of the original LLBC
function. *)
effect_info : fun_effect_info;
filter : bool; (** Should we filter this backward function? *)
}
[@@deriving show]
(** A *decomposed* function signature. *)
type decomposed_fun_sig = {
generics : generic_params;
(** TODO: we should analyse the signature to make the type parameters implicit whenever possible *)
llbc_generics : Types.generic_params;
(** We use the LLBC generics to generate "pretty" names, for instance
for the variables we introduce for the trait clauses: we derive
those names from the types, and when doing so it is more meaningful
to derive them from the original LLBC types from before the
simplification of types like boxes and references. *)
preds : predicates;
fwd_inputs : ty list;
(** The types of the inputs of the forward function.
Note that those input types take include the [fuel] parameter,
if the function uses fuel for termination, and the [state] parameter,
if the function is stateful.
For instance, if we have the following Rust function:
{[
fn f(x : int);
]}
If we translate it to a stateful function which uses fuel we get:
{[
val f : nat -> int -> state -> result (state * unit);
]}
In particular, the list of input types is: [[nat; int; state]].
*)
fwd_output : ty;
(** The "pure" output type of the forward function.
Note that this type doesn't contain the "effect" of the function (i.e.,
we haven't added the [state] if it is a stateful function and haven't
wrapped the type in a [result]). Also, this output type is only about
the forward function (it doesn't contain the type of the closures we
return for the backward functions, in case we merge the forward and
backward functions).
*)
back_sg : back_sg_info RegionGroupId.Map.t;
(** Information about the backward functions *)
fwd_info : fun_sig_info;
(** Additional information about the forward function *)
}
[@@deriving show]
(** A function signature.
We have the following cases:
- forward function:
[in_ty0 -> ... -> in_tyn -> out_ty] (* pure function *)
[in_ty0 -> ... -> in_tyn -> result out_ty] (* error-monad *)
[in_ty0 -> ... -> in_tyn -> state -> result (state & out_ty)] (* state-error *)
- backward function:
[in_ty0 -> ... -> in_tyn -> back_in0 -> ... back_inm -> (back_out0 & ... & back_outp)] (* pure function *)
[in_ty0 -> ... -> in_tyn -> back_in0 -> ... back_inm ->
result (back_out0 & ... & back_outp)] (* error-monad *)
[in_ty0 -> ... -> in_tyn -> state -> back_in0 -> ... back_inm -> state ->
result (state & (back_out0 & ... & back_outp))] (* state-error *)
Note that a stateful backward function may take two states as inputs: the
state received by the associated forward function, and the state at which
the backward is called. This leads to code of the following shape:
{[
(st1, y) <-- f_fwd x st0; // st0 is the state upon calling f_fwd
... // the state may be updated
(st3, x') <-- f_back x st0 y' st2; // st2 is the state upon calling f_back
]}
The function's type should be given by [mk_arrows sig.inputs sig.output].
We provide additional meta-information with {!fun_sig.info}:
- we divide between forward inputs and backward inputs (i.e., inputs specific
to the forward functions, and additional inputs necessary if the signature is
for a backward function)
- we have booleans to give us the fact that the function takes a state as
input, or can fail, etc. without having to inspect the signature
- etc.
*)
type fun_sig = {
generics : generic_params;
(** TODO: we should analyse the signature to make the type parameters implicit whenever possible *)
llbc_generics : Types.generic_params;
(** We use the LLBC generics to generate "pretty" names, for instance
for the variables we introduce for the trait clauses: we derive
those names from the types, and when doing so it is more meaningful
to derive them from the original LLBC types from before the
simplification of types like boxes and references. *)
preds : predicates;
inputs : ty list;
(** The types of the inputs.
Note that those input types take into account the [fuel] parameter,
if the function uses fuel for termination, and the [state] parameter,
if the function is stateful.
For instance, if we have the following Rust function:
{[
fn f(x : int);
]}
If we translate it to a stateful function which uses fuel we get:
{[
val f : nat -> int -> state -> result (state * unit);
]}
In particular, the list of input types is: [[nat; int; state]].
*)
output : ty;
(** The output type.
Note that this type contains the "effect" of the function (i.e., it is
not just a purification of the Rust return type). For instance, it will
be a tuple with a [state] if the function is stateful, and will be wrapped
in a [result] if the function can fail.
*)
fwd_info : fun_sig_info;
(** Additional information about the forward function. *)
back_effect_info : fun_effect_info RegionGroupId.Map.t;
}
[@@deriving show]
(** An instantiated function signature. See {!fun_sig} *)
type inst_fun_sig = { inputs : ty list; output : ty } [@@deriving show]
type fun_body = {
inputs : var list;
inputs_lvs : typed_pattern list;
(** The inputs seen as patterns. Allows to make transformations, for example
to replace unused variables by [_] *)
body : texpression;
}
[@@deriving show]
type fun_kind = A.fun_kind [@@deriving show]
type fun_decl = {
def_id : FunDeclId.id;
is_local : bool;
meta : meta;
kind : fun_kind;
num_loops : int;
(** The number of loops in the parent forward function (basically the number
of loops appearing in the original Rust functions, unless some loops are
duplicated because we don't join the control-flow after a branching)
*)
loop_id : LoopId.id option;
(** [Some] if this definition was generated for a loop *)
back_id : RegionGroupId.id option;
llbc_name : llbc_name; (** The original LLBC name. *)
name : string;
(** We use the name only for printing purposes (for debugging):
the name used at extraction time will be derived from the
llbc_name.
*)
signature : fun_sig;
is_global_decl_body : bool;
body : fun_body option;
}
[@@deriving show]
type trait_decl = {
def_id : trait_decl_id;
is_local : bool;
llbc_name : llbc_name;
name : string;
meta : meta;
generics : generic_params;
llbc_generics : Types.generic_params;
(** We use the LLBC generics to generate "pretty" names, for instance
for the variables we introduce for the trait clauses: we derive
those names from the types, and when doing so it is more meaningful
to derive them from the original LLBC types from before the
simplification of types like boxes and references. *)
preds : predicates;
parent_clauses : trait_clause list;
llbc_parent_clauses : Types.trait_clause list;
consts : (trait_item_name * (ty * global_decl_id option)) list;
types : (trait_item_name * (trait_clause list * ty option)) list;
required_methods : (trait_item_name * fun_decl_id) list;
provided_methods : (trait_item_name * fun_decl_id option) list;
}
[@@deriving show]
type trait_impl = {
def_id : trait_impl_id;
is_local : bool;
llbc_name : llbc_name;
name : string;
meta : meta;
impl_trait : trait_decl_ref;
llbc_impl_trait : Types.trait_decl_ref;
(** Same remark as for {!field:llbc_generics}. *)
generics : generic_params;
llbc_generics : Types.generic_params;
(** We use the LLBC generics to generate "pretty" names, for instance
for the variables we introduce for the trait clauses: we derive
those names from the types, and when doing so it is more meaningful
to derive them from the original LLBC types from before the
simplification of types like boxes and references. *)
preds : predicates;
parent_trait_refs : trait_ref list;
consts : (trait_item_name * (ty * global_decl_id)) list;
types : (trait_item_name * (trait_ref list * ty)) list;
required_methods : (trait_item_name * fun_decl_id) list;
provided_methods : (trait_item_name * fun_decl_id) list;
}
[@@deriving show]
|