1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
open Types
open Values
open Expressions
open Contexts
open LlbcAst
open Utils
open TypesUtils
open Cps
(* TODO: we should probably rename the file to ContextsUtils *)
(** The local logger *)
let log = Logging.interpreter_log
(** Some utilities *)
(** Auxiliary function - call a function which requires a continuation,
and return the let context given to the continuation *)
let get_cf_ctx_no_synth (f : cm_fun) (ctx : eval_ctx) : eval_ctx =
let nctx = ref None in
let cf ctx =
assert (!nctx = None);
nctx := Some ctx;
None
in
let _ = f cf ctx in
Option.get !nctx
let eval_ctx_to_string_no_filter = Print.Contexts.eval_ctx_to_string_no_filter
let eval_ctx_to_string = Print.Contexts.eval_ctx_to_string
let name_to_string = Print.EvalCtx.name_to_string
let symbolic_value_to_string = Print.EvalCtx.symbolic_value_to_string
let borrow_content_to_string = Print.EvalCtx.borrow_content_to_string
let loan_content_to_string = Print.EvalCtx.loan_content_to_string
let aborrow_content_to_string = Print.EvalCtx.aborrow_content_to_string
let aloan_content_to_string = Print.EvalCtx.aloan_content_to_string
let aproj_to_string = Print.EvalCtx.aproj_to_string
let typed_value_to_string = Print.EvalCtx.typed_value_to_string
let typed_avalue_to_string = Print.EvalCtx.typed_avalue_to_string
let place_to_string = Print.EvalCtx.place_to_string
let operand_to_string = Print.EvalCtx.operand_to_string
let fun_sig_to_string = Print.EvalCtx.fun_sig_to_string
let inst_fun_sig_to_string = Print.EvalCtx.inst_fun_sig_to_string
let ty_to_string = Print.EvalCtx.ty_to_string
let generic_args_to_string = Print.EvalCtx.generic_args_to_string
let fun_id_or_trait_method_ref_to_string =
Print.EvalCtx.fun_id_or_trait_method_ref_to_string
let fun_decl_to_string = Print.EvalCtx.fun_decl_to_string
let call_to_string = Print.EvalCtx.call_to_string
let trait_impl_to_string ctx =
Print.EvalCtx.trait_impl_to_string
{ ctx with type_vars = []; const_generic_vars = [] }
let statement_to_string ctx = Print.EvalCtx.statement_to_string ctx "" " "
let statement_to_string_with_tab ctx =
Print.EvalCtx.statement_to_string ctx " " " "
let env_elem_to_string ctx = Print.EvalCtx.env_elem_to_string ctx "" " "
let env_to_string ctx env = eval_ctx_to_string { ctx with env }
let abs_to_string ctx = Print.EvalCtx.abs_to_string ctx "" " "
let same_symbolic_id (sv0 : symbolic_value) (sv1 : symbolic_value) : bool =
sv0.sv_id = sv1.sv_id
let mk_var (index : VarId.id) (name : string option) (var_ty : ty) : var =
{ index; name; var_ty }
(** Small helper - TODO: move *)
let mk_place_from_var_id (var_id : VarId.id) : place =
{ var_id; projection = [] }
(** Create a fresh symbolic value *)
let mk_fresh_symbolic_value (ty : ty) : symbolic_value =
(* Sanity check *)
assert (ty_is_rty ty);
let sv_id = fresh_symbolic_value_id () in
let svalue = { sv_id; sv_ty = ty } in
svalue
let mk_fresh_symbolic_value_from_no_regions_ty (ty : ty) : symbolic_value =
assert (ty_no_regions ty);
mk_fresh_symbolic_value ty
(** Create a fresh symbolic value *)
let mk_fresh_symbolic_typed_value (rty : ty) : typed_value =
assert (ty_is_rty rty);
let ty = Substitute.erase_regions rty in
(* Generate the fresh a symbolic value *)
let value = mk_fresh_symbolic_value rty in
let value = VSymbolic value in
{ value; ty }
let mk_fresh_symbolic_typed_value_from_no_regions_ty (ty : ty) : typed_value =
assert (ty_no_regions ty);
mk_fresh_symbolic_typed_value ty
(** Create a typed value from a symbolic value. *)
let mk_typed_value_from_symbolic_value (svalue : symbolic_value) : typed_value =
let av = VSymbolic svalue in
let av : typed_value =
{ value = av; ty = Substitute.erase_regions svalue.sv_ty }
in
av
(** Create a loans projector value from a symbolic value.
Checks if the projector will actually project some regions. If not,
returns {!Values.AIgnored} ([_]).
TODO: update to handle 'static
*)
let mk_aproj_loans_value_from_symbolic_value (regions : RegionId.Set.t)
(svalue : symbolic_value) : typed_avalue =
if ty_has_regions_in_set regions svalue.sv_ty then
let av = ASymbolic (AProjLoans (svalue, [])) in
let av : typed_avalue = { value = av; ty = svalue.sv_ty } in
av
else { value = AIgnored; ty = svalue.sv_ty }
(** Create a borrows projector from a symbolic value *)
let mk_aproj_borrows_from_symbolic_value (proj_regions : RegionId.Set.t)
(svalue : symbolic_value) (proj_ty : ty) : aproj =
assert (ty_is_rty proj_ty);
if ty_has_regions_in_set proj_regions proj_ty then
AProjBorrows (svalue, proj_ty)
else AIgnoredProjBorrows
(** TODO: move *)
let borrow_is_asb (bid : BorrowId.id) (asb : abstract_shared_borrow) : bool =
match asb with AsbBorrow bid' -> bid' = bid | AsbProjReborrows _ -> false
(** TODO: move *)
let borrow_in_asb (bid : BorrowId.id) (asb : abstract_shared_borrows) : bool =
List.exists (borrow_is_asb bid) asb
(** TODO: move *)
let remove_borrow_from_asb (bid : BorrowId.id) (asb : abstract_shared_borrows) :
abstract_shared_borrows =
let removed = ref 0 in
let asb =
List.filter
(fun asb ->
if not (borrow_is_asb bid asb) then true
else (
removed := !removed + 1;
false))
asb
in
assert (!removed = 1);
asb
(** We sometimes need to return a value whose type may vary depending on
whether we find it in a "concrete" value or an abstraction (ex.: loan
contents when we perform environment lookups by using borrow ids)
TODO: change the name "abstract"
*)
type ('a, 'b) concrete_or_abs = Concrete of 'a | Abstract of 'b
[@@deriving show]
(** Generic loan content: concrete or abstract *)
type g_loan_content = (loan_content, aloan_content) concrete_or_abs
[@@deriving show]
(** Generic borrow content: concrete or abstract *)
type g_borrow_content = (borrow_content, aborrow_content) concrete_or_abs
[@@deriving show]
type abs_or_var_id =
| AbsId of AbstractionId.id
| VarId of VarId.id
| DummyVarId of DummyVarId.id
(** Utility exception *)
exception FoundBorrowContent of borrow_content
(** Utility exception *)
exception FoundLoanContent of loan_content
(** Utility exception *)
exception FoundABorrowContent of aborrow_content
(** Utility exception *)
exception FoundGBorrowContent of g_borrow_content
(** Utility exception *)
exception FoundGLoanContent of g_loan_content
(** Utility exception *)
exception FoundAProjBorrows of symbolic_value * ty
let symbolic_value_id_in_ctx (sv_id : SymbolicValueId.id) (ctx : eval_ctx) :
bool =
let obj =
object
inherit [_] iter_eval_ctx as super
method! visit_VSymbolic _ sv =
if sv.sv_id = sv_id then raise Found else ()
method! visit_aproj env aproj =
(match aproj with
| AProjLoans (sv, _) | AProjBorrows (sv, _) ->
if sv.sv_id = sv_id then raise Found else ()
| AEndedProjLoans _ | AEndedProjBorrows _ | AIgnoredProjBorrows -> ());
super#visit_aproj env aproj
method! visit_abstract_shared_borrows _ asb =
let visit (asb : abstract_shared_borrow) : unit =
match asb with
| AsbBorrow _ -> ()
| AsbProjReborrows (sv, _) ->
if sv.sv_id = sv_id then raise Found else ()
in
List.iter visit asb
end
in
(* We use exceptions *)
try
obj#visit_eval_ctx () ctx;
false
with Found -> true
(** Check that a symbolic value doesn't contain ended regions.
Note that we don't check that the set of ended regions is empty: we
check that the set of ended regions doesn't intersect the set of
regions used in the type (this is more general).
*)
let symbolic_value_has_ended_regions (ended_regions : RegionId.Set.t)
(s : symbolic_value) : bool =
let regions = ty_regions s.sv_ty in
not (RegionId.Set.disjoint regions ended_regions)
let bottom_in_value_visitor (ended_regions : RegionId.Set.t) =
object
inherit [_] iter_typed_value
method! visit_VBottom _ = raise Found
method! visit_symbolic_value _ s =
if symbolic_value_has_ended_regions ended_regions s then raise Found
else ()
end
(** Check if a {!type:Values.value} contains [⊥].
Note that this function is very general: it also checks wether
symbolic values contain already ended regions.
*)
let bottom_in_value (ended_regions : RegionId.Set.t) (v : typed_value) : bool =
let obj = bottom_in_value_visitor ended_regions in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
let bottom_in_adt_value (ended_regions : RegionId.Set.t) (v : adt_value) : bool
=
let obj = bottom_in_value_visitor ended_regions in
(* We use exceptions *)
try
obj#visit_adt_value () v;
false
with Found -> true
let value_has_ret_symbolic_value_with_borrow_under_mut (ctx : eval_ctx)
(v : typed_value) : bool =
let obj =
object
inherit [_] iter_typed_value
method! visit_symbolic_value _ s =
if ty_has_borrow_under_mut ctx.type_ctx.type_infos s.sv_ty then
raise Found
else ()
end
in
(* We use exceptions *)
try
obj#visit_typed_value () v;
false
with Found -> true
(** Return the place used in an rvalue, if that makes sense.
This is used to compute meta-data, to find pretty names.
*)
let rvalue_get_place (rv : rvalue) : place option =
match rv with
| Use (Copy p | Move p) -> Some p
| Use (Constant _) -> None
| RvRef (p, _) -> Some p
| UnaryOp _ | BinaryOp _ | Global _ | Discriminant _ | Aggregate _ -> None
(** See {!ValuesUtils.symbolic_value_has_borrows} *)
let symbolic_value_has_borrows (ctx : eval_ctx) (sv : symbolic_value) : bool =
ValuesUtils.symbolic_value_has_borrows ctx.type_ctx.type_infos sv
(** See {!ValuesUtils.value_has_borrows}. *)
let value_has_borrows (ctx : eval_ctx) (v : value) : bool =
ValuesUtils.value_has_borrows ctx.type_ctx.type_infos v
(** See {!ValuesUtils.value_has_loans_or_borrows}. *)
let value_has_loans_or_borrows (ctx : eval_ctx) (v : value) : bool =
ValuesUtils.value_has_loans_or_borrows ctx.type_ctx.type_infos v
(** See {!ValuesUtils.value_has_loans}. *)
let value_has_loans (v : value) : bool = ValuesUtils.value_has_loans v
(** See {!compute_typed_value_ids}, {!compute_context_ids}, etc. *)
type ids_sets = {
aids : AbstractionId.Set.t;
blids : BorrowId.Set.t; (** All the borrow/loan ids *)
borrow_ids : BorrowId.Set.t; (** Only the borrow ids *)
loan_ids : BorrowId.Set.t; (** Only the loan ids *)
dids : DummyVarId.Set.t;
rids : RegionId.Set.t;
sids : SymbolicValueId.Set.t;
}
[@@deriving show]
(** See {!compute_typed_value_ids}, {!compute_context_ids}, etc.
TODO: there misses information.
*)
type ids_to_values = { sids_to_values : symbolic_value SymbolicValueId.Map.t }
let compute_ids () =
let blids = ref BorrowId.Set.empty in
let borrow_ids = ref BorrowId.Set.empty in
let loan_ids = ref BorrowId.Set.empty in
let aids = ref AbstractionId.Set.empty in
let dids = ref DummyVarId.Set.empty in
let rids = ref RegionId.Set.empty in
let sids = ref SymbolicValueId.Set.empty in
let sids_to_values = ref SymbolicValueId.Map.empty in
let get_ids () =
{
aids = !aids;
blids = !blids;
borrow_ids = !borrow_ids;
loan_ids = !loan_ids;
dids = !dids;
rids = !rids;
sids = !sids;
}
in
let get_ids_to_values () = { sids_to_values = !sids_to_values } in
let obj =
object
inherit [_] iter_eval_ctx as super
method! visit_dummy_var_id _ did = dids := DummyVarId.Set.add did !dids
method! visit_borrow_id _ id =
blids := BorrowId.Set.add id !blids;
borrow_ids := BorrowId.Set.add id !borrow_ids
method! visit_loan_id _ id =
blids := BorrowId.Set.add id !blids;
loan_ids := BorrowId.Set.add id !loan_ids
method! visit_abstraction_id _ id = aids := AbstractionId.Set.add id !aids
method! visit_region_id _ id = rids := RegionId.Set.add id !rids
method! visit_symbolic_value env sv =
sids := SymbolicValueId.Set.add sv.sv_id !sids;
sids_to_values := SymbolicValueId.Map.add sv.sv_id sv !sids_to_values;
super#visit_symbolic_value env sv
method! visit_symbolic_value_id _ id =
(* TODO: can we get there without going through [visit_symbolic_value] first? *)
sids := SymbolicValueId.Set.add id !sids
end
in
(obj, get_ids, get_ids_to_values)
(** Compute the sets of ids found in a list of typed values. *)
let compute_typed_values_ids (xl : typed_value list) : ids_sets * ids_to_values
=
let compute, get_ids, get_ids_to_values = compute_ids () in
List.iter (compute#visit_typed_value ()) xl;
(get_ids (), get_ids_to_values ())
(** Compute the sets of ids found in a typed value. *)
let compute_typed_value_ids (x : typed_value) : ids_sets * ids_to_values =
compute_typed_values_ids [ x ]
(** Compute the sets of ids found in a list of abstractions. *)
let compute_absl_ids (xl : abs list) : ids_sets * ids_to_values =
let compute, get_ids, get_ids_to_values = compute_ids () in
List.iter (compute#visit_abs ()) xl;
(get_ids (), get_ids_to_values ())
(** Compute the sets of ids found in an abstraction. *)
let compute_abs_ids (x : abs) : ids_sets * ids_to_values =
compute_absl_ids [ x ]
(** Compute the sets of ids found in an environment. *)
let compute_env_ids (x : env) : ids_sets * ids_to_values =
let compute, get_ids, get_ids_to_values = compute_ids () in
compute#visit_env () x;
(get_ids (), get_ids_to_values ())
(** Compute the sets of ids found in an environment element. *)
let compute_env_elem_ids (x : env_elem) : ids_sets * ids_to_values =
compute_env_ids [ x ]
(** Compute the sets of ids found in a list of contexts. *)
let compute_ctxs_ids (ctxl : eval_ctx list) : ids_sets * ids_to_values =
let compute, get_ids, get_ids_to_values = compute_ids () in
List.iter (compute#visit_eval_ctx ()) ctxl;
(get_ids (), get_ids_to_values ())
(** Compute the sets of ids found in a context. *)
let compute_ctx_ids (ctx : eval_ctx) : ids_sets * ids_to_values =
compute_ctxs_ids [ ctx ]
(** **WARNING**: this function doesn't compute the normalized types
(for the trait type aliases). This should be computed afterwards.
*)
let initialize_eval_ctx (ctx : decls_ctx)
(region_groups : RegionGroupId.id list) (type_vars : type_var list)
(const_generic_vars : const_generic_var list) : eval_ctx =
reset_global_counters ();
let const_generic_vars_map =
ConstGenericVarId.Map.of_list
(List.map
(fun (cg : const_generic_var) ->
let ty = TLiteral cg.ty in
let cv = mk_fresh_symbolic_typed_value ty in
(cg.index, cv))
const_generic_vars)
in
{
type_ctx = ctx.type_ctx;
fun_ctx = ctx.fun_ctx;
global_ctx = ctx.global_ctx;
trait_decls_ctx = ctx.trait_decls_ctx;
trait_impls_ctx = ctx.trait_impls_ctx;
region_groups;
type_vars;
const_generic_vars;
const_generic_vars_map;
norm_trait_types = TraitTypeRefMap.empty (* Empty for now *);
env = [ EFrame ];
ended_regions = RegionId.Set.empty;
}
(** Instantiate a function signature, introducing **fresh** abstraction ids and
region ids. This is mostly used in preparation of function calls (when
evaluating in symbolic mode).
*)
let instantiate_fun_sig (ctx : eval_ctx) (generics : generic_args)
(tr_self : trait_instance_id) (sg : fun_sig)
(regions_hierarchy : region_var_groups) : inst_fun_sig =
log#ldebug
(lazy
("instantiate_fun_sig:" ^ "\n- generics: "
^ Print.EvalCtx.generic_args_to_string ctx generics
^ "\n- tr_self: "
^ Print.EvalCtx.trait_instance_id_to_string ctx tr_self
^ "\n- sg: " ^ fun_sig_to_string ctx sg));
(* Erase the regions in the generics we use for the instantiation *)
let generics = Substitute.generic_args_erase_regions generics in
let tr_self = Substitute.trait_instance_id_erase_regions tr_self in
(* Generate fresh abstraction ids and create a substitution from region
* group ids to abstraction ids *)
let rg_abs_ids_bindings =
List.map
(fun rg ->
let abs_id = fresh_abstraction_id () in
(rg.id, abs_id))
regions_hierarchy
in
let asubst_map : AbstractionId.id RegionGroupId.Map.t =
List.fold_left
(fun mp (rg_id, abs_id) -> RegionGroupId.Map.add rg_id abs_id mp)
RegionGroupId.Map.empty rg_abs_ids_bindings
in
let asubst (rg_id : RegionGroupId.id) : AbstractionId.id =
RegionGroupId.Map.find rg_id asubst_map
in
(* Generate fresh regions and their substitutions *)
let _, rsubst, _ =
Substitute.fresh_regions_with_substs_from_vars ~fail_if_not_found:true
sg.generics.regions
in
let rsubst r = Option.get (rsubst r) in
(* Generate the type substitution
Note that for now we don't support instantiating the type parameters with
types containing regions. *)
assert (List.for_all TypesUtils.ty_no_regions generics.types);
assert (TypesUtils.trait_instance_id_no_regions tr_self);
let tsubst =
Substitute.make_type_subst_from_vars sg.generics.types generics.types
in
let cgsubst =
Substitute.make_const_generic_subst_from_vars sg.generics.const_generics
generics.const_generics
in
let tr_subst =
Substitute.make_trait_subst_from_clauses sg.generics.trait_clauses
generics.trait_refs
in
(* Substitute the signature *)
let inst_sig =
AssociatedTypes.ctx_subst_norm_signature ctx asubst rsubst tsubst cgsubst
tr_subst tr_self sg regions_hierarchy
in
(* Return *)
inst_sig
|