1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
module T = Types
module V = Values
module E = Expressions
module C = Contexts
module Subst = Substitute
module A = LlbcAst
module L = Logging
open Utils
open TypesUtils
module PA = Print.EvalCtxLlbcAst
(** Some utilities *)
let eval_ctx_to_string = Print.Contexts.eval_ctx_to_string
let ety_to_string = PA.ety_to_string
let rty_to_string = PA.rty_to_string
let symbolic_value_to_string = PA.symbolic_value_to_string
let borrow_content_to_string = PA.borrow_content_to_string
let loan_content_to_string = PA.loan_content_to_string
let aborrow_content_to_string = PA.aborrow_content_to_string
let aloan_content_to_string = PA.aloan_content_to_string
let aproj_to_string = PA.aproj_to_string
let typed_value_to_string = PA.typed_value_to_string
let typed_avalue_to_string = PA.typed_avalue_to_string
let place_to_string = PA.place_to_string
let operand_to_string = PA.operand_to_string
let statement_to_string ctx = PA.statement_to_string ctx "" " "
let statement_to_string_with_tab ctx = PA.statement_to_string ctx " " " "
let same_symbolic_id (sv0 : V.symbolic_value) (sv1 : V.symbolic_value) : bool =
sv0.V.sv_id = sv1.V.sv_id
let mk_var (index : E.VarId.id) (name : string option) (var_ty : T.ety) : A.var
=
{ A.index; name; var_ty }
(** Small helper - TODO: move *)
let mk_place_from_var_id (var_id : E.VarId.id) : E.place =
{ var_id; projection = [] }
(** Create a fresh symbolic value *)
let mk_fresh_symbolic_value (sv_kind : V.sv_kind) (ty : T.rty) :
V.symbolic_value =
let sv_id = C.fresh_symbolic_value_id () in
let svalue = { V.sv_kind; V.sv_id; V.sv_ty = ty } in
svalue
(** Create a fresh symbolic value *)
let mk_fresh_symbolic_typed_value (sv_kind : V.sv_kind) (rty : T.rty) :
V.typed_value =
let ty = Subst.erase_regions rty in
(* Generate the fresh a symbolic value *)
let value = mk_fresh_symbolic_value sv_kind rty in
let value = V.Symbolic value in
{ V.value; V.ty }
(** Create a typed value from a symbolic value. *)
let mk_typed_value_from_symbolic_value (svalue : V.symbolic_value) :
V.typed_value =
let av = V.Symbolic svalue in
let av : V.typed_value =
{ V.value = av; V.ty = Subst.erase_regions svalue.V.sv_ty }
in
av
(** Create a loans projector value from a symbolic value.
Checks if the projector will actually project some regions. If not,
returns {!V.AIgnored} ([_]).
TODO: update to handle 'static
*)
let mk_aproj_loans_value_from_symbolic_value (regions : T.RegionId.Set.t)
(svalue : V.symbolic_value) : V.typed_avalue =
if ty_has_regions_in_set regions svalue.sv_ty then
let av = V.ASymbolic (V.AProjLoans (svalue, [])) in
let av : V.typed_avalue = { V.value = av; V.ty = svalue.V.sv_ty } in
av
else { V.value = V.AIgnored; ty = svalue.V.sv_ty }
(** Create a borrows projector from a symbolic value *)
let mk_aproj_borrows_from_symbolic_value (proj_regions : T.RegionId.Set.t)
(svalue : V.symbolic_value) (proj_ty : T.rty) : V.aproj =
if ty_has_regions_in_set proj_regions proj_ty then
V.AProjBorrows (svalue, proj_ty)
else V.AIgnoredProjBorrows
(** TODO: move *)
let borrow_is_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrow) : bool
=
match asb with
| V.AsbBorrow bid' -> bid' = bid
| V.AsbProjReborrows _ -> false
(** TODO: move *)
let borrow_in_asb (bid : V.BorrowId.id) (asb : V.abstract_shared_borrows) : bool
=
List.exists (borrow_is_asb bid) asb
(** TODO: move *)
let remove_borrow_from_asb (bid : V.BorrowId.id)
(asb : V.abstract_shared_borrows) : V.abstract_shared_borrows =
let removed = ref 0 in
let asb =
List.filter
(fun asb ->
if not (borrow_is_asb bid asb) then true
else (
removed := !removed + 1;
false))
asb
in
assert (!removed = 1);
asb
(** We sometimes need to return a value whose type may vary depending on
whether we find it in a "concrete" value or an abstraction (ex.: loan
contents when we perform environment lookups by using borrow ids) *)
type ('a, 'b) concrete_or_abs = Concrete of 'a | Abstract of 'b
(** Generic loan content: concrete or abstract *)
type g_loan_content = (V.loan_content, V.aloan_content) concrete_or_abs
(** Generic borrow content: concrete or abstract *)
type g_borrow_content = (V.borrow_content, V.aborrow_content) concrete_or_abs
type abs_or_var_id = AbsId of V.AbstractionId.id | VarId of E.VarId.id option
(** Utility exception *)
exception FoundBorrowContent of V.borrow_content
(** Utility exception *)
exception FoundLoanContent of V.loan_content
(** Utility exception *)
exception FoundABorrowContent of V.aborrow_content
(** Utility exception *)
exception FoundGBorrowContent of g_borrow_content
(** Utility exception *)
exception FoundGLoanContent of g_loan_content
(** Utility exception *)
exception FoundAProjBorrows of V.symbolic_value * T.rty
let symbolic_value_id_in_ctx (sv_id : V.SymbolicValueId.id) (ctx : C.eval_ctx) :
bool =
let obj =
object
inherit [_] C.iter_eval_ctx as super
method! visit_Symbolic _ sv =
if sv.V.sv_id = sv_id then raise Found else ()
method! visit_aproj env aproj =
(match aproj with
| AProjLoans (sv, _) | AProjBorrows (sv, _) ->
if sv.V.sv_id = sv_id then raise Found else ()
| AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> ());
super#visit_aproj env aproj
method! visit_abstract_shared_borrows _ asb =
let visit (asb : V.abstract_shared_borrow) : unit =
match asb with
| V.AsbBorrow _ -> ()
| V.AsbProjReborrows (sv, _) ->
if sv.V.sv_id = sv_id then raise Found else ()
in
List.iter visit asb
end
in
(* We use exceptions *)
try
obj#visit_eval_ctx () ctx;
false
with Found -> true
(** Check that a symbolic value doesn't contain ended regions.
Note that we don't check that the set of ended regions is empty: we
check that the set of ended regions doesn't intersect the set of
regions used in the type (this is more general).
*)
let symbolic_value_has_ended_regions (ended_regions : T.RegionId.Set.t)
(s : V.symbolic_value) : bool =
let regions = rty_regions s.V.sv_ty in
not (T.RegionId.Set.disjoint regions ended_regions)
(** Check if a {!type:V.value} contains [⊥].
Note that this function is very general: it also checks wether
symbolic values contain already ended regions.
*)
let bottom_in_value (ended_regions : T.RegionId.Set.t) (v : V.typed_value) :
bool =
let obj =
object
inherit [_] V.iter_typed_value
method! visit_Bottom _ = raise Found
method! visit_symbolic_value _ s =
if symbolic_value_has_ended_regions ended_regions s then raise Found
else ()
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
let value_has_ret_symbolic_value_with_borrow_under_mut (ctx : C.eval_ctx)
(v : V.typed_value) : bool =
let obj =
object
inherit [_] V.iter_typed_value
method! visit_symbolic_value _ s =
match s.sv_kind with
| V.FunCallRet ->
if ty_has_borrow_under_mut ctx.type_context.type_infos s.sv_ty then
raise Found
else ()
| V.SynthInput | V.SynthInputGivenBack | V.FunCallGivenBack
| V.SynthRetGivenBack ->
()
| V.Global -> ()
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
(** Return the place used in an rvalue, if that makes sense.
This is used to compute meta-data, to find pretty names.
*)
let rvalue_get_place (rv : E.rvalue) : E.place option =
match rv with
| Use (Copy p | Move p) -> Some p
| Use (Constant _) -> None
| Ref (p, _) -> Some p
| UnaryOp _ | BinaryOp _ | Discriminant _ | Aggregate _ -> None
|