1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
|
open Types
open Values
open Contexts
open Utils
open TypesUtils
open ValuesUtils
open InterpreterUtils
open InterpreterBorrows
open InterpreterLoopsCore
open InterpreterLoopsMatchCtxs
open Errors
(** The local logger *)
let log = Logging.loops_join_ctxs_log
(** Reduce an environment.
We do this to simplify an environment, for the purpose of finding a loop
fixed point.
We do the following:
- we look for all the *new* dummy values (we use sets of old ids to decide
wether a value is new or not) and convert them into abstractions
- whenever there is a new abstraction in the context, and some of its
its borrows are associated to loans in another new abstraction, we
merge them.
In effect, this allows us to merge newly introduced abstractions/borrows
with their parent abstractions.
For instance, looking at the [list_nth_mut] example, when evaluating the
first loop iteration, we start in the following environment:
{[
abs@0 { ML l0 }
ls -> MB l0 (s2 : loops::List<T>)
i -> s1 : u32
]}
and get the following environment upon reaching the [Continue] statement:
{[
abs@0 { ML l0 }
ls -> MB l4 (s@6 : loops::List<T>)
i -> s@7 : u32
_@1 -> MB l0 (loops::List::Cons (ML l1, ML l2))
_@2 -> MB l2 (@Box (ML l4)) // tail
_@3 -> MB l1 (s@3 : T) // hd
]}
In this new environment, the dummy variables [_@1], [_@2] and [_@3] are
considered as new.
We first convert the new dummy values to abstractions. It gives:
{[
abs@0 { ML l0 }
ls -> MB l4 (s@6 : loops::List<T>)
i -> s@7 : u32
abs@1 { MB l0, ML l1, ML l2 }
abs@2 { MB l2, ML l4 }
abs@3 { MB l1 }
]}
We finally merge the new abstractions together (abs@1 and abs@2 because
of l2, and abs@1 and abs@3 because of l1). It gives:
{[
abs@0 { ML l0 }
ls -> MB l4 (s@6 : loops::List<T>)
i -> s@7 : u32
abs@4 { MB l0, ML l4 }
]}
- If [merge_funs] is [None], we check that there are no markers in the environments.
This is the "reduce" operation.
- If [merge_funs] is [Some _], when merging abstractions together, we merge the pairs
of borrows and the pairs of loans with the same markers **if this marker is not**
[PNone]. This is useful to reuse the reduce operation to implement the collapse.
Note that we ignore borrows/loans with the [PNone] marker: the goal of the collapse
operation is to *eliminate* markers, not to simplify the environment.
For instance, when merging:
{[
abs@0 { ML l0, |MB l1| }
abs@1 { MB l0, ︙MB l1︙ }
]}
We get:
{[
abs@2 { MB l1 }
]}
*)
let reduce_ctx_with_markers (merge_funs : merge_duplicates_funcs option)
(span : Meta.span) (loop_id : LoopId.id) (old_ids : ids_sets)
(ctx0 : eval_ctx) : eval_ctx =
(* Debug *)
log#ldebug
(lazy
("reduce_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids ^ "\n\n- ctx0:\n"
^ eval_ctx_to_string ~span:(Some span) ctx0
^ "\n\n"));
let with_markers = merge_funs <> None in
let abs_kind : abs_kind = Loop (loop_id, None, LoopSynthInput) in
let can_end = true in
let destructure_shared_values = true in
let is_fresh_abs_id (id : AbstractionId.id) : bool =
not (AbstractionId.Set.mem id old_ids.aids)
in
let is_fresh_did (id : DummyVarId.id) : bool =
not (DummyVarId.Set.mem id old_ids.dids)
in
(* Convert the dummy values to abstractions (note that when we convert
values to abstractions, the resulting abstraction should be destructured) *)
(* Note that we preserve the order of the dummy values: we replace them with
abstractions in place - this makes matching easier *)
let env =
List.concat
(List.map
(fun ee ->
match ee with
| EAbs _ | EFrame | EBinding (BVar _, _) -> [ ee ]
| EBinding (BDummy id, v) ->
if is_fresh_did id then
let absl =
convert_value_to_abstractions span abs_kind can_end
destructure_shared_values ctx0 v
in
List.map (fun abs -> EAbs abs) absl
else [ ee ])
ctx0.env)
in
let ctx = { ctx0 with env } in
log#ldebug
(lazy
("reduce_ctx: after converting values to abstractions:\n"
^ show_ids_sets old_ids ^ "\n\n- ctx:\n"
^ eval_ctx_to_string ~span:(Some span) ctx
^ "\n\n"));
log#ldebug
(lazy
("reduce_ctx: after decomposing the shared values in the abstractions:\n"
^ show_ids_sets old_ids ^ "\n\n- ctx:\n"
^ eval_ctx_to_string ~span:(Some span) ctx
^ "\n\n"));
(* Explore all the *new* abstractions, and compute various maps *)
let explore (abs : abs) = is_fresh_abs_id abs.abs_id in
let ids_maps = compute_abs_borrows_loans_maps span explore env in
let {
abs_ids;
abs_to_borrows = _;
abs_to_loans;
borrow_to_abs;
loan_to_abs = _;
} =
ids_maps
in
(* Merge the abstractions together *)
let merged_abs : AbstractionId.id UnionFind.elem AbstractionId.Map.t =
AbstractionId.Map.of_list
(List.map (fun id -> (id, UnionFind.make id)) abs_ids)
in
let ctx = ref ctx in
(* Merge all the mergeable abs.
We iterate over the abstractions, then over the loans in the abstractions.
We do this because we want to control the order in which abstractions
are merged (the ids are iterated in increasing order). Otherwise, we
could simply iterate over all the borrows in [loan_to_abs]...
*)
List.iter
(fun abs_id0 ->
let lids = AbstractionId.Map.find abs_id0 abs_to_loans in
let lids = MarkerBorrowId.Set.elements lids in
List.iter
(fun lid ->
if not with_markers then
sanity_check __FILE__ __LINE__ (fst lid = PNone) span;
(* If we use markers: we are doing a collapse, which means we attempt
to eliminate markers (and this is the only goal of the operation).
We thus ignore the non-marked values (we merge non-marked values
when doing a "real" reduce, to simplify the environment in order
to converge to a fixed-point, for instance). *)
if with_markers && fst lid = PNone then ()
else
(* Find the borrow corresponding to the loan we want to eliminate *)
match MarkerBorrowId.Map.find_opt lid borrow_to_abs with
| None -> (* Nothing to do *) ()
| Some abs_ids1 ->
AbstractionId.Set.iter
(fun abs_id1 ->
(* We need to merge - unless we have already merged *)
(* First, find the representatives for the two abstractions.
We may have merged some abstractions already, so maybe abs_id0
and abs_id1 don't exist anymore, because they may have been
merged into other abstractions: we look for the abstractions
resulting from such merged. *)
let abs_ref0 =
UnionFind.find (AbstractionId.Map.find abs_id0 merged_abs)
in
let abs_id0 = UnionFind.get abs_ref0 in
let abs_ref1 =
UnionFind.find (AbstractionId.Map.find abs_id1 merged_abs)
in
let abs_id1 = UnionFind.get abs_ref1 in
(* If the two ids are the same, it means the abstractions were already merged *)
if abs_id0 = abs_id1 then ()
else (
(* We actually need to merge the abstractions *)
(* Debug *)
log#ldebug
(lazy
("reduce_ctx: merging abstraction "
^ AbstractionId.to_string abs_id1
^ " into "
^ AbstractionId.to_string abs_id0
^ ":\n\n"
^ eval_ctx_to_string ~span:(Some span) !ctx));
(* Update the environment - pay attention to the order:
we merge [abs_id1] *into* [abs_id0].
In particular, as [abs_id0] contains the loan, it has
to be on the left. *)
let nctx, abs_id =
merge_into_first_abstraction span abs_kind can_end
merge_funs !ctx abs_id0 abs_id1
in
ctx := nctx;
(* Update the union find *)
let abs_ref_merged = UnionFind.union abs_ref0 abs_ref1 in
UnionFind.set abs_ref_merged abs_id))
abs_ids1)
lids)
abs_ids;
log#ldebug
(lazy
("reduce_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- after reduce:\n"
^ eval_ctx_to_string ~span:(Some span) !ctx
^ "\n\n"));
(* Reorder the loans and borrows in the fresh abstractions - note that we may
not have eliminated all the markers at this point. *)
let ctx = reorder_loans_borrows_in_fresh_abs span true old_ids.aids !ctx in
log#ldebug
(lazy
("reduce_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- after reduce and reorder borrows/loans:\n"
^ eval_ctx_to_string ~span:(Some span) ctx
^ "\n\n"));
(* Return the new context *)
ctx
(** Reduce_ctx can only be called in a context with no markers *)
let reduce_ctx = reduce_ctx_with_markers None
(** Auxiliary function for collapse (see below).
We traverse all abstractions, and merge abstractions when they contain the same element,
but with dual markers (i.e., [PLeft] and [PRight]).
For instance, if we have the abstractions
{[
abs@0 { | MB l0 _ |, ML l1 }
abs@1 { ︙MB l0 _ ︙, ML l2 }
]}
We merge abs@0 and abs@1 into a new abstraction abs@2. This allows us to
eliminate the markers used for [MB l0]:
{[
abs@2 { MB l0 _, ML l1, ML l2 }
]}
*)
let collapse_ctx_collapse (span : Meta.span) (loop_id : LoopId.id)
(merge_funs : merge_duplicates_funcs) (old_ids : ids_sets) (ctx0 : eval_ctx)
: eval_ctx =
(* Debug *)
log#ldebug
(lazy
("collapse_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- ctx0:\n"
^ eval_ctx_to_string ~span:(Some span) ctx0
^ "\n\n"));
let abs_kind : abs_kind = Loop (loop_id, None, LoopSynthInput) in
let can_end = true in
let is_fresh_abs_id (id : AbstractionId.id) : bool =
not (AbstractionId.Set.mem id old_ids.aids)
in
(* Explore all the *new* abstractions, and compute various maps *)
let explore (abs : abs) = is_fresh_abs_id abs.abs_id in
let ids_maps = compute_abs_borrows_loans_maps span explore ctx0.env in
let { abs_ids; abs_to_borrows; abs_to_loans; borrow_to_abs; loan_to_abs } =
ids_maps
in
(* Merge the abstractions together *)
let merged_abs : AbstractionId.id UnionFind.elem AbstractionId.Map.t =
AbstractionId.Map.of_list
(List.map (fun id -> (id, UnionFind.make id)) abs_ids)
in
let ctx = ref ctx0 in
let invert_proj_marker = function
| PNone -> craise __FILE__ __LINE__ span "Unreachable"
| PLeft -> PRight
| PRight -> PLeft
in
(* Merge all the mergeable abs where the same element in present in both abs,
but with left and right markers respectively.
We first check all borrows, then all loans
*)
List.iter
(fun abs_id0 ->
let bids = AbstractionId.Map.find abs_id0 abs_to_borrows in
let bids = MarkerBorrowId.Set.elements bids in
List.iter
(fun (pm, bid) ->
if pm = PNone then ()
else
(* We are looking for an element with the same borrow_id, but with the dual marker *)
match
MarkerBorrowId.Map.find_opt
(invert_proj_marker pm, bid)
borrow_to_abs
with
| None -> (* Nothing to do *) ()
| Some abs_ids1 ->
AbstractionId.Set.iter
(fun abs_id1 ->
(* We need to merge - unless we have already merged *)
(* First, find the representatives for the two abstractions (the
representative is the abstraction into which we merged) *)
let abs_ref0 =
UnionFind.find (AbstractionId.Map.find abs_id0 merged_abs)
in
let abs_id0 = UnionFind.get abs_ref0 in
let abs_ref1 =
UnionFind.find (AbstractionId.Map.find abs_id1 merged_abs)
in
let abs_id1 = UnionFind.get abs_ref1 in
(* If the two ids are the same, it means the abstractions were already merged *)
if abs_id0 = abs_id1 then ()
else (
(* We actually need to merge the abstractions *)
(* Debug *)
log#ldebug
(lazy
("collapse_ctx: merging abstraction "
^ AbstractionId.to_string abs_id1
^ " into "
^ AbstractionId.to_string abs_id0
^ ":\n\n"
^ eval_ctx_to_string ~span:(Some span) !ctx));
(* Update the environment - pay attention to the order: we
we merge [abs_id1] *into* [abs_id0] *)
let nctx, abs_id =
merge_into_first_abstraction span abs_kind can_end
(Some merge_funs) !ctx abs_id0 abs_id1
in
ctx := nctx;
(* Update the union find *)
let abs_ref_merged = UnionFind.union abs_ref0 abs_ref1 in
UnionFind.set abs_ref_merged abs_id))
abs_ids1)
bids;
(* We now traverse the loans *)
let bids = AbstractionId.Map.find abs_id0 abs_to_loans in
let bids = MarkerBorrowId.Set.elements bids in
List.iter
(fun (pm, bid) ->
if pm = PNone then ()
else
(* We are looking for an element with the same borrow_id, but with the dual marker *)
match
MarkerBorrowId.Map.find_opt
(invert_proj_marker pm, bid)
loan_to_abs
with
| None -> (* Nothing to do *) ()
| Some abs_ids1 ->
AbstractionId.Set.iter
(fun abs_id1 ->
(* We need to merge - unless we have already merged *)
(* First, find the representatives for the two abstractions (the
representative is the abstraction into which we merged) *)
let abs_ref0 =
UnionFind.find (AbstractionId.Map.find abs_id0 merged_abs)
in
let abs_id0 = UnionFind.get abs_ref0 in
let abs_ref1 =
UnionFind.find (AbstractionId.Map.find abs_id1 merged_abs)
in
let abs_id1 = UnionFind.get abs_ref1 in
(* If the two ids are the same, it means the abstractions were already merged *)
if abs_id0 = abs_id1 then ()
else (
(* We actually need to merge the abstractions *)
(* Debug *)
log#ldebug
(lazy
("collapse_ctx: merging abstraction "
^ AbstractionId.to_string abs_id1
^ " into "
^ AbstractionId.to_string abs_id0
^ ":\n\n"
^ eval_ctx_to_string ~span:(Some span) !ctx));
(* Update the environment - pay attention to the order: we
we merge [abs_id1] *into* [abs_id0] *)
let nctx, abs_id =
merge_into_first_abstraction span abs_kind can_end
(Some merge_funs) !ctx abs_id0 abs_id1
in
ctx := nctx;
(* Update the union find *)
let abs_ref_merged = UnionFind.union abs_ref0 abs_ref1 in
UnionFind.set abs_ref_merged abs_id))
abs_ids1)
bids)
abs_ids;
log#ldebug
(lazy
("collapse_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- after collapse:\n"
^ eval_ctx_to_string ~span:(Some span) !ctx
^ "\n\n"));
(* Reorder the loans and borrows in the fresh abstractions - note that we may
not have eliminated all the markers yet *)
let ctx = reorder_loans_borrows_in_fresh_abs span true old_ids.aids !ctx in
log#ldebug
(lazy
("collapse_ctx:\n\n- fixed_ids:\n" ^ show_ids_sets old_ids
^ "\n\n- after collapse and reorder borrows/loans:\n"
^ eval_ctx_to_string ~span:(Some span) ctx
^ "\n\n"));
(* Return the new context *)
ctx
(** Small utility: check whether an environment contains markers *)
let eval_ctx_has_markers (ctx : eval_ctx) : bool =
let visitor =
object
inherit [_] iter_eval_ctx
method! visit_proj_marker _ pm =
match pm with PNone -> () | PLeft | PRight -> raise Found
end
in
try
visitor#visit_eval_ctx () ctx;
false
with Found -> true
(** Collapse two environments containing projection markers; this function is called after
joining environments.
The collapse is done in two steps.
First, we reduce the environment, merging any two pair of fresh abstractions
which contain a loan (in one) and its corresponding borrow (in the other).
For instance, we merge abs@0 and abs@1 below:
{[
abs@0 { |ML l0|, ML l1 }
abs@1 { |MB l0 _|, ML l2 }
~~>
abs@2 { ML l1, ML l2 }
]}
Note that we also merge abstractions when the loan/borrow don't have the same
markers. For instance, below:
{[
abs@0 { ML l0, ML l1 } // ML l0 doesn't have markers
abs@1 { |MB l0 _|, ML l2 }
~~>
abs@2 { ︙ML l0︙, ML l1, ML l2 }
]}
Second, we merge abstractions containing the same element with left and right markers
respectively. For instance:
{[
abs@0 { | MB l0 _ |, ML l1 }
abs@1 { ︙MB l0 _ ︙, ML l2 }
~~>
abs@2 { MB l0 _, ML l1, ML l2 }
]}
At the end of the second step, all markers should have been removed from the resulting
environment.
*)
let collapse_ctx (span : Meta.span) (loop_id : LoopId.id)
(merge_funs : merge_duplicates_funcs) (old_ids : ids_sets) (ctx0 : eval_ctx)
: eval_ctx =
let ctx =
reduce_ctx_with_markers (Some merge_funs) span loop_id old_ids ctx0
in
let ctx = collapse_ctx_collapse span loop_id merge_funs old_ids ctx in
(* Sanity check: there are no markers remaining *)
sanity_check __FILE__ __LINE__ (not (eval_ctx_has_markers ctx)) span;
ctx
let mk_collapse_ctx_merge_duplicate_funs (span : Meta.span)
(loop_id : LoopId.id) (ctx : eval_ctx) : merge_duplicates_funcs =
(* Rem.: the merge functions raise exceptions (that we catch). *)
let module S : MatchJoinState = struct
let span = span
let loop_id = loop_id
let nabs = ref []
end in
let module JM = MakeJoinMatcher (S) in
let module M = MakeMatcher (JM) in
(* Functions to match avalues (see {!merge_duplicates_funcs}).
Those functions are used to merge borrows/loans with the *same ids*.
They will always be called on destructured avalues (whose children are
[AIgnored] - we enforce that through sanity checks). We rely on the join
matcher [JM] to match the concrete values (for shared loans for instance).
Note that the join matcher doesn't implement match functions for avalues
(see the comments in {!MakeJoinMatcher}.
*)
let merge_amut_borrows id ty0 _pm0 child0 _ty1 _pm1 child1 =
(* Sanity checks *)
sanity_check __FILE__ __LINE__ (is_aignored child0.value) span;
sanity_check __FILE__ __LINE__ (is_aignored child1.value) span;
(* We need to pick a type for the avalue. The types on the left and on the
right may use different regions: it doesn't really matter (here, we pick
the one from the left), because we will merge those regions together
anyway (see the comments for {!merge_into_first_abstraction}).
*)
let ty = ty0 in
let child = child0 in
let value = ABorrow (AMutBorrow (PNone, id, child)) in
{ value; ty }
in
let merge_ashared_borrows id ty0 _pm0 ty1 _pm1 =
(* Sanity checks *)
let _ =
let _, ty0, _ = ty_as_ref ty0 in
let _, ty1, _ = ty_as_ref ty1 in
sanity_check __FILE__ __LINE__
(not (ty_has_borrows ctx.type_ctx.type_infos ty0))
span;
sanity_check __FILE__ __LINE__
(not (ty_has_borrows ctx.type_ctx.type_infos ty1))
span
in
(* Same remarks as for [merge_amut_borrows] *)
let ty = ty0 in
let value = ABorrow (ASharedBorrow (PNone, id)) in
{ value; ty }
in
let merge_amut_loans id ty0 _pm0 child0 _ty1 _pm1 child1 =
(* Sanity checks *)
sanity_check __FILE__ __LINE__ (is_aignored child0.value) span;
sanity_check __FILE__ __LINE__ (is_aignored child1.value) span;
(* Same remarks as for [merge_amut_borrows] *)
let ty = ty0 in
let child = child0 in
let value = ALoan (AMutLoan (PNone, id, child)) in
{ value; ty }
in
let merge_ashared_loans ids ty0 _pm0 (sv0 : typed_value) child0 _ty1 _pm1
(sv1 : typed_value) child1 =
(* Sanity checks *)
sanity_check __FILE__ __LINE__ (is_aignored child0.value) span;
sanity_check __FILE__ __LINE__ (is_aignored child1.value) span;
(* Same remarks as for [merge_amut_borrows].
This time we need to also merge the shared values. We rely on the
join matcher [JM] to do so.
*)
sanity_check __FILE__ __LINE__
(not (value_has_loans_or_borrows ctx sv0.value))
span;
sanity_check __FILE__ __LINE__
(not (value_has_loans_or_borrows ctx sv1.value))
span;
let ty = ty0 in
let child = child0 in
let sv = M.match_typed_values ctx ctx sv0 sv1 in
let value = ALoan (ASharedLoan (PNone, ids, sv, child)) in
{ value; ty }
in
{
merge_amut_borrows;
merge_ashared_borrows;
merge_amut_loans;
merge_ashared_loans;
}
let merge_into_first_abstraction (span : Meta.span) (loop_id : LoopId.id)
(abs_kind : abs_kind) (can_end : bool) (ctx : eval_ctx)
(aid0 : AbstractionId.id) (aid1 : AbstractionId.id) :
eval_ctx * AbstractionId.id =
let merge_funs = mk_collapse_ctx_merge_duplicate_funs span loop_id ctx in
merge_into_first_abstraction span abs_kind can_end (Some merge_funs) ctx aid0
aid1
(** Collapse an environment, merging the duplicated borrows/loans.
This function simply calls {!collapse_ctx} with the proper merging functions.
We do this because when we join environments, we may introduce duplicated
loans and borrows. See the explanations for {!join_ctxs}.
*)
let collapse_ctx_with_merge (span : Meta.span) (loop_id : LoopId.id)
(old_ids : ids_sets) (ctx : eval_ctx) : eval_ctx =
let merge_funs = mk_collapse_ctx_merge_duplicate_funs span loop_id ctx in
try collapse_ctx span loop_id merge_funs old_ids ctx
with ValueMatchFailure _ -> craise __FILE__ __LINE__ span "Unexpected"
let join_ctxs (span : Meta.span) (loop_id : LoopId.id) (fixed_ids : ids_sets)
(ctx0 : eval_ctx) (ctx1 : eval_ctx) : ctx_or_update =
(* Debug *)
log#ldebug
(lazy
("join_ctxs:\n\n- fixed_ids:\n" ^ show_ids_sets fixed_ids
^ "\n\n- ctx0:\n"
^ eval_ctx_to_string_no_filter ~span:(Some span) ctx0
^ "\n\n- ctx1:\n"
^ eval_ctx_to_string_no_filter ~span:(Some span) ctx1
^ "\n\n"));
let env0 = List.rev ctx0.env in
let env1 = List.rev ctx1.env in
let nabs = ref [] in
(* Explore the environments. *)
let join_suffixes (env0 : env) (env1 : env) : env =
(* Debug *)
log#ldebug
(lazy
("join_suffixes:\n\n- fixed_ids:\n" ^ show_ids_sets fixed_ids
^ "\n\n- ctx0:\n"
^ eval_ctx_to_string_no_filter ~span:(Some span)
{ ctx0 with env = List.rev env0 }
^ "\n\n- ctx1:\n"
^ eval_ctx_to_string_no_filter ~span:(Some span)
{ ctx1 with env = List.rev env1 }
^ "\n\n"));
(* Sanity check: there are no values/abstractions which should be in the prefix *)
let check_valid (ee : env_elem) : unit =
match ee with
| EBinding (BVar _, _) ->
(* Variables are necessarily in the prefix *)
craise __FILE__ __LINE__ span "Unreachable"
| EBinding (BDummy did, _) ->
sanity_check __FILE__ __LINE__
(not (DummyVarId.Set.mem did fixed_ids.dids))
span
| EAbs abs ->
sanity_check __FILE__ __LINE__
(not (AbstractionId.Set.mem abs.abs_id fixed_ids.aids))
span
| EFrame ->
(* This should have been eliminated *)
craise __FILE__ __LINE__ span "Unreachable"
in
(* Add projection marker to all abstractions in the left and right environments *)
let add_marker (pm : proj_marker) (ee : env_elem) : env_elem =
match ee with
| EAbs abs -> EAbs (abs_add_marker span ctx0 pm abs)
| x -> x
in
let env0 = List.map (add_marker PLeft) env0 in
let env1 = List.map (add_marker PRight) env1 in
List.iter check_valid env0;
List.iter check_valid env1;
(* Concatenate the suffixes and append the abstractions introduced while
joining the prefixes *)
let absl = List.map (fun abs -> EAbs abs) (List.rev !nabs) in
List.concat [ env0; env1; absl ]
in
let module S : MatchJoinState = struct
let span = span
let loop_id = loop_id
let nabs = nabs
end in
let module JM = MakeJoinMatcher (S) in
let module M = MakeMatcher (JM) in
(* Rem.: this function raises exceptions *)
let rec join_prefixes (env0 : env) (env1 : env) : env =
match (env0, env1) with
| ( (EBinding (BDummy b0, v0) as var0) :: env0',
(EBinding (BDummy b1, v1) as var1) :: env1' ) ->
(* Debug *)
log#ldebug
(lazy
("join_prefixes: BDummys:\n\n- fixed_ids:\n" ^ "\n"
^ show_ids_sets fixed_ids ^ "\n\n- value0:\n"
^ env_elem_to_string span ctx0 var0
^ "\n\n- value1:\n"
^ env_elem_to_string span ctx1 var1
^ "\n\n"));
(* Two cases: the dummy value is an old value, in which case the bindings
must be the same and we must join their values. Otherwise, it means we
are not in the prefix anymore *)
if DummyVarId.Set.mem b0 fixed_ids.dids then (
(* Still in the prefix: match the values *)
sanity_check __FILE__ __LINE__ (b0 = b1) span;
let b = b0 in
let v = M.match_typed_values ctx0 ctx1 v0 v1 in
let var = EBinding (BDummy b, v) in
(* Continue *)
var :: join_prefixes env0' env1')
else (* Not in the prefix anymore *)
join_suffixes env0 env1
| ( (EBinding (BVar b0, v0) as var0) :: env0',
(EBinding (BVar b1, v1) as var1) :: env1' ) ->
(* Debug *)
log#ldebug
(lazy
("join_prefixes: BVars:\n\n- fixed_ids:\n" ^ "\n"
^ show_ids_sets fixed_ids ^ "\n\n- value0:\n"
^ env_elem_to_string span ctx0 var0
^ "\n\n- value1:\n"
^ env_elem_to_string span ctx1 var1
^ "\n\n"));
(* Variable bindings *must* be in the prefix and consequently their
ids must be the same *)
sanity_check __FILE__ __LINE__ (b0 = b1) span;
(* Match the values *)
let b = b0 in
let v = M.match_typed_values ctx0 ctx1 v0 v1 in
let var = EBinding (BVar b, v) in
(* Continue *)
var :: join_prefixes env0' env1'
| (EAbs abs0 as abs) :: env0', EAbs abs1 :: env1' ->
(* Debug *)
log#ldebug
(lazy
("join_prefixes: Abs:\n\n- fixed_ids:\n" ^ "\n"
^ show_ids_sets fixed_ids ^ "\n\n- abs0:\n"
^ abs_to_string span ctx0 abs0
^ "\n\n- abs1:\n"
^ abs_to_string span ctx1 abs1
^ "\n\n"));
(* Same as for the dummy values: there are two cases *)
if AbstractionId.Set.mem abs0.abs_id fixed_ids.aids then (
(* Still in the prefix: the abstractions must be the same *)
sanity_check __FILE__ __LINE__ (abs0 = abs1) span;
(* Continue *)
abs :: join_prefixes env0' env1')
else (* Not in the prefix anymore *)
join_suffixes env0 env1
| _ ->
(* The elements don't match: we are not in the prefix anymore *)
join_suffixes env0 env1
in
try
(* Remove the frame delimiter (the first element of an environment is a frame delimiter) *)
let env0, env1 =
match (env0, env1) with
| EFrame :: env0, EFrame :: env1 -> (env0, env1)
| _ -> craise __FILE__ __LINE__ span "Unreachable"
in
log#ldebug
(lazy
("- env0:\n" ^ show_env env0 ^ "\n\n- env1:\n" ^ show_env env1 ^ "\n\n"));
let env = List.rev (EFrame :: join_prefixes env0 env1) in
(* Construct the joined context - of course, the type, fun, etc. contexts
* should be the same in the two contexts *)
let {
type_ctx;
fun_ctx;
global_ctx;
trait_decls_ctx;
trait_impls_ctx;
region_groups;
type_vars;
const_generic_vars;
const_generic_vars_map;
norm_trait_types;
env = _;
ended_regions = ended_regions0;
} =
ctx0
in
let {
type_ctx = _;
fun_ctx = _;
global_ctx = _;
trait_decls_ctx = _;
trait_impls_ctx = _;
region_groups = _;
type_vars = _;
const_generic_vars = _;
const_generic_vars_map = _;
norm_trait_types = _;
env = _;
ended_regions = ended_regions1;
} =
ctx1
in
let ended_regions = RegionId.Set.union ended_regions0 ended_regions1 in
Ok
{
type_ctx;
fun_ctx;
global_ctx;
trait_decls_ctx;
trait_impls_ctx;
region_groups;
type_vars;
const_generic_vars;
const_generic_vars_map;
norm_trait_types;
env;
ended_regions;
}
with ValueMatchFailure e -> Error e
(** Destructure all the new abstractions *)
let destructure_new_abs (span : Meta.span) (loop_id : LoopId.id)
(old_abs_ids : AbstractionId.Set.t) (ctx : eval_ctx) : eval_ctx =
let abs_kind : abs_kind = Loop (loop_id, None, LoopSynthInput) in
let can_end = true in
let destructure_shared_values = true in
let is_fresh_abs_id (id : AbstractionId.id) : bool =
not (AbstractionId.Set.mem id old_abs_ids)
in
let env =
env_map_abs
(fun abs ->
if is_fresh_abs_id abs.abs_id then
let abs =
destructure_abs span abs_kind can_end destructure_shared_values ctx
abs
in
abs
else abs)
ctx.env
in
{ ctx with env }
(** Refresh the ids of the fresh abstractions.
We do this because {!prepare_ashared_loans} introduces some non-fixed
abstractions in contexts which are later joined: we have to make sure two
contexts we join don't have non-fixed abstractions with the same ids.
*)
let refresh_abs (old_abs : AbstractionId.Set.t) (ctx : eval_ctx) : eval_ctx =
let ids, _ = compute_ctx_ids ctx in
let abs_to_refresh = AbstractionId.Set.diff ids.aids old_abs in
let aids_subst =
List.map
(fun id -> (id, fresh_abstraction_id ()))
(AbstractionId.Set.elements abs_to_refresh)
in
let aids_subst = AbstractionId.Map.of_list aids_subst in
let subst id =
match AbstractionId.Map.find_opt id aids_subst with
| None -> id
| Some id -> id
in
let env =
Substitute.env_subst_ids
(fun x -> x)
(fun x -> x)
(fun x -> x)
(fun x -> x)
(fun x -> x)
subst ctx.env
in
{ ctx with env }
let loop_join_origin_with_continue_ctxs (config : config) (span : Meta.span)
(loop_id : LoopId.id) (fixed_ids : ids_sets) (old_ctx : eval_ctx)
(ctxl : eval_ctx list) : (eval_ctx * eval_ctx list) * eval_ctx =
(* # Join with the new contexts, one by one
For every context, we repeteadly attempt to join it with the current
result of the join: if we fail (because we need to end loans for instance),
we update the context and retry.
Rem.: we should never have to end loans in the aggregated context, only
in the one we are trying to add to the join.
*)
let joined_ctx = ref old_ctx in
let rec join_one_aux (ctx : eval_ctx) : eval_ctx =
match join_ctxs span loop_id fixed_ids !joined_ctx ctx with
| Ok nctx ->
joined_ctx := nctx;
ctx
| Error err ->
let ctx =
match err with
| LoanInRight bid ->
InterpreterBorrows.end_borrow_no_synth config span bid ctx
| LoansInRight bids ->
InterpreterBorrows.end_borrows_no_synth config span bids ctx
| AbsInRight _ | AbsInLeft _ | LoanInLeft _ | LoansInLeft _ ->
craise __FILE__ __LINE__ span "Unexpected"
in
join_one_aux ctx
in
let join_one (ctx : eval_ctx) : eval_ctx =
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: initial ctx:\n"
^ eval_ctx_to_string ~span:(Some span) ctx));
(* Destructure the abstractions introduced in the new context *)
let ctx = destructure_new_abs span loop_id fixed_ids.aids ctx in
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after destructure:\n"
^ eval_ctx_to_string ~span:(Some span) ctx));
(* Reduce the context we want to add to the join *)
let ctx = reduce_ctx span loop_id fixed_ids ctx in
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after reduce:\n"
^ eval_ctx_to_string ~span:(Some span) ctx));
(* Refresh the fresh abstractions *)
let ctx = refresh_abs fixed_ids.aids ctx in
(* Join the two contexts *)
let ctx1 = join_one_aux ctx in
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after join:\n"
^ eval_ctx_to_string ~span:(Some span) ctx1));
(* Collapse to eliminate the markers *)
joined_ctx := collapse_ctx_with_merge span loop_id fixed_ids !joined_ctx;
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after join-collapse:\n"
^ eval_ctx_to_string ~span:(Some span) !joined_ctx));
(* Reduce again to reach a fixed point *)
joined_ctx := reduce_ctx span loop_id fixed_ids !joined_ctx;
log#ldebug
(lazy
("loop_join_origin_with_continue_ctxs:join_one: after last reduce:\n"
^ eval_ctx_to_string ~span:(Some span) !joined_ctx));
(* Sanity check *)
if !Config.sanity_checks then Invariants.check_invariants span !joined_ctx;
(* Return *)
ctx1
in
let ctxl = List.map join_one ctxl in
(* # Return *)
((old_ctx, ctxl), !joined_ctx)
|