1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
|
open Types
open Values
open Contexts
open TypesUtils
open ValuesUtils
open InterpreterUtils
open InterpreterBorrows
open InterpreterLoopsCore
open InterpreterLoopsMatchCtxs
(** The local logger *)
let log = Logging.loops_join_ctxs_log
(** Reorder the loans and borrows in the fresh abstractions.
We do this in order to enforce some structure in the environments: this
allows us to find fixed-points. Note that this function needs to be
called typically after we merge abstractions together (see {!collapse_ctx}
for instance).
*)
let reorder_loans_borrows_in_fresh_abs (old_abs_ids : AbstractionId.Set.t)
(ctx : eval_ctx) : eval_ctx =
let reorder_in_fresh_abs (abs : abs) : abs =
(* Split between the loans and borrows *)
let is_borrow (av : typed_avalue) : bool =
match av.value with
| ABorrow _ -> true
| ALoan _ -> false
| _ -> raise (Failure "Unexpected")
in
let aborrows, aloans = List.partition is_borrow abs.avalues in
(* Reoder the borrows, and the loans.
After experimenting, it seems that a good way of reordering the loans
and the borrows to find fixed points is simply to sort them by increasing
order of id (taking the smallest id of a set of ids, in case of sets).
*)
let get_borrow_id (av : typed_avalue) : BorrowId.id =
match av.value with
| ABorrow (AMutBorrow (bid, _) | ASharedBorrow bid) -> bid
| _ -> raise (Failure "Unexpected")
in
let get_loan_id (av : typed_avalue) : BorrowId.id =
match av.value with
| ALoan (AMutLoan (lid, _)) -> lid
| ALoan (ASharedLoan (lids, _, _)) -> BorrowId.Set.min_elt lids
| _ -> raise (Failure "Unexpected")
in
(* We use ordered maps to reorder the borrows and loans *)
let reorder (get_bid : typed_avalue -> BorrowId.id)
(values : typed_avalue list) : typed_avalue list =
List.map snd
(BorrowId.Map.bindings
(BorrowId.Map.of_list (List.map (fun v -> (get_bid v, v)) values)))
in
let aborrows = reorder get_borrow_id aborrows in
let aloans = reorder get_loan_id aloans in
let avalues = List.append aborrows aloans in
{ abs with avalues }
in
let reorder_in_abs (abs : abs) =
if AbstractionId.Set.mem abs.abs_id old_abs_ids then abs
else reorder_in_fresh_abs abs
in
let env = env_map_abs reorder_in_abs ctx.env in
{ ctx with env }
(** Collapse an environment.
We do this to simplify an environment, for the purpose of finding a loop
fixed point.
We do the following:
- we look for all the *new* dummy values (we use sets of old ids to decide
wether a value is new or not) and convert them into abstractions
- whenever there is a new abstraction in the context, and some of its
its borrows are associated to loans in another new abstraction, we
merge them.
In effect, this allows us to merge newly introduced abstractions/borrows
with their parent abstractions.
For instance, when evaluating the first loop iteration, we start in the
following environment:
{[
abs@0 { ML l0 }
ls -> MB l0 (s2 : loops::List<T>)
i -> s1 : u32
]}
and get the following environment upon reaching the [Continue] statement:
{[
abs@0 { ML l0 }
ls -> MB l4 (s@6 : loops::List<T>)
i -> s@7 : u32
_@1 -> MB l0 (loops::List::Cons (ML l1, ML l2))
_@2 -> MB l2 (@Box (ML l4)) // tail
_@3 -> MB l1 (s@3 : T) // hd
]}
In this new environment, the dummy variables [_@1], [_@2] and [_@3] are
considered as new.
We first convert the new dummy values to abstractions. It gives:
{[
abs@0 { ML l0 }
ls -> MB l4 (s@6 : loops::List<T>)
i -> s@7 : u32
abs@1 { MB l0, ML l1, ML l2 }
abs@2 { MB l2, ML l4 }
abs@3 { MB l1 }
]}
We finally merge the new abstractions together. It gives:
{[
abs@0 { ML l0 }
ls -> MB l4 (s@6 : loops::List<T>)
i -> s@7 : u32
abs@4 { MB l0, ML l4 }
]}
[merge_funs]: those are used to merge loans or borrows which appear in both
abstractions (rem.: here we mean that, for instance, both abstractions
contain a shared loan with id l0).
This can happen when merging environments (note that such environments are not well-formed -
they become well formed again after collapsing).
*)
let collapse_ctx (loop_id : LoopId.id)
(merge_funs : merge_duplicates_funcs option) (old_ids : ids_sets)
(ctx0 : eval_ctx) : eval_ctx =
(* Debug *)
log#ldebug
(lazy
("collapse_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- ctx0:\n" ^ eval_ctx_to_string ctx0 ^ "\n\n"));
let abs_kind : abs_kind = Loop (loop_id, None, LoopSynthInput) in
let can_end = true in
let destructure_shared_values = true in
let is_fresh_abs_id (id : AbstractionId.id) : bool =
not (AbstractionId.Set.mem id old_ids.aids)
in
let is_fresh_did (id : DummyVarId.id) : bool =
not (DummyVarId.Set.mem id old_ids.dids)
in
(* Convert the dummy values to abstractions (note that when we convert
values to abstractions, the resulting abstraction should be destructured) *)
(* Note that we preserve the order of the dummy values: we replace them with
abstractions in place - this makes matching easier *)
let env =
List.concat
(List.map
(fun ee ->
match ee with
| EAbs _ | EFrame | EBinding (BVar _, _) -> [ ee ]
| EBinding (BDummy id, v) ->
if is_fresh_did id then
let absl =
convert_value_to_abstractions abs_kind can_end
destructure_shared_values ctx0 v
in
List.map (fun abs -> EAbs abs) absl
else [ ee ])
ctx0.env)
in
let ctx = { ctx0 with env } in
log#ldebug
(lazy
("collapse_ctx: after converting values to abstractions:\n"
^ show_ids_sets old_ids ^ "\n\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n\n"
));
log#ldebug
(lazy
("collapse_ctx: after decomposing the shared values in the abstractions:\n"
^ show_ids_sets old_ids ^ "\n\n- ctx:\n" ^ eval_ctx_to_string ctx ^ "\n\n"
));
(* Explore all the *new* abstractions, and compute various maps *)
let explore (abs : abs) = is_fresh_abs_id abs.abs_id in
let ids_maps =
compute_abs_borrows_loans_maps (merge_funs = None) explore env
in
let {
abs_ids;
abs_to_borrows;
abs_to_loans = _;
abs_to_borrows_loans;
borrow_to_abs = _;
loan_to_abs;
borrow_loan_to_abs;
} =
ids_maps
in
(* Change the merging behaviour depending on the input parameters *)
let abs_to_borrows, loan_to_abs =
if merge_funs <> None then (abs_to_borrows_loans, borrow_loan_to_abs)
else (abs_to_borrows, loan_to_abs)
in
(* Merge the abstractions together *)
let merged_abs : AbstractionId.id UnionFind.elem AbstractionId.Map.t =
AbstractionId.Map.of_list
(List.map (fun id -> (id, UnionFind.make id)) abs_ids)
in
let ctx = ref ctx in
(* Merge all the mergeable abs.
We iterate over the abstractions, then over the borrows in the abstractions.
We do this because we want to control the order in which abstractions
are merged (the ids are iterated in increasing order). Otherwise, we
could simply iterate over all the borrows in [borrow_to_abs]...
*)
List.iter
(fun abs_id0 ->
let bids = AbstractionId.Map.find abs_id0 abs_to_borrows in
let bids = BorrowId.Set.elements bids in
List.iter
(fun bid ->
match BorrowId.Map.find_opt bid loan_to_abs with
| None -> (* Nothing to do *) ()
| Some abs_ids1 ->
AbstractionId.Set.iter
(fun abs_id1 ->
(* We need to merge - unless we have already merged *)
(* First, find the representatives for the two abstractions (the
representative is the abstraction into which we merged) *)
let abs_ref0 =
UnionFind.find (AbstractionId.Map.find abs_id0 merged_abs)
in
let abs_id0 = UnionFind.get abs_ref0 in
let abs_ref1 =
UnionFind.find (AbstractionId.Map.find abs_id1 merged_abs)
in
let abs_id1 = UnionFind.get abs_ref1 in
(* If the two ids are the same, it means the abstractions were already merged *)
if abs_id0 = abs_id1 then ()
else (
(* We actually need to merge the abstractions *)
(* Debug *)
log#ldebug
(lazy
("collapse_ctx: merging abstraction "
^ AbstractionId.to_string abs_id1
^ " into "
^ AbstractionId.to_string abs_id0
^ ":\n\n" ^ eval_ctx_to_string !ctx));
(* Update the environment - pay attention to the order: we
we merge [abs_id1] *into* [abs_id0] *)
let nctx, abs_id =
merge_into_abstraction abs_kind can_end merge_funs !ctx
abs_id1 abs_id0
in
ctx := nctx;
(* Update the union find *)
let abs_ref_merged = UnionFind.union abs_ref0 abs_ref1 in
UnionFind.set abs_ref_merged abs_id))
abs_ids1)
bids)
abs_ids;
log#ldebug
(lazy
("collapse_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- after collapse:\n" ^ eval_ctx_to_string !ctx ^ "\n\n"));
(* Reorder the loans and borrows in the fresh abstractions *)
let ctx = reorder_loans_borrows_in_fresh_abs old_ids.aids !ctx in
log#ldebug
(lazy
("collapse_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- after collapse and reorder borrows/loans:\n"
^ eval_ctx_to_string ctx ^ "\n\n"));
(* Return the new context *)
ctx
let mk_collapse_ctx_merge_duplicate_funs (loop_id : LoopId.id) (ctx : eval_ctx)
: merge_duplicates_funcs =
(* Rem.: the merge functions raise exceptions (that we catch). *)
let module S : MatchJoinState = struct
let loop_id = loop_id
let nabs = ref []
end in
let module JM = MakeJoinMatcher (S) in
let module M = MakeMatcher (JM) in
(* Functions to match avalues (see {!merge_duplicates_funcs}).
Those functions are used to merge borrows/loans with the *same ids*.
They will always be called on destructured avalues (whose children are
[AIgnored] - we enforce that through sanity checks). We rely on the join
matcher [JM] to match the concrete values (for shared loans for instance).
Note that the join matcher doesn't implement match functions for avalues
(see the comments in {!MakeJoinMatcher}.
*)
let merge_amut_borrows id ty0 child0 _ty1 child1 =
(* Sanity checks *)
assert (is_aignored child0.value);
assert (is_aignored child1.value);
(* We need to pick a type for the avalue. The types on the left and on the
right may use different regions: it doesn't really matter (here, we pick
the one from the left), because we will merge those regions together
anyway (see the comments for {!merge_into_abstraction}).
*)
let ty = ty0 in
let child = child0 in
let value = ABorrow (AMutBorrow (id, child)) in
{ value; ty }
in
let merge_ashared_borrows id ty0 ty1 =
(* Sanity checks *)
let _ =
let _, ty0, _ = ty_as_ref ty0 in
let _, ty1, _ = ty_as_ref ty1 in
assert (not (ty_has_borrows ctx.type_ctx.type_infos ty0));
assert (not (ty_has_borrows ctx.type_ctx.type_infos ty1))
in
(* Same remarks as for [merge_amut_borrows] *)
let ty = ty0 in
let value = ABorrow (ASharedBorrow id) in
{ value; ty }
in
let merge_amut_loans id ty0 child0 _ty1 child1 =
(* Sanity checks *)
assert (is_aignored child0.value);
assert (is_aignored child1.value);
(* Same remarks as for [merge_amut_borrows] *)
let ty = ty0 in
let child = child0 in
let value = ALoan (AMutLoan (id, child)) in
{ value; ty }
in
let merge_ashared_loans ids ty0 (sv0 : typed_value) child0 _ty1
(sv1 : typed_value) child1 =
(* Sanity checks *)
assert (is_aignored child0.value);
assert (is_aignored child1.value);
(* Same remarks as for [merge_amut_borrows].
This time we need to also merge the shared values. We rely on the
join matcher [JM] to do so.
*)
assert (not (value_has_loans_or_borrows ctx sv0.value));
assert (not (value_has_loans_or_borrows ctx sv1.value));
let ty = ty0 in
let child = child0 in
let sv = M.match_typed_values ctx ctx sv0 sv1 in
let value = ALoan (ASharedLoan (ids, sv, child)) in
{ value; ty }
in
{
merge_amut_borrows;
merge_ashared_borrows;
merge_amut_loans;
merge_ashared_loans;
}
let merge_into_abstraction (loop_id : LoopId.id) (abs_kind : abs_kind)
(can_end : bool) (ctx : eval_ctx) (aid0 : AbstractionId.id)
(aid1 : AbstractionId.id) : eval_ctx * AbstractionId.id =
let merge_funs = mk_collapse_ctx_merge_duplicate_funs loop_id ctx in
merge_into_abstraction abs_kind can_end (Some merge_funs) ctx aid0 aid1
(** Collapse an environment, merging the duplicated borrows/loans.
This function simply calls {!collapse_ctx} with the proper merging functions.
We do this because when we join environments, we may introduce duplicated
loans and borrows. See the explanations for {!join_ctxs}.
*)
let collapse_ctx_with_merge (loop_id : LoopId.id) (old_ids : ids_sets)
(ctx : eval_ctx) : eval_ctx =
let merge_funs = mk_collapse_ctx_merge_duplicate_funs loop_id ctx in
try collapse_ctx loop_id (Some merge_funs) old_ids ctx
with ValueMatchFailure _ -> raise (Failure "Unexpected")
let join_ctxs (loop_id : LoopId.id) (fixed_ids : ids_sets) (ctx0 : eval_ctx)
(ctx1 : eval_ctx) : ctx_or_update =
(* Debug *)
log#ldebug
(lazy
("join_ctxs:\n\n- fixed_ids:\n" ^ show_ids_sets fixed_ids
^ "\n\n- ctx0:\n"
^ eval_ctx_to_string_no_filter ctx0
^ "\n\n- ctx1:\n"
^ eval_ctx_to_string_no_filter ctx1
^ "\n\n"));
let env0 = List.rev ctx0.env in
let env1 = List.rev ctx1.env in
let nabs = ref [] in
(* Explore the environments. *)
let join_suffixes (env0 : env) (env1 : env) : env =
(* Debug *)
log#ldebug
(lazy
("join_suffixes:\n\n- fixed_ids:\n" ^ show_ids_sets fixed_ids
^ "\n\n- ctx0:\n"
^ eval_ctx_to_string_no_filter { ctx0 with env = List.rev env0 }
^ "\n\n- ctx1:\n"
^ eval_ctx_to_string_no_filter { ctx1 with env = List.rev env1 }
^ "\n\n"));
(* Sanity check: there are no values/abstractions which should be in the prefix *)
let check_valid (ee : env_elem) : unit =
match ee with
| EBinding (BVar _, _) ->
(* Variables are necessarily in the prefix *)
raise (Failure "Unreachable")
| EBinding (BDummy did, _) ->
assert (not (DummyVarId.Set.mem did fixed_ids.dids))
| EAbs abs ->
assert (not (AbstractionId.Set.mem abs.abs_id fixed_ids.aids))
| EFrame ->
(* This should have been eliminated *)
raise (Failure "Unreachable")
in
List.iter check_valid env0;
List.iter check_valid env1;
(* Concatenate the suffixes and append the abstractions introduced while
joining the prefixes *)
let absl = List.map (fun abs -> EAbs abs) (List.rev !nabs) in
List.concat [ env0; env1; absl ]
in
let module S : MatchJoinState = struct
let loop_id = loop_id
let nabs = nabs
end in
let module JM = MakeJoinMatcher (S) in
let module M = MakeMatcher (JM) in
(* Rem.: this function raises exceptions *)
let rec join_prefixes (env0 : env) (env1 : env) : env =
match (env0, env1) with
| ( (EBinding (BDummy b0, v0) as var0) :: env0',
(EBinding (BDummy b1, v1) as var1) :: env1' ) ->
(* Debug *)
log#ldebug
(lazy
("join_prefixes: BDummys:\n\n- fixed_ids:\n" ^ "\n"
^ show_ids_sets fixed_ids ^ "\n\n- value0:\n"
^ env_elem_to_string ctx0 var0
^ "\n\n- value1:\n"
^ env_elem_to_string ctx1 var1
^ "\n\n"));
(* Two cases: the dummy value is an old value, in which case the bindings
must be the same and we must join their values. Otherwise, it means we
are not in the prefix anymore *)
if DummyVarId.Set.mem b0 fixed_ids.dids then (
(* Still in the prefix: match the values *)
assert (b0 = b1);
let b = b0 in
let v = M.match_typed_values ctx0 ctx1 v0 v1 in
let var = EBinding (BDummy b, v) in
(* Continue *)
var :: join_prefixes env0' env1')
else (* Not in the prefix anymore *)
join_suffixes env0 env1
| ( (EBinding (BVar b0, v0) as var0) :: env0',
(EBinding (BVar b1, v1) as var1) :: env1' ) ->
(* Debug *)
log#ldebug
(lazy
("join_prefixes: BVars:\n\n- fixed_ids:\n" ^ "\n"
^ show_ids_sets fixed_ids ^ "\n\n- value0:\n"
^ env_elem_to_string ctx0 var0
^ "\n\n- value1:\n"
^ env_elem_to_string ctx1 var1
^ "\n\n"));
(* Variable bindings *must* be in the prefix and consequently their
ids must be the same *)
assert (b0 = b1);
(* Match the values *)
let b = b0 in
let v = M.match_typed_values ctx0 ctx1 v0 v1 in
let var = EBinding (BVar b, v) in
(* Continue *)
var :: join_prefixes env0' env1'
| (EAbs abs0 as abs) :: env0', EAbs abs1 :: env1' ->
(* Debug *)
log#ldebug
(lazy
("join_prefixes: Abs:\n\n- fixed_ids:\n" ^ "\n"
^ show_ids_sets fixed_ids ^ "\n\n- abs0:\n" ^ abs_to_string ctx0 abs0
^ "\n\n- abs1:\n" ^ abs_to_string ctx1 abs1 ^ "\n\n"));
(* Same as for the dummy values: there are two cases *)
if AbstractionId.Set.mem abs0.abs_id fixed_ids.aids then (
(* Still in the prefix: the abstractions must be the same *)
assert (abs0 = abs1);
(* Continue *)
abs :: join_prefixes env0' env1')
else (* Not in the prefix anymore *)
join_suffixes env0 env1
| _ ->
(* The elements don't match: we are not in the prefix anymore *)
join_suffixes env0 env1
in
try
(* Remove the frame delimiter (the first element of an environment is a frame delimiter) *)
let env0, env1 =
match (env0, env1) with
| EFrame :: env0, EFrame :: env1 -> (env0, env1)
| _ -> raise (Failure "Unreachable")
in
log#ldebug
(lazy
("- env0:\n" ^ show_env env0 ^ "\n\n- env1:\n" ^ show_env env1 ^ "\n\n"));
let env = List.rev (EFrame :: join_prefixes env0 env1) in
(* Construct the joined context - of course, the type, fun, etc. contexts
* should be the same in the two contexts *)
let {
type_ctx;
fun_ctx;
global_ctx;
trait_decls_ctx;
trait_impls_ctx;
region_groups;
type_vars;
const_generic_vars;
const_generic_vars_map;
norm_trait_types;
env = _;
ended_regions = ended_regions0;
} =
ctx0
in
let {
type_ctx = _;
fun_ctx = _;
global_ctx = _;
trait_decls_ctx = _;
trait_impls_ctx = _;
region_groups = _;
type_vars = _;
const_generic_vars = _;
const_generic_vars_map = _;
norm_trait_types = _;
env = _;
ended_regions = ended_regions1;
} =
ctx1
in
let ended_regions = RegionId.Set.union ended_regions0 ended_regions1 in
Ok
{
type_ctx;
fun_ctx;
global_ctx;
trait_decls_ctx;
trait_impls_ctx;
region_groups;
type_vars;
const_generic_vars;
const_generic_vars_map;
norm_trait_types;
env;
ended_regions;
}
with ValueMatchFailure e -> Error e
(** Destructure all the new abstractions *)
let destructure_new_abs (loop_id : LoopId.id)
(old_abs_ids : AbstractionId.Set.t) (ctx : eval_ctx) : eval_ctx =
let abs_kind : abs_kind = Loop (loop_id, None, LoopSynthInput) in
let can_end = true in
let destructure_shared_values = true in
let is_fresh_abs_id (id : AbstractionId.id) : bool =
not (AbstractionId.Set.mem id old_abs_ids)
in
let env =
env_map_abs
(fun abs ->
if is_fresh_abs_id abs.abs_id then
let abs =
destructure_abs abs_kind can_end destructure_shared_values ctx abs
in
abs
else abs)
ctx.env
in
{ ctx with env }
(** Refresh the ids of the fresh abstractions.
We do this because {!prepare_ashared_loans} introduces some non-fixed
abstractions in contexts which are later joined: we have to make sure two
contexts we join don't have non-fixed abstractions with the same ids.
*)
let refresh_abs (old_abs : AbstractionId.Set.t) (ctx : eval_ctx) : eval_ctx =
let ids, _ = compute_ctx_ids ctx in
let abs_to_refresh = AbstractionId.Set.diff ids.aids old_abs in
let aids_subst =
List.map
(fun id -> (id, fresh_abstraction_id ()))
(AbstractionId.Set.elements abs_to_refresh)
in
let aids_subst = AbstractionId.Map.of_list aids_subst in
let subst id =
match AbstractionId.Map.find_opt id aids_subst with
| None -> id
| Some id -> id
in
let env =
Substitute.env_subst_ids
(fun x -> x)
(fun x -> x)
(fun x -> x)
(fun x -> x)
(fun x -> x)
subst ctx.env
in
{ ctx with env }
let loop_join_origin_with_continue_ctxs (config : config) (loop_id : LoopId.id)
(fixed_ids : ids_sets) (old_ctx : eval_ctx) (ctxl : eval_ctx list) :
(eval_ctx * eval_ctx list) * eval_ctx =
(* # Join with the new contexts, one by one
For every context, we repeteadly attempt to join it with the current
result of the join: if we fail (because we need to end loans for instance),
we update the context and retry.
Rem.: we should never have to end loans in the aggregated context, only
in the one we are trying to add to the join.
*)
let joined_ctx = ref old_ctx in
let rec join_one_aux (ctx : eval_ctx) : eval_ctx =
match join_ctxs loop_id fixed_ids !joined_ctx ctx with
| Ok nctx ->
joined_ctx := nctx;
ctx
| Error err ->
let ctx =
match err with
| LoanInRight bid ->
InterpreterBorrows.end_borrow_no_synth config bid ctx
| LoansInRight bids ->
InterpreterBorrows.end_borrows_no_synth config bids ctx
| AbsInRight _ | AbsInLeft _ | LoanInLeft _ | LoansInLeft _ ->
raise (Failure "Unexpected")
in
join_one_aux ctx
in
let join_one (ctx : eval_ctx) : eval_ctx =
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: initial ctx:\n"
^ eval_ctx_to_string ctx));
(* Destructure the abstractions introduced in the new context *)
let ctx = destructure_new_abs loop_id fixed_ids.aids ctx in
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after destructure:\n"
^ eval_ctx_to_string ctx));
(* Collapse the context we want to add to the join *)
let ctx = collapse_ctx loop_id None fixed_ids ctx in
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after collapse:\n"
^ eval_ctx_to_string ctx));
(* Refresh the fresh abstractions *)
let ctx = refresh_abs fixed_ids.aids ctx in
(* Join the two contexts *)
let ctx1 = join_one_aux ctx in
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after join:\n"
^ eval_ctx_to_string ctx1));
(* Collapse again - the join might have introduce abstractions we want
to merge with the others (note that those abstractions may actually
lead to borrows/loans duplications) *)
joined_ctx := collapse_ctx_with_merge loop_id fixed_ids !joined_ctx;
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after join-collapse:\n"
^ eval_ctx_to_string !joined_ctx));
(* Sanity check *)
if !Config.sanity_checks then Invariants.check_invariants !joined_ctx;
(* Return *)
ctx1
in
let ctxl = List.map join_one ctxl in
(* # Return *)
((old_ctx, ctxl), !joined_ctx)
|