summaryrefslogtreecommitdiff
path: root/compiler/InterpreterStatements.ml
blob: 5f74d1a785ed250d883656d72847bea80e5a87e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
module T = Types
module PV = PrimitiveValues
module V = Values
module E = Expressions
module C = Contexts
module Subst = Substitute
module A = LlbcAst
module L = Logging
open TypesUtils
open ValuesUtils
module Inv = Invariants
module S = SynthesizeSymbolic
open Utils
open Cps
open InterpreterUtils
open InterpreterProjectors
open InterpreterExpansion
open InterpreterPaths
open InterpreterExpressions

(** The local logger *)
let log = L.statements_log

(** Drop a value at a given place - TODO: factorize this with [assign_to_place] *)
let drop_value (config : C.config) (p : E.place) : cm_fun =
 fun cf ctx ->
  log#ldebug
    (lazy
      ("drop_value: place: " ^ place_to_string ctx p ^ "\n- Initial context:\n"
     ^ eval_ctx_to_string ctx));
  (* Note that we use [Write], not [Move]: we allow to drop values *below* borrows *)
  let access = Write in
  (* First make sure we can access the place, by ending loans or expanding
   * symbolic values along the path, for instance *)
  let cc = update_ctx_along_read_place config access p in
  (* Prepare the place (by ending the outer loans *at* the place). *)
  let cc = comp cc (prepare_lplace config p) in
  (* Replace the value with {!Bottom} *)
  let replace cf (v : V.typed_value) ctx =
    (* Move the value at destination (that we will overwrite) to a dummy variable
     * to preserve the borrows it may contain *)
    let mv = InterpreterPaths.read_place access p ctx in
    let dummy_id = C.fresh_dummy_var_id () in
    let ctx = C.ctx_push_dummy_var ctx dummy_id mv in
    (* Update the destination to ⊥ *)
    let nv = { v with value = V.Bottom } in
    let ctx = write_place access p nv ctx in
    log#ldebug
      (lazy
        ("drop_value: place: " ^ place_to_string ctx p ^ "\n- Final context:\n"
       ^ eval_ctx_to_string ctx));
    cf ctx
  in
  (* Compose and apply *)
  comp cc replace cf ctx

(** Push a dummy variable to the environment *)
let push_dummy_var (vid : C.DummyVarId.id) (v : V.typed_value) : cm_fun =
 fun cf ctx ->
  let ctx = C.ctx_push_dummy_var ctx vid v in
  cf ctx

(** Remove a dummy variable from the environment *)
let remove_dummy_var (vid : C.DummyVarId.id) (cf : V.typed_value -> m_fun) :
    m_fun =
 fun ctx ->
  let ctx, v = C.ctx_remove_dummy_var ctx vid in
  cf v ctx

(** Push an uninitialized variable to the environment *)
let push_uninitialized_var (var : A.var) : cm_fun =
 fun cf ctx ->
  let ctx = C.ctx_push_uninitialized_var ctx var in
  cf ctx

(** Push a list of uninitialized variables to the environment *)
let push_uninitialized_vars (vars : A.var list) : cm_fun =
 fun cf ctx ->
  let ctx = C.ctx_push_uninitialized_vars ctx vars in
  cf ctx

(** Push a variable to the environment *)
let push_var (var : A.var) (v : V.typed_value) : cm_fun =
 fun cf ctx ->
  let ctx = C.ctx_push_var ctx var v in
  cf ctx

(** Push a list of variables to the environment *)
let push_vars (vars : (A.var * V.typed_value) list) : cm_fun =
 fun cf ctx ->
  let ctx = C.ctx_push_vars ctx vars in
  cf ctx

(** Assign a value to a given place.

    Note that this function first pushes the value to assign in a dummy variable,
    then prepares the destination (by ending borrows, etc.) before popping the
    dummy variable and putting in its destination (after having checked that
    preparing the destination didn't introduce ⊥).
 *)
let assign_to_place (config : C.config) (rv : V.typed_value) (p : E.place) :
    cm_fun =
 fun cf ctx ->
  log#ldebug
    (lazy
      ("assign_to_place:" ^ "\n- rv: "
      ^ typed_value_to_string ctx rv
      ^ "\n- p: " ^ place_to_string ctx p ^ "\n- Initial context:\n"
      ^ eval_ctx_to_string ctx));
  (* Push the rvalue to a dummy variable, for bookkeeping *)
  let rvalue_vid = C.fresh_dummy_var_id () in
  let cc = push_dummy_var rvalue_vid rv in
  (* Prepare the destination *)
  let cc = comp cc (prepare_lplace config p) in
  (* Retrieve the rvalue from the dummy variable *)
  let cc = comp cc (fun cf _lv -> remove_dummy_var rvalue_vid cf) in
  (* Update the destination *)
  let move_dest cf (rv : V.typed_value) : m_fun =
   fun ctx ->
    (* Move the value at destination (that we will overwrite) to a dummy variable
     * to preserve the borrows *)
    let mv = InterpreterPaths.read_place Write p ctx in
    let dest_vid = C.fresh_dummy_var_id () in
    let ctx = C.ctx_push_dummy_var ctx dest_vid mv in
    (* Write to the destination *)
    (* Checks - maybe the bookkeeping updated the rvalue and introduced bottoms *)
    assert (not (bottom_in_value ctx.ended_regions rv));
    (* Update the destination *)
    let ctx = write_place Write p rv ctx in
    (* Debug *)
    log#ldebug
      (lazy
        ("assign_to_place:" ^ "\n- rv: "
        ^ typed_value_to_string ctx rv
        ^ "\n- p: " ^ place_to_string ctx p ^ "\n- Final context:\n"
        ^ eval_ctx_to_string ctx));
    (* Continue *)
    cf ctx
  in
  (* Compose and apply *)
  comp cc move_dest cf ctx

(** Evaluate an assertion, when the scrutinee is not symbolic *)
let eval_assertion_concrete (config : C.config) (assertion : A.assertion) :
    st_cm_fun =
 fun cf ctx ->
  (* There won't be any symbolic expansions: fully evaluate the operand *)
  let eval_op = eval_operand config assertion.cond in
  let eval_assert cf (v : V.typed_value) : m_fun =
   fun ctx ->
    match v.value with
    | Primitive (Bool b) ->
        (* Branch *)
        if b = assertion.expected then cf Unit ctx else cf Panic ctx
    | _ ->
        raise
          (Failure ("Expected a boolean, got: " ^ typed_value_to_string ctx v))
  in
  (* Compose and apply *)
  comp eval_op eval_assert cf ctx

(** Evaluates an assertion.
    
    In the case the boolean under scrutinee is symbolic, we synthesize
    a call to [assert ...] then continue in the success branch (and thus
    expand the boolean to [true]).
 *)
let eval_assertion (config : C.config) (assertion : A.assertion) : st_cm_fun =
 fun cf ctx ->
  (* Evaluate the operand *)
  let eval_op = eval_operand config assertion.cond in
  (* Evaluate the assertion *)
  let eval_assert cf (v : V.typed_value) : m_fun =
   fun ctx ->
    assert (v.ty = T.Bool);
    (* We make a choice here: we could completely decouple the concrete and
     * symbolic executions here but choose not to. In the case where we
     * know the concrete value of the boolean we test, we use this value
     * even if we are in symbolic mode. Note that this case should be
     * extremely rare... *)
    match v.value with
    | Primitive (Bool _) ->
        (* Delegate to the concrete evaluation function *)
        eval_assertion_concrete config assertion cf ctx
    | Symbolic sv ->
        assert (config.mode = C.SymbolicMode);
        assert (sv.V.sv_ty = T.Bool);
        (* We continue the execution as if the test had succeeded, and thus
         * perform the symbolic expansion: sv ~~> true.
         * We will of course synthesize an assertion in the generated code
         * (see below). *)
        let ctx =
          apply_symbolic_expansion_non_borrow config sv
            (V.SePrimitive (PV.Bool true)) ctx
        in
        (* Continue *)
        let expr = cf Unit ctx in
        (* Add the synthesized assertion *)
        S.synthesize_assertion v expr
    | _ ->
        raise
          (Failure ("Expected a boolean, got: " ^ typed_value_to_string ctx v))
  in
  (* Compose and apply *)
  comp eval_op eval_assert cf ctx

(** Updates the discriminant of a value at a given place.

    There are two situations:
    - either the discriminant is already the proper one (in which case we
      don't do anything)
    - or it is not the proper one (because the variant is not the proper
      one, or the value is actually {!V.Bottom} - this happens when
      initializing ADT values), in which case we replace the value with
      a variant with all its fields set to {!V.Bottom}.
      For instance, something like: [Cons Bottom Bottom].
 *)
let set_discriminant (config : C.config) (p : E.place)
    (variant_id : T.VariantId.id) : st_cm_fun =
 fun cf ctx ->
  log#ldebug
    (lazy
      ("set_discriminant:" ^ "\n- p: " ^ place_to_string ctx p
     ^ "\n- variant id: "
      ^ T.VariantId.to_string variant_id
      ^ "\n- initial context:\n" ^ eval_ctx_to_string ctx));
  (* Access the value *)
  let access = Write in
  let cc = update_ctx_along_read_place config access p in
  let cc = comp cc (prepare_lplace config p) in
  (* Update the value *)
  let update_value cf (v : V.typed_value) : m_fun =
   fun ctx ->
    match (v.V.ty, v.V.value) with
    | ( T.Adt (((T.AdtId _ | T.Assumed T.Option) as type_id), regions, types),
        V.Adt av ) -> (
        (* There are two situations:
           - either the discriminant is already the proper one (in which case we
             don't do anything)
           - or it is not the proper one, in which case we replace the value with
             a variant with all its fields set to {!Bottom}
        *)
        match av.variant_id with
        | None -> raise (Failure "Found a struct value while expected an enum")
        | Some variant_id' ->
            if variant_id' = variant_id then (* Nothing to do *)
              cf Unit ctx
            else
              (* Replace the value *)
              let bottom_v =
                match type_id with
                | T.AdtId def_id ->
                    compute_expanded_bottom_adt_value
                      ctx.type_context.type_decls def_id (Some variant_id)
                      regions types
                | T.Assumed T.Option ->
                    assert (regions = []);
                    compute_expanded_bottom_option_value variant_id
                      (Collections.List.to_cons_nil types)
                | _ -> raise (Failure "Unreachable")
              in
              assign_to_place config bottom_v p (cf Unit) ctx)
    | ( T.Adt (((T.AdtId _ | T.Assumed T.Option) as type_id), regions, types),
        V.Bottom ) ->
        let bottom_v =
          match type_id with
          | T.AdtId def_id ->
              compute_expanded_bottom_adt_value ctx.type_context.type_decls
                def_id (Some variant_id) regions types
          | T.Assumed T.Option ->
              assert (regions = []);
              compute_expanded_bottom_option_value variant_id
                (Collections.List.to_cons_nil types)
          | _ -> raise (Failure "Unreachable")
        in
        assign_to_place config bottom_v p (cf Unit) ctx
    | _, V.Symbolic _ ->
        assert (config.mode = SymbolicMode);
        (* This is a bit annoying: in theory we should expand the symbolic value
         * then set the discriminant, because in the case the discriminant is
         * exactly the one we set, the fields are left untouched, and in the
         * other cases they are set to Bottom.
         * For now, we forbid setting the discriminant of a symbolic value:
         * setting a discriminant should only be used to initialize a value,
         * or reset an already initialized value, really. *)
        raise (Failure "Unexpected value")
    | _, (V.Adt _ | V.Bottom) -> raise (Failure "Inconsistent state")
    | _, (V.Primitive _ | V.Borrow _ | V.Loan _) ->
        raise (Failure "Unexpected value")
  in
  (* Compose and apply *)
  comp cc update_value cf ctx

(** Push a frame delimiter in the context's environment *)
let ctx_push_frame (ctx : C.eval_ctx) : C.eval_ctx =
  { ctx with env = Frame :: ctx.env }

(** Push a frame delimiter in the context's environment *)
let push_frame : cm_fun = fun cf ctx -> cf (ctx_push_frame ctx)

(** Small helper: compute the type of the return value for a specific
    instantiation of a non-local function.
 *)
let get_non_local_function_return_type (fid : A.assumed_fun_id)
    (region_params : T.erased_region list) (type_params : T.ety list) : T.ety =
  (* [Box::free] has a special treatment *)
  match (fid, region_params, type_params) with
  | A.BoxFree, [], [ _ ] -> mk_unit_ty
  | _ ->
      (* Retrieve the function's signature *)
      let sg = Assumed.get_assumed_sig fid in
      (* Instantiate the return type  *)
      let tsubst =
        Subst.make_type_subst
          (List.map (fun v -> v.T.index) sg.type_params)
          type_params
      in
      Subst.erase_regions_substitute_types tsubst sg.output

let move_return_value (config : C.config) (cf : V.typed_value -> m_fun) : m_fun
    =
 fun ctx ->
  let ret_vid = E.VarId.zero in
  let cc = eval_operand config (E.Move (mk_place_from_var_id ret_vid)) in
  cc cf ctx

let pop_frame (config : C.config) (cf : V.typed_value -> m_fun) : m_fun =
 fun ctx ->
  (* Debug *)
  log#ldebug (lazy ("pop_frame:\n" ^ eval_ctx_to_string ctx));

  (* List the local variables, but the return variable *)
  let ret_vid = E.VarId.zero in
  let rec list_locals env =
    match env with
    | [] -> raise (Failure "Inconsistent environment")
    | C.Abs _ :: env -> list_locals env
    | C.Var (DummyBinder _, _) :: env -> list_locals env
    | C.Var (VarBinder var, _) :: env ->
        let locals = list_locals env in
        if var.index <> ret_vid then var.index :: locals else locals
    | C.Frame :: _ -> []
  in
  let locals : E.VarId.id list = list_locals ctx.env in
  (* Debug *)
  log#ldebug
    (lazy
      ("pop_frame: locals in which to drop the outer loans: ["
      ^ String.concat "," (List.map E.VarId.to_string locals)
      ^ "]"));

  (* Move the return value out of the return variable *)
  let cc = move_return_value config in
  (* Sanity check *)
  let cc =
    comp_check_value cc (fun ret_value ctx ->
        assert (not (bottom_in_value ctx.ended_regions ret_value)))
  in

  (* Drop the outer *loans* we find in the local variables *)
  let cf_drop_loans_in_locals cf (ret_value : V.typed_value) : m_fun =
    (* Drop the loans *)
    let locals = List.rev locals in
    let cf_drop =
      List.fold_left
        (fun cf lid ->
          drop_outer_loans_at_lplace config (mk_place_from_var_id lid) cf)
        (cf ret_value) locals
    in
    (* Apply *)
    cf_drop
  in
  let cc = comp cc cf_drop_loans_in_locals in
  (* Debug *)
  let cc =
    comp_check_value cc (fun _ ctx ->
        log#ldebug
          (lazy
            ("pop_frame: after dropping outer loans in local variables:\n"
           ^ eval_ctx_to_string ctx)))
  in

  (* Pop the frame - we remove the [Frame] delimiter, and reintroduce all
   * the local variables (which may still contain borrow permissions - but
   * no outer loans) as dummy variables in the caller frame *)
  let rec pop env =
    match env with
    | [] -> raise (Failure "Inconsistent environment")
    | C.Abs abs :: env -> C.Abs abs :: pop env
    | C.Var (_, v) :: env ->
        let vid = C.fresh_dummy_var_id () in
        C.Var (C.DummyBinder vid, v) :: pop env
    | C.Frame :: env -> (* Stop here *) env
  in
  let cf_pop cf (ret_value : V.typed_value) : m_fun =
   fun ctx ->
    let env = pop ctx.env in
    let ctx = { ctx with env } in
    cf ret_value ctx
  in
  (* Compose and apply *)
  comp cc cf_pop cf ctx

(** Pop the current frame and assign the returned value to its destination. *)
let pop_frame_assign (config : C.config) (dest : E.place) : cm_fun =
  let cf_pop = pop_frame config in
  let cf_assign cf ret_value : m_fun =
    assign_to_place config ret_value dest cf
  in
  comp cf_pop cf_assign

(** Auxiliary function - see {!eval_non_local_function_call} *)
let eval_replace_concrete (_config : C.config)
    (_region_params : T.erased_region list) (_type_params : T.ety list) : cm_fun
    =
 fun _cf _ctx -> raise Unimplemented

(** Auxiliary function - see {!eval_non_local_function_call} *)
let eval_box_new_concrete (config : C.config)
    (region_params : T.erased_region list) (type_params : T.ety list) : cm_fun =
 fun cf ctx ->
  (* Check and retrieve the arguments *)
  match (region_params, type_params, ctx.env) with
  | ( [],
      [ boxed_ty ],
      Var (VarBinder input_var, input_value)
      :: Var (_ret_var, _)
      :: C.Frame :: _ ) ->
      (* Required type checking *)
      assert (input_value.V.ty = boxed_ty);

      (* Move the input value *)
      let cf_move =
        eval_operand config (E.Move (mk_place_from_var_id input_var.C.index))
      in

      (* Create the new box *)
      let cf_create cf (moved_input_value : V.typed_value) : m_fun =
        (* Create the box value *)
        let box_ty = T.Adt (T.Assumed T.Box, [], [ boxed_ty ]) in
        let box_v =
          V.Adt { variant_id = None; field_values = [ moved_input_value ] }
        in
        let box_v = mk_typed_value box_ty box_v in

        (* Move this value to the return variable *)
        let dest = mk_place_from_var_id E.VarId.zero in
        let cf_assign = assign_to_place config box_v dest in

        (* Continue *)
        cf_assign cf
      in

      (* Compose and apply *)
      comp cf_move cf_create cf ctx
  | _ -> raise (Failure "Inconsistent state")

(** Auxiliary function which factorizes code to evaluate [std::Deref::deref]
    and [std::DerefMut::deref_mut] - see {!eval_non_local_function_call} *)
let eval_box_deref_mut_or_shared_concrete (config : C.config)
    (region_params : T.erased_region list) (type_params : T.ety list)
    (is_mut : bool) : cm_fun =
 fun cf ctx ->
  (* Check the arguments *)
  match (region_params, type_params, ctx.env) with
  | ( [],
      [ boxed_ty ],
      Var (VarBinder input_var, input_value)
      :: Var (_ret_var, _)
      :: C.Frame :: _ ) ->
      (* Required type checking. We must have:
         - input_value.ty = & (mut) Box<ty>
         - boxed_ty = ty
         for some ty
      *)
      (let _, input_ty, ref_kind = ty_get_ref input_value.V.ty in
       assert (match ref_kind with T.Shared -> not is_mut | T.Mut -> is_mut);
       let input_ty = ty_get_box input_ty in
       assert (input_ty = boxed_ty));

      (* Borrow the boxed value *)
      let p =
        { E.var_id = input_var.C.index; projection = [ E.Deref; E.DerefBox ] }
      in
      let borrow_kind = if is_mut then E.Mut else E.Shared in
      let rv = E.Ref (p, borrow_kind) in
      let cf_borrow = eval_rvalue_not_global config rv in

      (* Move the borrow to its destination *)
      let cf_move cf res : m_fun =
        match res with
        | Error EPanic ->
            (* We can't get there by borrowing a value *)
            raise (Failure "Unreachable")
        | Ok borrowed_value ->
            (* Move and continue *)
            let destp = mk_place_from_var_id E.VarId.zero in
            assign_to_place config borrowed_value destp cf
      in

      (* Compose and apply *)
      comp cf_borrow cf_move cf ctx
  | _ -> raise (Failure "Inconsistent state")

(** Auxiliary function - see {!eval_non_local_function_call} *)
let eval_box_deref_concrete (config : C.config)
    (region_params : T.erased_region list) (type_params : T.ety list) : cm_fun =
  let is_mut = false in
  eval_box_deref_mut_or_shared_concrete config region_params type_params is_mut

(** Auxiliary function - see {!eval_non_local_function_call} *)
let eval_box_deref_mut_concrete (config : C.config)
    (region_params : T.erased_region list) (type_params : T.ety list) : cm_fun =
  let is_mut = true in
  eval_box_deref_mut_or_shared_concrete config region_params type_params is_mut

(** Auxiliary function - see {!eval_non_local_function_call}.

    [Box::free] is not handled the same way as the other assumed functions:
    - in the regular case, whenever we need to evaluate an assumed function,
      we evaluate the operands, push a frame, call a dedicated function
      to correctly update the variables in the frame (and mimic the execution
      of a body) and finally pop the frame
    - in the case of [Box::free]: the value given to this function is often
      of the form [Box(⊥)] because we can move the value out of the
      box before freeing the box. It makes it invalid to see box_free as a
      "regular" function: it is not valid to call a function with arguments
      which contain [⊥]. For this reason, we execute [Box::free] as drop_value,
      but this is a bit annoying with regards to the semantics...

    Followingly this function doesn't behave like the others: it does not expect
    a stack frame to have been pushed, but rather simply behaves like {!drop_value}.
    It thus updates the box value (by calling {!drop_value}) and updates
    the destination (by setting it to [()]).
*)
let eval_box_free (config : C.config) (region_params : T.erased_region list)
    (type_params : T.ety list) (args : E.operand list) (dest : E.place) : cm_fun
    =
 fun cf ctx ->
  match (region_params, type_params, args) with
  | [], [ boxed_ty ], [ E.Move input_box_place ] ->
      (* Required type checking *)
      let input_box = InterpreterPaths.read_place Write input_box_place ctx in
      (let input_ty = ty_get_box input_box.V.ty in
       assert (input_ty = boxed_ty));

      (* Drop the value *)
      let cc = drop_value config input_box_place in

      (* Update the destination by setting it to [()] *)
      let cc = comp cc (assign_to_place config mk_unit_value dest) in

      (* Continue *)
      cc cf ctx
  | _ -> raise (Failure "Inconsistent state")

(** Auxiliary function - see {!eval_non_local_function_call} *)
let eval_vec_function_concrete (_config : C.config) (_fid : A.assumed_fun_id)
    (_region_params : T.erased_region list) (_type_params : T.ety list) : cm_fun
    =
 fun _cf _ctx -> raise Unimplemented

(** Evaluate a non-local function call in concrete mode *)
let eval_non_local_function_call_concrete (config : C.config)
    (fid : A.assumed_fun_id) (region_params : T.erased_region list)
    (type_params : T.ety list) (args : E.operand list) (dest : E.place) : cm_fun
    =
  (* There are two cases (and this is extremely annoying):
     - the function is not box_free
     - the function is box_free
     See {!eval_box_free}
  *)
  match fid with
  | A.BoxFree ->
      (* Degenerate case: box_free *)
      eval_box_free config region_params type_params args dest
  | _ ->
      (* "Normal" case: not box_free *)
      (* Evaluate the operands *)
      (*      let ctx, args_vl = eval_operands config ctx args in *)
      let cf_eval_ops = eval_operands config args in

      (* Evaluate the call
       *
       * Style note: at some point we used {!comp_transmit} to
       * transmit the result of {!eval_operands} above down to {!push_vars}
       * below, without having to introduce an intermediary function call,
       * but it made it less clear where the computed values came from,
       * so we reversed the modifications. *)
      let cf_eval_call cf (args_vl : V.typed_value list) : m_fun =
        (* Push the stack frame: we initialize the frame with the return variable,
           and one variable per input argument *)
        let cc = push_frame in

        (* Create and push the return variable *)
        let ret_vid = E.VarId.zero in
        let ret_ty =
          get_non_local_function_return_type fid region_params type_params
        in
        let ret_var = mk_var ret_vid (Some "@return") ret_ty in
        let cc = comp cc (push_uninitialized_var ret_var) in

        (* Create and push the input variables *)
        let input_vars =
          E.VarId.mapi_from1
            (fun id (v : V.typed_value) -> (mk_var id None v.V.ty, v))
            args_vl
        in
        let cc = comp cc (push_vars input_vars) in

        (* "Execute" the function body. As the functions are assumed, here we call
         * custom functions to perform the proper manipulations: we don't have
         * access to a body. *)
        let cf_eval_body : cm_fun =
          match fid with
          | A.Replace -> eval_replace_concrete config region_params type_params
          | BoxNew -> eval_box_new_concrete config region_params type_params
          | BoxDeref -> eval_box_deref_concrete config region_params type_params
          | BoxDerefMut ->
              eval_box_deref_mut_concrete config region_params type_params
          | BoxFree ->
              (* Should have been treated above *) raise (Failure "Unreachable")
          | VecNew | VecPush | VecInsert | VecLen | VecIndex | VecIndexMut ->
              eval_vec_function_concrete config fid region_params type_params
        in

        let cc = comp cc cf_eval_body in

        (* Pop the frame *)
        let cc = comp cc (pop_frame_assign config dest) in

        (* Continue *)
        cc cf
      in
      (* Compose and apply *)
      comp cf_eval_ops cf_eval_call

let instantiate_fun_sig (type_params : T.ety list) (sg : A.fun_sig) :
    A.inst_fun_sig =
  (* Generate fresh abstraction ids and create a substitution from region
   * group ids to abstraction ids *)
  let rg_abs_ids_bindings =
    List.map
      (fun rg ->
        let abs_id = C.fresh_abstraction_id () in
        (rg.T.id, abs_id))
      sg.regions_hierarchy
  in
  let asubst_map : V.AbstractionId.id T.RegionGroupId.Map.t =
    List.fold_left
      (fun mp (rg_id, abs_id) -> T.RegionGroupId.Map.add rg_id abs_id mp)
      T.RegionGroupId.Map.empty rg_abs_ids_bindings
  in
  let asubst (rg_id : T.RegionGroupId.id) : V.AbstractionId.id =
    T.RegionGroupId.Map.find rg_id asubst_map
  in
  (* Generate fresh regions and their substitutions *)
  let _, rsubst, _ = Subst.fresh_regions_with_substs sg.region_params in
  (* Generate the type substitution
   * Note that we need the substitution to map the type variables to
   * {!rty} types (not {!ety}). In order to do that, we convert the
   * type parameters to types with regions. This is possible only
   * if those types don't contain any regions.
   * This is a current limitation of the analysis: there is still some
   * work to do to properly handle full type parametrization.
   * *)
  let rtype_params = List.map ety_no_regions_to_rty type_params in
  let tsubst =
    Subst.make_type_subst
      (List.map (fun v -> v.T.index) sg.type_params)
      rtype_params
  in
  (* Substitute the signature *)
  let inst_sig = Subst.substitute_signature asubst rsubst tsubst sg in
  (* Return *)
  inst_sig

(** Helper
 
    Create abstractions (with no avalues, which have to be inserted afterwards)
    from a list of abs region groups.
    
    [region_can_end]: gives the region groups from which we generate functions
    which can end or not.
 *)
let create_empty_abstractions_from_abs_region_groups
    (kind : T.RegionGroupId.id -> V.abs_kind) (rgl : A.abs_region_group list)
    (region_can_end : T.RegionGroupId.id -> bool) : V.abs list =
  (* We use a reference to progressively create a map from abstraction ids
   * to set of ancestor regions. Note that {!abs_to_ancestors_regions} [abs_id]
   * returns the union of:
   * - the regions of the ancestors of abs_id
   * - the regions of abs_id
   *)
  let abs_to_ancestors_regions : T.RegionId.Set.t V.AbstractionId.Map.t ref =
    ref V.AbstractionId.Map.empty
  in
  (* Auxiliary function to create one abstraction *)
  let create_abs (rg_id : T.RegionGroupId.id) (rg : A.abs_region_group) : V.abs
      =
    let abs_id = rg.T.id in
    let original_parents = rg.parents in
    let parents =
      List.fold_left
        (fun s pid -> V.AbstractionId.Set.add pid s)
        V.AbstractionId.Set.empty rg.parents
    in
    let regions =
      List.fold_left
        (fun s rid -> T.RegionId.Set.add rid s)
        T.RegionId.Set.empty rg.regions
    in
    let ancestors_regions =
      List.fold_left
        (fun acc parent_id ->
          T.RegionId.Set.union acc
            (V.AbstractionId.Map.find parent_id !abs_to_ancestors_regions))
        T.RegionId.Set.empty rg.parents
    in
    let ancestors_regions_union_current_regions =
      T.RegionId.Set.union ancestors_regions regions
    in
    let can_end = region_can_end rg_id in
    abs_to_ancestors_regions :=
      V.AbstractionId.Map.add abs_id ancestors_regions_union_current_regions
        !abs_to_ancestors_regions;
    (* Create the abstraction *)
    {
      V.abs_id;
      kind = kind rg_id;
      can_end;
      parents;
      original_parents;
      regions;
      ancestors_regions;
      avalues = [];
    }
  in
  (* Apply *)
  T.RegionGroupId.mapi create_abs rgl

let create_push_abstractions_from_abs_region_groups
    (kind : T.RegionGroupId.id -> V.abs_kind) (rgl : A.abs_region_group list)
    (region_can_end : T.RegionGroupId.id -> bool)
    (compute_abs_avalues :
      V.abs -> C.eval_ctx -> C.eval_ctx * V.typed_avalue list)
    (ctx : C.eval_ctx) : C.eval_ctx =
  (* Initialize the abstractions as empty (i.e., with no avalues) abstractions *)
  let empty_absl =
    create_empty_abstractions_from_abs_region_groups kind rgl region_can_end
  in

  (* Compute and add the avalues to the abstractions, the insert the abstractions
   * in the context. *)
  let insert_abs (ctx : C.eval_ctx) (abs : V.abs) : C.eval_ctx =
    (* Compute the values to insert in the abstraction *)
    let ctx, avalues = compute_abs_avalues abs ctx in
    (* Add the avalues to the abstraction *)
    let abs = { abs with avalues } in
    (* Insert the abstraction in the context *)
    let ctx = { ctx with env = Abs abs :: ctx.env } in
    (* Return *)
    ctx
  in
  List.fold_left insert_abs ctx empty_absl

(** Evaluate a statement *)
let rec eval_statement (config : C.config) (st : A.statement) : st_cm_fun =
 fun cf ctx ->
  (* Debugging *)
  log#ldebug
    (lazy
      ("\n**About to evaluate statement**: [\n"
      ^ statement_to_string_with_tab ctx st
      ^ "\n]\n\n**Context**:\n" ^ eval_ctx_to_string ctx ^ "\n\n"));

  (* Expand the symbolic values if necessary - we need to do that before
   * checking the invariants *)
  let cc = greedy_expand_symbolic_values config in
  (* Sanity check *)
  let cc = comp cc Inv.cf_check_invariants in

  (* Evaluate *)
  let cf_eval_st cf : m_fun =
   fun ctx ->
    match st.content with
    | A.Assign (p, rvalue) -> (
        (* We handle global assignments separately *)
        match rvalue with
        | E.Global gid ->
            (* Evaluate the global *)
            eval_global config p gid cf ctx
        | _ ->
            (* Evaluate the rvalue *)
            let cf_eval_rvalue = eval_rvalue_not_global config rvalue in
            (* Assign *)
            let cf_assign cf (res : (V.typed_value, eval_error) result) ctx =
              log#ldebug
                (lazy
                  ("about to assign to place: " ^ place_to_string ctx p
                 ^ "\n- Context:\n" ^ eval_ctx_to_string ctx));
              match res with
              | Error EPanic -> cf Panic ctx
              | Ok rv -> (
                  let expr = assign_to_place config rv p (cf Unit) ctx in
                  (* Update the synthesized AST - here we store meta-information.
                   * We do it only in specific cases (it is not always useful, and
                   * also it can lead to issues - for instance, if we borrow an
                   * reserved borrow, we later can't translate it to pure values...) *)
                  match rvalue with
                  | E.Global _ -> raise (Failure "Unreachable")
                  | E.Use _
                  | E.Ref (_, (E.Shared | E.Mut | E.TwoPhaseMut))
                  | E.UnaryOp _ | E.BinaryOp _ | E.Discriminant _
                  | E.Aggregate _ ->
                      let rp = rvalue_get_place rvalue in
                      let rp =
                        match rp with
                        | Some rp -> Some (S.mk_mplace rp ctx)
                        | None -> None
                      in
                      S.synthesize_assignment (S.mk_mplace p ctx) rv rp expr)
            in

            (* Compose and apply *)
            comp cf_eval_rvalue cf_assign cf ctx)
    | A.FakeRead p -> eval_fake_read config p (cf Unit) ctx
    | A.SetDiscriminant (p, variant_id) ->
        set_discriminant config p variant_id cf ctx
    | A.Drop p -> drop_value config p (cf Unit) ctx
    | A.Assert assertion -> eval_assertion config assertion cf ctx
    | A.Call call -> eval_function_call config call cf ctx
    | A.Panic -> cf Panic ctx
    | A.Return -> cf Return ctx
    | A.Break i -> cf (Break i) ctx
    | A.Continue i -> cf (Continue i) ctx
    | A.Nop -> cf Unit ctx
    | A.Sequence (st1, st2) ->
        (* Evaluate the first statement *)
        let cf_st1 = eval_statement config st1 in
        (* Evaluate the sequence *)
        let cf_st2 cf res =
          match res with
          (* Evaluation successful: evaluate the second statement *)
          | Unit -> eval_statement config st2 cf
          (* Control-flow break: transmit. We enumerate the cases on purpose *)
          | Panic | Break _ | Continue _ | Return | EndEnterLoop | EndContinue
            ->
              cf res
        in
        (* Compose and apply *)
        comp cf_st1 cf_st2 cf ctx
    | A.Loop loop_body ->
        InterpreterLoops.eval_loop config
          (eval_statement config loop_body)
          cf ctx
    | A.Switch switch -> eval_switch config switch cf ctx
  in
  (* Compose and apply *)
  comp cc cf_eval_st cf ctx

and eval_global (config : C.config) (dest : E.place) (gid : LA.GlobalDeclId.id)
    : st_cm_fun =
 fun cf ctx ->
  let global = C.ctx_lookup_global_decl ctx gid in
  match config.mode with
  | ConcreteMode ->
      (* Treat the evaluation of the global as a call to the global body (without arguments) *)
      (eval_local_function_call_concrete config global.body_id [] [] [] dest)
        cf ctx
  | SymbolicMode ->
      (* Generate a fresh symbolic value. In the translation, this fresh symbolic value will be
       * defined as equal to the value of the global (see {!S.synthesize_global_eval}). *)
      let sval =
        mk_fresh_symbolic_value V.Global (ety_no_regions_to_rty global.ty)
      in
      let cc =
        assign_to_place config (mk_typed_value_from_symbolic_value sval) dest
      in
      let e = cc (cf Unit) ctx in
      S.synthesize_global_eval gid sval e

(** Evaluate a switch *)
and eval_switch (config : C.config) (switch : A.switch) : st_cm_fun =
 fun cf ctx ->
  (* We evaluate the operand in two steps:
   * first we prepare it, then we check if its value is concrete or
   * symbolic. If it is concrete, we can then evaluate the operand
   * directly, otherwise we must first expand the value.
   * Note that we can't fully evaluate the operand *then* expand the
   * value if it is symbolic, because the value may have been move
   * (and would thus floating in thin air...)!
   * *)
  (* Match on the targets *)
  let cf_match : st_cm_fun =
   fun cf ctx ->
    match switch with
    | A.If (op, st1, st2) ->
        (* Evaluate the operand *)
        let cf_eval_op = eval_operand config op in
        (* Switch on the value *)
        let cf_if (cf : st_m_fun) (op_v : V.typed_value) : m_fun =
         fun ctx ->
          match op_v.value with
          | V.Primitive (PV.Bool b) ->
              (* Evaluate the if and the branch body *)
              let cf_branch cf : m_fun =
                (* Branch *)
                if b then eval_statement config st1 cf
                else eval_statement config st2 cf
              in
              (* Compose the continuations *)
              cf_branch cf ctx
          | V.Symbolic sv ->
              (* Expand the symbolic boolean, and continue by evaluating
               * the branches *)
              let cf_true : st_cm_fun = eval_statement config st1 in
              let cf_false : st_cm_fun = eval_statement config st2 in
              expand_symbolic_bool config sv
                (S.mk_opt_place_from_op op ctx)
                cf_true cf_false cf ctx
          | _ -> raise (Failure "Inconsistent state")
        in
        (* Compose *)
        comp cf_eval_op cf_if cf ctx
    | A.SwitchInt (op, int_ty, stgts, otherwise) ->
        (* Evaluate the operand *)
        let cf_eval_op = eval_operand config op in
        (* Switch on the value *)
        let cf_switch (cf : st_m_fun) (op_v : V.typed_value) : m_fun =
         fun ctx ->
          match op_v.value with
          | V.Primitive (PV.Scalar sv) ->
              (* Evaluate the branch *)
              let cf_eval_branch cf =
                (* Sanity check *)
                assert (sv.PV.int_ty = int_ty);
                (* Find the branch *)
                match List.find_opt (fun (svl, _) -> List.mem sv svl) stgts with
                | None -> eval_statement config otherwise cf
                | Some (_, tgt) -> eval_statement config tgt cf
              in
              (* Compose *)
              cf_eval_branch cf ctx
          | V.Symbolic sv ->
              (* Expand the symbolic value and continue by evaluating the
               * proper branches *)
              let stgts =
                List.map
                  (fun (cv, tgt_st) -> (cv, eval_statement config tgt_st))
                  stgts
              in
              (* Several branches may be grouped together: every branch is described
               * by a pair (list of values, branch expression).
               * In order to do a symbolic evaluation, we make this "flat" by
               * de-grouping the branches. *)
              let stgts =
                List.concat
                  (List.map
                     (fun (vl, st) -> List.map (fun v -> (v, st)) vl)
                     stgts)
              in
              (* Translate the otherwise branch *)
              let otherwise = eval_statement config otherwise in
              (* Expand and continue *)
              expand_symbolic_int config sv
                (S.mk_opt_place_from_op op ctx)
                int_ty stgts otherwise cf ctx
          | _ -> raise (Failure "Inconsistent state")
        in
        (* Compose *)
        comp cf_eval_op cf_switch cf ctx
    | A.Match (p, stgts, otherwise) ->
        (* Access the place *)
        let access = Read in
        let expand_prim_copy = false in
        let cf_read_p cf : m_fun =
          access_rplace_reorganize_and_read config expand_prim_copy access p cf
        in
        (* Match on the value *)
        let cf_match (cf : st_m_fun) (p_v : V.typed_value) : m_fun =
         fun ctx ->
          (* The value may be shared: we need to ignore the shared loans
             to read the value itself *)
          let p_v = value_strip_shared_loans p_v in
          (* Match *)
          match p_v.value with
          | V.Adt adt -> (
              (* Evaluate the discriminant *)
              let dv = Option.get adt.variant_id in
              (* Find the branch, evaluate and continue *)
              match List.find_opt (fun (svl, _) -> List.mem dv svl) stgts with
              | None -> eval_statement config otherwise cf ctx
              | Some (_, tgt) -> eval_statement config tgt cf ctx)
          | V.Symbolic sv ->
              (* Expand the symbolic value - may lead to branching *)
              let cf_expand =
                expand_symbolic_adt config sv (Some (S.mk_mplace p ctx))
              in
              (* Re-evaluate the switch - the value is not symbolic anymore,
                 which means we will go to the other branch *)
              cf_expand (eval_switch config switch) cf ctx
          | _ -> raise (Failure "Inconsistent state")
        in
        (* Compose *)
        comp cf_read_p cf_match cf ctx
  in
  (* Compose the continuations *)
  cf_match cf ctx

(** Evaluate a function call (auxiliary helper for [eval_statement]) *)
and eval_function_call (config : C.config) (call : A.call) : st_cm_fun =
  (* There are two cases:
     - this is a local function, in which case we execute its body
     - this is a non-local function, in which case there is a special treatment
  *)
  match call.func with
  | A.Regular fid ->
      eval_local_function_call config fid call.region_args call.type_args
        call.args call.dest
  | A.Assumed fid ->
      eval_non_local_function_call config fid call.region_args call.type_args
        call.args call.dest

(** Evaluate a local (i.e., non-assumed) function call in concrete mode *)
and eval_local_function_call_concrete (config : C.config) (fid : A.FunDeclId.id)
    (region_args : T.erased_region list) (type_args : T.ety list)
    (args : E.operand list) (dest : E.place) : st_cm_fun =
 fun cf ctx ->
  assert (region_args = []);

  (* Retrieve the (correctly instantiated) body *)
  let def = C.ctx_lookup_fun_decl ctx fid in
  (* We can evaluate the function call only if it is not opaque *)
  let body =
    match def.body with
    | None ->
        raise
          (Failure
             ("Can't evaluate a call to an opaque function: "
             ^ Print.name_to_string def.name))
    | Some body -> body
  in
  let tsubst =
    Subst.make_type_subst
      (List.map (fun v -> v.T.index) def.A.signature.type_params)
      type_args
  in
  let locals, body_st = Subst.fun_body_substitute_in_body tsubst body in

  (* Evaluate the input operands *)
  assert (List.length args = body.A.arg_count);
  let cc = eval_operands config args in

  (* Push a frame delimiter - we use {!comp_transmit} to transmit the result
   * of the operands evaluation from above to the functions afterwards, while
   * ignoring it in this function *)
  let cc = comp_transmit cc push_frame in

  (* Compute the initial values for the local variables *)
  (* 1. Push the return value *)
  let ret_var, locals =
    match locals with
    | ret_ty :: locals -> (ret_ty, locals)
    | _ -> raise (Failure "Unreachable")
  in
  let input_locals, locals =
    Collections.List.split_at locals body.A.arg_count
  in

  let cc = comp_transmit cc (push_var ret_var (mk_bottom ret_var.var_ty)) in

  (* 2. Push the input values *)
  let cf_push_inputs cf args =
    let inputs = List.combine input_locals args in
    (* Note that this function checks that the variables and their values
     * have the same type (this is important) *)
    push_vars inputs cf
  in
  let cc = comp cc cf_push_inputs in

  (* 3. Push the remaining local variables (initialized as {!Bottom}) *)
  let cc = comp cc (push_uninitialized_vars locals) in

  (* Execute the function body *)
  let cc = comp cc (eval_function_body config body_st) in

  (* Pop the stack frame and move the return value to its destination *)
  let cf_finish cf res =
    match res with
    | Panic -> cf Panic
    | Return ->
        (* Pop the stack frame, retrieve the return value, move it to
         * its destination and continue *)
        pop_frame_assign config dest (cf Unit)
    | Break _ | Continue _ | Unit | EndEnterLoop | EndContinue ->
        raise (Failure "Unreachable")
  in
  let cc = comp cc cf_finish in

  (* Continue *)
  cc cf ctx

(** Evaluate a local (i.e., non-assumed) function call in symbolic mode *)
and eval_local_function_call_symbolic (config : C.config) (fid : A.FunDeclId.id)
    (region_args : T.erased_region list) (type_args : T.ety list)
    (args : E.operand list) (dest : E.place) : st_cm_fun =
 fun cf ctx ->
  (* Retrieve the (correctly instantiated) signature *)
  let def = C.ctx_lookup_fun_decl ctx fid in
  let sg = def.A.signature in
  (* Instantiate the signature and introduce fresh abstraction and region ids
   * while doing so *)
  let inst_sg = instantiate_fun_sig type_args sg in
  (* Sanity check *)
  assert (List.length args = List.length def.A.signature.inputs);
  (* Evaluate the function call *)
  eval_function_call_symbolic_from_inst_sig config (A.Regular fid) inst_sg
    region_args type_args args dest cf ctx

(** Evaluate a function call in symbolic mode by using the function signature.

    This allows us to factorize the evaluation of local and non-local function
    calls in symbolic mode: only their signatures matter.
 *)
and eval_function_call_symbolic_from_inst_sig (config : C.config)
    (fid : A.fun_id) (inst_sg : A.inst_fun_sig)
    (region_args : T.erased_region list) (type_args : T.ety list)
    (args : E.operand list) (dest : E.place) : st_cm_fun =
 fun cf ctx ->
  assert (region_args = []);
  (* Generate a fresh symbolic value for the return value *)
  let ret_sv_ty = inst_sg.A.output in
  let ret_spc = mk_fresh_symbolic_value V.FunCallRet ret_sv_ty in
  let ret_value = mk_typed_value_from_symbolic_value ret_spc in
  let ret_av regions =
    mk_aproj_loans_value_from_symbolic_value regions ret_spc
  in
  let args_places = List.map (fun p -> S.mk_opt_place_from_op p ctx) args in
  let dest_place = Some (S.mk_mplace dest ctx) in

  (* Evaluate the input operands *)
  let cc = eval_operands config args in

  (* Generate the abstractions and insert them in the context *)
  let abs_ids = List.map (fun rg -> rg.T.id) inst_sg.regions_hierarchy in
  let cf_call cf (args : V.typed_value list) : m_fun =
   fun ctx ->
    let args_with_rtypes = List.combine args inst_sg.A.inputs in

    (* Check the type of the input arguments *)
    assert (
      List.for_all
        (fun ((arg, rty) : V.typed_value * T.rty) ->
          arg.V.ty = Subst.erase_regions rty)
        args_with_rtypes);
    (* Check that the input arguments don't contain symbolic values that can't 
     * be fed to functions (i.e., symbolic values output from function return
     * values and which contain borrows of borrows can't be used as function
     * inputs *)
    assert (
      List.for_all
        (fun arg ->
          not (value_has_ret_symbolic_value_with_borrow_under_mut ctx arg))
        args);

    (* Initialize the abstractions and push them in the context.
     * First, we define the function which, given an initialized, empty
     * abstraction, computes the avalues which should be inserted inside.
     *)
    let compute_abs_avalues (abs : V.abs) (ctx : C.eval_ctx) :
        C.eval_ctx * V.typed_avalue list =
      (* Project over the input values *)
      let ctx, args_projs =
        List.fold_left_map
          (fun ctx (arg, arg_rty) ->
            apply_proj_borrows_on_input_value config ctx abs.regions
              abs.ancestors_regions arg arg_rty)
          ctx args_with_rtypes
      in
      (* Group the input and output values *)
      (ctx, List.append args_projs [ ret_av abs.regions ])
    in
    (* Actually initialize and insert the abstractions *)
    let call_id = C.fresh_fun_call_id () in
    let region_can_end _ = true in
    let ctx =
      create_push_abstractions_from_abs_region_groups
        (fun rg_id -> V.FunCall (call_id, rg_id))
        inst_sg.A.regions_hierarchy region_can_end compute_abs_avalues ctx
    in

    (* Apply the continuation *)
    let expr = cf ctx in

    (* Synthesize the symbolic AST *)
    S.synthesize_regular_function_call fid call_id abs_ids type_args args
      args_places ret_spc dest_place expr
  in
  let cc = comp cc cf_call in

  (* Move the return value to its destination *)
  let cc = comp cc (assign_to_place config ret_value dest) in

  (* End the abstractions which don't contain loans and don't have parent
   * abstractions.
   * We do the general, nested borrows case here: we end abstractions, then
   * retry (because then we might end their children abstractions)
   *)
  let abs_ids = ref abs_ids in
  let rec end_abs_with_no_loans cf : m_fun =
   fun ctx ->
    (* Find the abstractions which don't contain loans *)
    let no_loans_abs, with_loans_abs =
      List.partition
        (fun abs_id ->
          (* Lookup the abstraction *)
          let abs = C.ctx_lookup_abs ctx abs_id in
          (* Check if it has parents *)
          V.AbstractionId.Set.is_empty abs.parents
          (* Check if it contains non-ignored loans *)
          && Option.is_none
               (InterpreterBorrowsCore
                .get_first_non_ignored_aloan_in_abstraction abs))
        !abs_ids
    in
    (* Check if there are abstractions to end *)
    if no_loans_abs <> [] then (
      (* Update the reference to the list of asbtraction ids, for the recursive calls *)
      abs_ids := with_loans_abs;
      (* End the abstractions which can be ended *)
      let no_loans_abs = V.AbstractionId.Set.of_list no_loans_abs in
      let cc = InterpreterBorrows.end_abstractions config no_loans_abs in
      (* Recursive call *)
      let cc = comp cc end_abs_with_no_loans in
      (* Continue *)
      cc cf ctx)
    else (* No abstractions to end: continue *)
      cf ctx
  in
  (* Try to end the abstractions with no loans if:
   * - the option is enabled
   * - the function returns unit
   * (see the documentation of {!config} for more information)
   *)
  let cc =
    if Config.return_unit_end_abs_with_no_loans && ty_is_unit inst_sg.output
    then comp cc end_abs_with_no_loans
    else cc
  in

  (* Continue - note that we do as if the function call has been successful,
   * by giving {!Unit} to the continuation, because we place us in the case
   * where we haven't panicked. Of course, the translation needs to take the
   * panic case into account... *)
  cc (cf Unit) ctx

(** Evaluate a non-local function call in symbolic mode *)
and eval_non_local_function_call_symbolic (config : C.config)
    (fid : A.assumed_fun_id) (region_args : T.erased_region list)
    (type_args : T.ety list) (args : E.operand list) (dest : E.place) :
    st_cm_fun =
 fun cf ctx ->
  (* Sanity check: make sure the type parameters don't contain regions -
   * this is a current limitation of our synthesis *)
  assert (
    List.for_all
      (fun ty -> not (ty_has_borrows ctx.type_context.type_infos ty))
      type_args);

  (* There are two cases (and this is extremely annoying):
     - the function is not box_free
     - the function is box_free
       See {!eval_box_free}
  *)
  match fid with
  | A.BoxFree ->
      (* Degenerate case: box_free - note that this is not really a function
       * call: no need to call a "synthesize_..." function *)
      eval_box_free config region_args type_args args dest (cf Unit) ctx
  | _ ->
      (* "Normal" case: not box_free *)
      (* In symbolic mode, the behaviour of a function call is completely defined
       * by the signature of the function: we thus simply generate correctly
       * instantiated signatures, and delegate the work to an auxiliary function *)
      let inst_sig =
        match fid with
        | A.BoxFree ->
            (* should have been treated above *)
            raise (Failure "Unreachable")
        | _ -> instantiate_fun_sig type_args (Assumed.get_assumed_sig fid)
      in

      (* Evaluate the function call *)
      eval_function_call_symbolic_from_inst_sig config (A.Assumed fid) inst_sig
        region_args type_args args dest cf ctx

(** Evaluate a non-local (i.e, assumed) function call such as [Box::deref]
    (auxiliary helper for [eval_statement]) *)
and eval_non_local_function_call (config : C.config) (fid : A.assumed_fun_id)
    (region_args : T.erased_region list) (type_args : T.ety list)
    (args : E.operand list) (dest : E.place) : st_cm_fun =
 fun cf ctx ->
  (* Debug *)
  log#ldebug
    (lazy
      (let type_args =
         "[" ^ String.concat ", " (List.map (ety_to_string ctx) type_args) ^ "]"
       in
       let args =
         "[" ^ String.concat ", " (List.map (operand_to_string ctx) args) ^ "]"
       in
       let dest = place_to_string ctx dest in
       "eval_non_local_function_call:\n- fid:" ^ A.show_assumed_fun_id fid
       ^ "\n- type_args: " ^ type_args ^ "\n- args: " ^ args ^ "\n- dest: "
       ^ dest));

  match config.mode with
  | C.ConcreteMode ->
      eval_non_local_function_call_concrete config fid region_args type_args
        args dest (cf Unit) ctx
  | C.SymbolicMode ->
      eval_non_local_function_call_symbolic config fid region_args type_args
        args dest cf ctx

(** Evaluate a local (i.e, not assumed) function call (auxiliary helper for
    [eval_statement]) *)
and eval_local_function_call (config : C.config) (fid : A.FunDeclId.id)
    (region_args : T.erased_region list) (type_args : T.ety list)
    (args : E.operand list) (dest : E.place) : st_cm_fun =
  match config.mode with
  | ConcreteMode ->
      eval_local_function_call_concrete config fid region_args type_args args
        dest
  | SymbolicMode ->
      eval_local_function_call_symbolic config fid region_args type_args args
        dest

(** Evaluate a statement seen as a function body *)
and eval_function_body (config : C.config) (body : A.statement) : st_cm_fun =
 fun cf ctx ->
  let cc = eval_statement config body in
  let cf_finish cf res =
    (* Note that we *don't* check the result ({!Panic}, {!Return}, etc.): we
     * delegate the check to the caller. *)
    (* Expand the symbolic values if necessary - we need to do that before
     * checking the invariants *)
    let cc = greedy_expand_symbolic_values config in
    (* Sanity check *)
    let cc = comp_check_ctx cc Inv.check_invariants in
    (* Continue *)
    cc (cf res)
  in
  (* Compose and continue *)
  comp cc cf_finish cf ctx