summaryrefslogtreecommitdiff
path: root/compiler/InterpreterLoopsFixedPoint.ml
blob: c9bad3ef9e3bd908e94ad8d073454e1522ac7158 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
open Types
open Values
open Contexts
open TypesUtils
open ValuesUtils
module S = SynthesizeSymbolic
open Cps
open InterpreterUtils
open InterpreterLoopsCore
open InterpreterLoopsMatchCtxs
open InterpreterLoopsJoinCtxs

(** The local logger *)
let log = Logging.loops_fixed_point_log

(** Reorder the loans and borrows in the fresh abstractions.

    We do this in order to enforce some structure in the environments: this
    allows us to find fixed-points. Note that this function needs to be
    called typically after we merge abstractions together (see {!collapse_ctx}
    for instance).
 *)
let reorder_loans_borrows_in_fresh_abs (old_abs_ids : AbstractionId.Set.t)
    (ctx : eval_ctx) : eval_ctx =
  let reorder_in_fresh_abs (abs : abs) : abs =
    (* Split between the loans and borrows *)
    let is_borrow (av : typed_avalue) : bool =
      match av.value with
      | ABorrow _ -> true
      | ALoan _ -> false
      | _ -> raise (Failure "Unexpected")
    in
    let aborrows, aloans = List.partition is_borrow abs.avalues in

    (* Reoder the borrows, and the loans.

       After experimenting, it seems that a good way of reordering the loans
       and the borrows to find fixed points is simply to sort them by increasing
       order of id (taking the smallest id of a set of ids, in case of sets).
    *)
    let get_borrow_id (av : typed_avalue) : BorrowId.id =
      match av.value with
      | ABorrow (AMutBorrow (bid, _) | ASharedBorrow bid) -> bid
      | _ -> raise (Failure "Unexpected")
    in
    let get_loan_id (av : typed_avalue) : BorrowId.id =
      match av.value with
      | ALoan (AMutLoan (lid, _)) -> lid
      | ALoan (ASharedLoan (lids, _, _)) -> BorrowId.Set.min_elt lids
      | _ -> raise (Failure "Unexpected")
    in
    (* We use ordered maps to reorder the borrows and loans *)
    let reorder (get_bid : typed_avalue -> BorrowId.id)
        (values : typed_avalue list) : typed_avalue list =
      List.map snd
        (BorrowId.Map.bindings
           (BorrowId.Map.of_list (List.map (fun v -> (get_bid v, v)) values)))
    in
    let aborrows = reorder get_borrow_id aborrows in
    let aloans = reorder get_loan_id aloans in
    let avalues = List.append aborrows aloans in
    { abs with avalues }
  in

  let reorder_in_abs (abs : abs) =
    if AbstractionId.Set.mem abs.abs_id old_abs_ids then abs
    else reorder_in_fresh_abs abs
  in

  let env = env_map_abs reorder_in_abs ctx.env in

  { ctx with env }

let prepare_ashared_loans (loop_id : LoopId.id option) : cm_fun =
 fun cf ctx0 ->
  let ctx = ctx0 in
  (* Compute the set of borrows which appear in the abstractions, so that
     we can filter the borrows that we reborrow.
  *)
  let absl =
    List.filter_map
      (function EBinding _ | EFrame -> None | EAbs abs -> Some abs)
      ctx.env
  in
  let absl_ids, absl_id_maps = compute_absl_ids absl in
  let abs_borrow_ids = absl_ids.borrow_ids in

  (* Map from the fresh sids to the original symbolic values *)
  let sid_subst = ref [] in

  (* Return the same value but where:
     - the shared loans have been removed
     - the symbolic values have been replaced with fresh symbolic values
     - the region ids found in the value and belonging to the set [rids] have
       been substituted with [nrid]
  *)
  let mk_value_with_fresh_sids_no_shared_loans (rids : RegionId.Set.t)
      (nrid : RegionId.id) (v : typed_value) : typed_value =
    (* Remove the shared loans *)
    let v = value_remove_shared_loans v in
    (* Substitute the symbolic values and the region *)
    Substitute.typed_value_subst_ids
      (fun r -> if RegionId.Set.mem r rids then nrid else r)
      (fun x -> x)
      (fun x -> x)
      (fun id ->
        let nid = fresh_symbolic_value_id () in
        let sv = SymbolicValueId.Map.find id absl_id_maps.sids_to_values in
        sid_subst := (nid, sv) :: !sid_subst;
        nid)
      (fun x -> x)
      v
  in

  let borrow_substs = ref [] in
  let fresh_absl = ref [] in

  (* Auxiliary function to create a new abstraction for a shared value found in
     an abstraction.

     Example:
     ========
     When exploring:
     {[
       abs'0 { SL {l0, l1} s0 }
     ]}

     we find the shared value:

     {[
       SL {l0, l1} s0
     ]}

     and introduce the corresponding abstraction:
     {[
       abs'2 { SB l0, SL {l2} s2 }
     ]}
  *)
  let push_abs_for_shared_value (abs : abs) (sv : typed_value)
      (lid : BorrowId.id) : unit =
    (* Create a fresh borrow (for the reborrow) *)
    let nlid = fresh_borrow_id () in

    (* We need a fresh region for the new abstraction *)
    let nrid = fresh_region_id () in

    (* Prepare the shared value *)
    let nsv = mk_value_with_fresh_sids_no_shared_loans abs.regions nrid sv in

    (* Save the borrow substitution, to apply it to the context later *)
    borrow_substs := (lid, nlid) :: !borrow_substs;

    (* Rem.: the below sanity checks are not really necessary *)
    assert (AbstractionId.Set.is_empty abs.parents);
    assert (abs.original_parents = []);
    assert (RegionId.Set.is_empty abs.ancestors_regions);

    (* Introduce the new abstraction for the shared values *)
    assert (ty_no_regions sv.ty);
    let rty = sv.ty in

    (* Create the shared loan child *)
    let child_rty = rty in
    let child_av = mk_aignored child_rty in

    (* Create the shared loan *)
    let loan_rty = TRef (RFVar nrid, rty, RShared) in
    let loan_value =
      ALoan (ASharedLoan (BorrowId.Set.singleton nlid, nsv, child_av))
    in
    let loan_value = mk_typed_avalue loan_rty loan_value in

    (* Create the shared borrow *)
    let borrow_rty = loan_rty in
    let borrow_value = ABorrow (ASharedBorrow lid) in
    let borrow_value = mk_typed_avalue borrow_rty borrow_value in

    (* Create the abstraction *)
    let avalues = [ borrow_value; loan_value ] in
    let kind : abs_kind =
      match loop_id with
      | Some loop_id -> Loop (loop_id, None, LoopSynthInput)
      | None -> Identity
    in
    let can_end = true in
    let fresh_abs =
      {
        abs_id = fresh_abstraction_id ();
        kind;
        can_end;
        parents = AbstractionId.Set.empty;
        original_parents = [];
        regions = RegionId.Set.singleton nrid;
        ancestors_regions = RegionId.Set.empty;
        avalues;
      }
    in
    fresh_absl := fresh_abs :: !fresh_absl
  in

  (* Explore the shared values in the context abstractions, and introduce
     fresh abstractions with reborrows for those shared values.

     We simply explore the context and call {!push_abs_for_shared_value}
     when necessary.
  *)
  let collect_shared_values_in_abs (abs : abs) : unit =
    let collect_shared_value lids (sv : typed_value) =
      (* Sanity check: we don't support nested borrows for now *)
      assert (not (value_has_borrows ctx sv.value));

      (* Filter the loan ids whose corresponding borrows appear in abstractions
         (see the documentation of the function) *)
      let lids = BorrowId.Set.diff lids abs_borrow_ids in

      (* Generate fresh borrows and values *)
      BorrowId.Set.iter (push_abs_for_shared_value abs sv) lids
    in

    let visit_avalue =
      object
        inherit [_] iter_typed_avalue as super

        method! visit_VSharedLoan env lids sv =
          collect_shared_value lids sv;

          (* Continue the exploration *)
          super#visit_VSharedLoan env lids sv

        method! visit_ASharedLoan env lids sv av =
          collect_shared_value lids sv;

          (* Continue the exploration *)
          super#visit_ASharedLoan env lids sv av

        (** Check that there are no symbolic values with *borrows* inside the
            abstraction - shouldn't happen if the symbolic values are greedily
            expanded.
            We do this because those values could contain shared borrows:
            if it is the case, we need to duplicate them too.
            TODO: implement this more general behavior.
         *)
        method! visit_symbolic_value env sv =
          assert (not (symbolic_value_has_borrows ctx sv));
          super#visit_symbolic_value env sv
      end
    in
    List.iter (visit_avalue#visit_typed_avalue None) abs.avalues
  in
  env_iter_abs collect_shared_values_in_abs ctx.env;

  (* Update the borrow ids in the environment.

     Example:
     ========
     If we start with environment:
     {[
       abs'0 { SL {l0, l1} s0 }
       l0 -> SB l0
       l1 -> SB l1
     ]}

     We introduce the following abstractions:
     {[
       abs'2 { SB l0, SL {l2} s2 }
       abs'3 { SB l1, SL {l3} s3 }
     ]}

     While doing so, we registered the fact that we introduced [l2] for [l0]
     and [l3] for [l1]: we now need to perform the proper substitutions in
     the values [l0] and [l1]. This gives:

     {[
       l0 -> SB l0
       l1 -> SB l1

         ~~>

       l0 -> SB l2
       l1 -> SB l3
     ]}
  *)
  let env =
    let bmap = BorrowId.Map.of_list !borrow_substs in
    let bsusbt bid =
      match BorrowId.Map.find_opt bid bmap with None -> bid | Some bid -> bid
    in

    let visitor =
      object
        inherit [_] map_env
        method! visit_borrow_id _ bid = bsusbt bid
      end
    in
    visitor#visit_env () ctx.env
  in

  (* Add the abstractions *)
  let fresh_absl = List.map (fun abs -> EAbs abs) !fresh_absl in
  let env = List.append fresh_absl env in
  let ctx = { ctx with env } in

  let _, new_ctx_ids_map = compute_ctx_ids ctx in

  (* Synthesize *)
  match cf ctx with
  | None -> None
  | Some e ->
      (* Add the let-bindings which introduce the fresh symbolic values *)
      Some
        (List.fold_left
           (fun e (sid, v) ->
             let v = mk_typed_value_from_symbolic_value v in
             let sv =
               SymbolicValueId.Map.find sid new_ctx_ids_map.sids_to_values
             in
             SymbolicAst.IntroSymbolic (ctx, None, sv, VaSingleValue v, e))
           e !sid_subst)

let prepare_ashared_loans_no_synth (loop_id : LoopId.id) (ctx : eval_ctx) :
    eval_ctx =
  get_cf_ctx_no_synth (prepare_ashared_loans (Some loop_id)) ctx

let compute_loop_entry_fixed_point (config : config) (loop_id : LoopId.id)
    (eval_loop_body : st_cm_fun) (ctx0 : eval_ctx) :
    eval_ctx * ids_sets * abs RegionGroupId.Map.t =
  (* The continuation for when we exit the loop - we register the
     environments upon loop *reentry*, and synthesize nothing by
     returning [None]
  *)
  let ctxs = ref [] in
  let register_ctx ctx = ctxs := ctx :: !ctxs in

  (* Introduce "reborrows" for the shared values in the abstractions, so that
     the shared values in the fixed abstractions never get modified (technically,
     they are immutable, but in practice we can introduce more shared loans, or
     expand symbolic values).

     For more details, see the comments for {!prepare_ashared_loans}
  *)
  let ctx = prepare_ashared_loans_no_synth loop_id ctx0 in

  (* Debug *)
  log#ldebug
    (lazy
      ("compute_loop_entry_fixed_point: after prepare_ashared_loans:"
     ^ "\n\n- ctx0:\n"
      ^ eval_ctx_to_string_no_filter ctx0
      ^ "\n\n- ctx1:\n"
      ^ eval_ctx_to_string_no_filter ctx
      ^ "\n\n"));

  let cf_exit_loop_body (res : statement_eval_res) : m_fun =
   fun ctx ->
    log#ldebug (lazy "compute_loop_entry_fixed_point: cf_exit_loop_body");
    match res with
    | Return | Panic | Break _ -> None
    | Unit ->
        (* See the comment in {!eval_loop} *)
        raise (Failure "Unreachable")
    | Continue i ->
        (* For now we don't support continues to outer loops *)
        assert (i = 0);
        register_ctx ctx;
        None
    | LoopReturn _ | EndEnterLoop _ | EndContinue _ ->
        (* We don't support nested loops for now *)
        raise (Failure "Nested loops are not supported for now")
  in

  (* The fixed ids. They are the ids of the original ctx, after we ended
     the borrows/loans which end during the first loop iteration (we do
     one loop iteration, then set it to [Some].
  *)
  let fixed_ids : ids_sets option ref = ref None in

  (* Join the contexts at the loop entry - ctx1 is the current joined
     context (the context at the loop entry, after we called
     {!prepare_ashared_loans}, if this is the first iteration) *)
  let join_ctxs (ctx1 : eval_ctx) : eval_ctx =
    log#ldebug (lazy "compute_loop_entry_fixed_point: join_ctxs");
    (* If this is the first iteration, end the borrows/loans/abs which
       appear in ctx1 and not in the other contexts, then compute the
       set of fixed ids. This means those borrows/loans have to end
       in the loop, and we rather end them *before* the loop. *)
    let ctx1 =
      match !fixed_ids with
      | Some _ -> ctx1
      | None ->
          let old_ids, _ = compute_ctx_ids ctx1 in
          let new_ids, _ = compute_ctxs_ids !ctxs in
          let blids = BorrowId.Set.diff old_ids.blids new_ids.blids in
          let aids = AbstractionId.Set.diff old_ids.aids new_ids.aids in
          (* End those borrows and abstractions *)
          let end_borrows_abs blids aids ctx =
            let ctx =
              InterpreterBorrows.end_borrows_no_synth config blids ctx
            in
            let ctx =
              InterpreterBorrows.end_abstractions_no_synth config aids ctx
            in
            ctx
          in
          (* End the borrows/abs in [ctx1] *)
          log#ldebug
            (lazy
              ("compute_loop_entry_fixed_point: join_ctxs: ending \
                borrows/abstractions before entering the loop:\n\
                - ending borrow ids: "
              ^ BorrowId.Set.to_string None blids
              ^ "\n- ending abstraction ids: "
              ^ AbstractionId.Set.to_string None aids
              ^ "\n\n"));
          let ctx1 = end_borrows_abs blids aids ctx1 in
          (* We can also do the same in the contexts [ctxs]: if there are
             several contexts, maybe one of them ended some borrows and some
             others didn't. As we need to end those borrows anyway (the join
             will detect them and ask to end them) we do it preemptively.
          *)
          ctxs := List.map (end_borrows_abs blids aids) !ctxs;
          (* Note that the fixed ids are given by the original context, from *before*
             we introduce fresh abstractions/reborrows for the shared values *)
          fixed_ids := Some (fst (compute_ctx_ids ctx0));
          ctx1
    in

    let fixed_ids = Option.get !fixed_ids in
    let (_, _), ctx2 =
      loop_join_origin_with_continue_ctxs config loop_id fixed_ids ctx1 !ctxs
    in
    ctxs := [];
    ctx2
  in
  log#ldebug (lazy "compute_loop_entry_fixed_point: after join_ctxs");

  (* Compute the set of fixed ids - for the symbolic ids, we compute the
     intersection of ids between the original environment and the list
     of new environments *)
  let compute_fixed_ids (ctxl : eval_ctx list) : ids_sets =
    let fixed_ids, _ = compute_ctx_ids ctx0 in
    let { aids; blids; borrow_ids; loan_ids; dids; rids; sids } = fixed_ids in
    let sids = ref sids in
    List.iter
      (fun ctx ->
        let fixed_ids, _ = compute_ctx_ids ctx in
        sids := SymbolicValueId.Set.inter !sids fixed_ids.sids)
      ctxl;
    let sids = !sids in
    let fixed_ids = { aids; blids; borrow_ids; loan_ids; dids; rids; sids } in
    fixed_ids
  in
  (* Check if two contexts are equivalent - modulo alpha conversion on the
     existentially quantified borrows/abstractions/symbolic values.
  *)
  let equiv_ctxs (ctx1 : eval_ctx) (ctx2 : eval_ctx) : bool =
    log#ldebug (lazy "compute_fixed_point: equiv_ctx:");
    let fixed_ids = compute_fixed_ids [ ctx1; ctx2 ] in
    let check_equivalent = true in
    let lookup_shared_value _ = raise (Failure "Unreachable") in
    Option.is_some
      (match_ctxs check_equivalent fixed_ids lookup_shared_value
         lookup_shared_value ctx1 ctx2)
  in
  let max_num_iter = Config.loop_fixed_point_max_num_iters in
  let rec compute_fixed_point (ctx : eval_ctx) (i0 : int) (i : int) : eval_ctx =
    if i = 0 then
      raise
        (Failure
           ("Could not compute a loop fixed point in " ^ string_of_int i0
          ^ " iterations"))
    else
      (* Evaluate the loop body to register the different contexts upon reentry *)
      let _ = eval_loop_body cf_exit_loop_body ctx in
      (* Compute the join between the original contexts and the contexts computed
         upon reentry *)
      let ctx1 = join_ctxs ctx in

      (* Debug *)
      log#ldebug
        (lazy
          ("compute_fixed_point:" ^ "\n\n- ctx0:\n"
          ^ eval_ctx_to_string_no_filter ctx
          ^ "\n\n- ctx1:\n"
          ^ eval_ctx_to_string_no_filter ctx1
          ^ "\n\n"));

      (* Check if we reached a fixed point: if not, iterate *)
      if equiv_ctxs ctx ctx1 then ctx1 else compute_fixed_point ctx1 i0 (i - 1)
  in
  let fp = compute_fixed_point ctx max_num_iter max_num_iter in

  (* Debug *)
  log#ldebug
    (lazy
      ("compute_fixed_point: fixed point computed before matching with input \
        region groups:" ^ "\n\n- fp:\n"
      ^ eval_ctx_to_string_no_filter fp
      ^ "\n\n"));

  (* Make sure we have exactly one loop abstraction per function region (merge
     abstractions accordingly).

     Rem.: this shouldn't impact the set of symbolic value ids (because we
     already merged abstractions "vertically" and are now merging them
     "horizontally": the symbolic values contained in the abstractions (typically
     the shared values) will be preserved.
  *)
  let fp, rg_to_abs =
    (* List the loop abstractions in the fixed-point *)
    let fp_aids, add_aid, _mem_aid = AbstractionId.Set.mk_stateful_set () in

    let list_loop_abstractions =
      object
        inherit [_] map_eval_ctx

        method! visit_abs _ abs =
          match abs.kind with
          | Loop (loop_id', _, kind) ->
              assert (loop_id' = loop_id);
              assert (kind = LoopSynthInput);
              (* The abstractions introduced so far should be endable *)
              assert (abs.can_end = true);
              add_aid abs.abs_id;
              abs
          | _ -> abs
      end
    in
    let fp = list_loop_abstractions#visit_eval_ctx () fp in

    (* For every input region group:
     * - evaluate until we get to a [return]
     * - end the input abstraction corresponding to the input region group
     * - find which loop abstractions end at that moment
     *
     * [fp_ended_aids] links region groups to sets of ended abstractions.
     *)
    let fp_ended_aids = ref RegionGroupId.Map.empty in
    let add_ended_aids (rg_id : RegionGroupId.id) (aids : AbstractionId.Set.t) :
        unit =
      match RegionGroupId.Map.find_opt rg_id !fp_ended_aids with
      | None -> fp_ended_aids := RegionGroupId.Map.add rg_id aids !fp_ended_aids
      | Some aids' ->
          let aids = AbstractionId.Set.union aids aids' in
          fp_ended_aids := RegionGroupId.Map.add rg_id aids !fp_ended_aids
    in
    let cf_loop : st_m_fun =
     fun res ctx ->
      log#ldebug (lazy "compute_loop_entry_fixed_point: cf_loop");
      match res with
      | Continue _ | Panic ->
          (* We don't want to generate anything *)
          None
      | Break _ ->
          (* We enforce that we can't get there: see {!PrePasses.remove_loop_breaks} *)
          raise (Failure "Unreachable")
      | Unit | LoopReturn _ | EndEnterLoop _ | EndContinue _ ->
          (* For why we can't get [Unit], see the comments inside {!eval_loop_concrete}.
             For [EndEnterLoop] and [EndContinue]: we don't support nested loops for now.
          *)
          raise (Failure "Unreachable")
      | Return ->
          log#ldebug (lazy "compute_loop_entry_fixed_point: cf_loop: Return");
          (* Should we consume the return value and pop the frame?
           * If we check in [Interpreter] that the loop abstraction we end is
           * indeed the correct one, I think it is sound to under-approximate here
           * (and it shouldn't make any difference).
           *)
          let _ =
            List.iter
              (fun rg_id ->
                (* Lookup the input abstraction - we use the fact that the
                   abstractions should have been introduced in a specific
                   order (and we check that it is indeed the case) *)
                let abs_id =
                  AbstractionId.of_int (RegionGroupId.to_int rg_id)
                in
                (* By default, the [SynthInput] abs can't end *)
                let ctx = ctx_set_abs_can_end ctx abs_id true in
                assert (
                  let abs = ctx_lookup_abs ctx abs_id in
                  abs.kind = SynthInput rg_id);
                (* End this abstraction *)
                let ctx =
                  InterpreterBorrows.end_abstraction_no_synth config abs_id ctx
                in
                (* Explore the context, and check which abstractions are not there anymore *)
                let ids, _ = compute_ctx_ids ctx in
                let ended_ids = AbstractionId.Set.diff !fp_aids ids.aids in
                add_ended_aids rg_id ended_ids)
              ctx.region_groups
          in
          (* We don't want to generate anything *)
          None
    in
    let _ = eval_loop_body cf_loop fp in

    (* Check that the sets of abstractions we need to end per region group are pairwise
     * disjoint *)
    let aids_union = ref AbstractionId.Set.empty in
    let _ =
      RegionGroupId.Map.iter
        (fun _ ids ->
          assert (AbstractionId.Set.disjoint !aids_union ids);
          aids_union := AbstractionId.Set.union ids !aids_union)
        !fp_ended_aids
    in

    (* We also check that all the regions need to end - this is not necessary per
       se, but if it doesn't happen it is bizarre and worth investigating... *)
    assert (AbstractionId.Set.equal !aids_union !fp_aids);

    (* Merge the abstractions which need to be merged, and compute the map from
       region id to abstraction id *)
    let fp = ref fp in
    let rg_to_abs = ref RegionGroupId.Map.empty in
    let _ =
      RegionGroupId.Map.iter
        (fun rg_id ids ->
          let ids = AbstractionId.Set.elements ids in
          (* Retrieve the first id of the group *)
          match ids with
          | [] ->
              (* We shouldn't get there: we actually introduce reborrows with
                 {!prepare_ashared_loans} and in the [match_mut_borrows] function
                 of {!MakeJoinMatcher} to introduce some fresh abstractions for
                 this purpose.
              *)
              raise (Failure "Unexpected")
          | id0 :: ids ->
              let id0 = ref id0 in
              (* Add the proper region group into the abstraction *)
              let abs_kind : abs_kind =
                Loop (loop_id, Some rg_id, LoopSynthInput)
              in
              let abs = ctx_lookup_abs !fp !id0 in
              let abs = { abs with kind = abs_kind } in
              let fp', _ = ctx_subst_abs !fp !id0 abs in
              fp := fp';
              (* Merge all the abstractions into this one *)
              List.iter
                (fun id ->
                  try
                    log#ldebug
                      (lazy
                        ("compute_loop_entry_fixed_point: merge FP \
                          abstraction: " ^ AbstractionId.to_string id ^ " into "
                        ^ AbstractionId.to_string !id0));
                    (* Note that we merge *into* [id0] *)
                    let fp', id0' =
                      merge_into_abstraction loop_id abs_kind false !fp id !id0
                    in
                    fp := fp';
                    id0 := id0';
                    ()
                  with ValueMatchFailure _ -> raise (Failure "Unexpected"))
                ids;
              (* Register the mapping *)
              let abs = ctx_lookup_abs !fp !id0 in
              rg_to_abs := RegionGroupId.Map.add_strict rg_id abs !rg_to_abs)
        !fp_ended_aids
    in
    let rg_to_abs = !rg_to_abs in

    (* Reorder the loans and borrows in the fresh abstractions in the fixed-point *)
    let fp =
      reorder_loans_borrows_in_fresh_abs (Option.get !fixed_ids).aids !fp
    in

    (* Update the abstraction's [can_end] field and their kinds.

       Note that if [remove_rg_id] is [true], we set the region id to [None]
       and set the abstractions as endable: this is so that we can check that
       we have a fixed point (so far in the fixed point the loop abstractions had
       no region group, and we set them as endable just above).

       If [remove_rg_id] is [false], we simply set the abstractions as non-endable
       to freeze them (we will use the fixed point as starting point for the
       symbolic execution of the loop body, and we have to make sure the input
       abstractions are frozen).
    *)
    let update_loop_abstractions (remove_rg_id : bool) =
      object
        inherit [_] map_eval_ctx

        method! visit_abs _ abs =
          match abs.kind with
          | Loop (loop_id', _, kind) ->
              assert (loop_id' = loop_id);
              assert (kind = LoopSynthInput);
              let kind : abs_kind =
                if remove_rg_id then Loop (loop_id, None, LoopSynthInput)
                else abs.kind
              in
              { abs with can_end = remove_rg_id; kind }
          | _ -> abs
      end
    in
    let update_kinds_can_end (remove_rg_id : bool) ctx =
      (update_loop_abstractions remove_rg_id)#visit_eval_ctx () ctx
    in
    let fp = update_kinds_can_end false fp in

    (* Sanity check: we still have a fixed point - we simply call [compute_fixed_point]
       while allowing exactly one iteration to see if it fails *)
    let _ =
      let fp_test = update_kinds_can_end true fp in
      log#ldebug
        (lazy
          ("compute_fixed_point: fixed point after matching with the function \
            region groups:\n"
          ^ eval_ctx_to_string_no_filter fp_test));
      compute_fixed_point fp_test 1 1
    in

    (* Return *)
    (fp, rg_to_abs)
  in
  let fixed_ids = compute_fixed_ids [ fp ] in

  (* Return *)
  (fp, fixed_ids, rg_to_abs)

let compute_fixed_point_id_correspondance (fixed_ids : ids_sets)
    (src_ctx : eval_ctx) (tgt_ctx : eval_ctx) : borrow_loan_corresp =
  log#ldebug
    (lazy
      ("compute_fixed_point_id_correspondance:\n\n- fixed_ids:\n"
     ^ show_ids_sets fixed_ids ^ "\n\n- src_ctx:\n" ^ eval_ctx_to_string src_ctx
     ^ "\n\n- tgt_ctx:\n" ^ eval_ctx_to_string tgt_ctx ^ "\n\n"));

  let filt_src_env, _, _ = ctx_split_fixed_new fixed_ids src_ctx in
  let filt_src_ctx = { src_ctx with env = filt_src_env } in
  let filt_tgt_env, new_absl, _ = ctx_split_fixed_new fixed_ids tgt_ctx in
  let filt_tgt_ctx = { tgt_ctx with env = filt_tgt_env } in

  log#ldebug
    (lazy
      ("compute_fixed_point_id_correspondance:\n\n- fixed_ids:\n"
     ^ show_ids_sets fixed_ids ^ "\n\n- filt_src_ctx:\n"
      ^ eval_ctx_to_string filt_src_ctx
      ^ "\n\n- filt_tgt_ctx:\n"
      ^ eval_ctx_to_string filt_tgt_ctx
      ^ "\n\n"));

  (* Match the source context and the filtered target context *)
  let maps =
    let check_equiv = false in
    let fixed_ids = ids_sets_empty_borrows_loans fixed_ids in
    let open InterpreterBorrowsCore in
    let lookup_shared_loan lid ctx : typed_value =
      match snd (lookup_loan ek_all lid ctx) with
      | Concrete (VSharedLoan (_, v)) -> v
      | Abstract (ASharedLoan (_, v, _)) -> v
      | _ -> raise (Failure "Unreachable")
    in
    let lookup_in_tgt id = lookup_shared_loan id tgt_ctx in
    let lookup_in_src id = lookup_shared_loan id src_ctx in
    Option.get
      (match_ctxs check_equiv fixed_ids lookup_in_tgt lookup_in_src filt_tgt_ctx
         filt_src_ctx)
  in

  log#ldebug
    (lazy
      ("compute_fixed_point_id_correspondance:\n\n- tgt_to_src_maps:\n"
     ^ show_ids_maps maps ^ "\n\n"));

  let src_to_tgt_borrow_map =
    BorrowId.Map.of_list
      (List.map
         (fun (x, y) -> (y, x))
         (BorrowId.InjSubst.bindings maps.borrow_id_map))
  in

  (* Sanity check: for every abstraction, the target loans and borrows are mapped
     to the same set of source loans and borrows.

     For instance, if we map the [env_fp] to [env0] (only looking at the bindings,
     ignoring the abstractions) below:
     {[
       env0 = {
         abs@0 { ML l0 }
         ls -> MB l0 (s2 : loops::List<T>)
         i -> s1 : u32
       }

       env_fp = {
         abs@0 { ML l0 }
         ls -> MB l1 (s3 : loops::List<T>)
         i -> s4 : u32
         abs@fp {
           MB l0
           ML l1
         }
       }
     ]}

     We get that l1 is mapped to l0. From there, we see that abs@fp consumes
     the same borrows that it gives: it is indeed an identity function.

     TODO: we should also check the mappings for the shared values (to
     make sure the abstractions are indeed the identity)...
  *)
  List.iter
    (fun abs ->
      let ids, _ = compute_abs_ids abs in
      (* Map the *loan* ids (we just match the corresponding *loans* ) *)
      let loan_ids =
        BorrowId.Set.map
          (fun x -> BorrowId.InjSubst.find x maps.borrow_id_map)
          ids.loan_ids
      in
      (* Check that the loan and borrows are related *)
      assert (BorrowId.Set.equal ids.borrow_ids loan_ids))
    new_absl;

  (* For every target abstraction (going back to the [list_nth_mut] example,
     we have to visit [abs@fp { ML l0, MB l1 }]):
     - go through the tgt borrows ([l1])
     - for every tgt borrow, find the corresponding src borrow ([l0], because
       we have: [borrows_map: { l1 -> l0 }])
     - from there, find the corresponding tgt loan ([l0])

     Note that this borrow does not necessarily appear in the src_to_tgt_borrow_map,
     if it actually corresponds to a borrows introduced when decomposing the
     abstractions to move the shared values out of the source context abstractions.
  *)
  let tgt_borrow_to_loan = ref BorrowId.InjSubst.empty in
  let visit_tgt =
    object
      inherit [_] iter_abs

      method! visit_borrow_id _ id =
        (* Find the target borrow *)
        let tgt_borrow_id = BorrowId.Map.find id src_to_tgt_borrow_map in
        (* Update the map *)
        tgt_borrow_to_loan :=
          BorrowId.InjSubst.add id tgt_borrow_id !tgt_borrow_to_loan
    end
  in
  List.iter (visit_tgt#visit_abs ()) new_absl;

  (* Compute the map from loan to borrows *)
  let tgt_loan_to_borrow =
    BorrowId.InjSubst.of_list
      (List.map
         (fun (x, y) -> (y, x))
         (BorrowId.InjSubst.bindings !tgt_borrow_to_loan))
  in

  (* Return *)
  {
    borrow_to_loan_id_map = !tgt_borrow_to_loan;
    loan_to_borrow_id_map = tgt_loan_to_borrow;
  }

let compute_fp_ctx_symbolic_values (ctx : eval_ctx) (fp_ctx : eval_ctx) :
    SymbolicValueId.Set.t * symbolic_value list =
  let old_ids, _ = compute_ctx_ids ctx in
  let fp_ids, fp_ids_maps = compute_ctx_ids fp_ctx in
  let fresh_sids = SymbolicValueId.Set.diff fp_ids.sids old_ids.sids in

  (* Compute the set of symbolic values which appear in shared values inside
     *fixed* abstractions: because we introduce fresh abstractions and reborrows
     with {!prepare_ashared_loans}, those values are never accessed directly
     inside the loop iterations: we can ignore them (and should, because
     otherwise it leads to a very ugly translation with duplicated, unused
     values) *)
  let shared_sids_in_fixed_abs =
    let fixed_absl =
      List.filter
        (fun (ee : env_elem) ->
          match ee with
          | EBinding _ | EFrame -> false
          | EAbs abs -> AbstractionId.Set.mem abs.abs_id old_ids.aids)
        ctx.env
    in

    (* Rem.: as we greedily expand the symbolic values containing borrows, and
       in particular the (mutable/shared) borrows, we could simply list the
       symbolic values appearing in the abstractions: those are necessarily
       shared values. We prefer to be more general, in prevision of later
       changes.
    *)
    let sids = ref SymbolicValueId.Set.empty in
    let visitor =
      object (self)
        inherit [_] iter_env

        method! visit_ASharedLoan inside_shared _ sv child_av =
          self#visit_typed_value true sv;
          self#visit_typed_avalue inside_shared child_av

        method! visit_symbolic_value_id inside_shared sid =
          if inside_shared then sids := SymbolicValueId.Set.add sid !sids
      end
    in
    visitor#visit_env false fixed_absl;
    !sids
  in

  (* Remove the shared symbolic values present in the fixed abstractions -
     see comments for [shared_sids_in_fixed_abs]. *)
  let sids_to_values = fp_ids_maps.sids_to_values in

  log#ldebug
    (lazy
      ("compute_fp_ctx_symbolic_values:" ^ "\n- shared_sids_in_fixed_abs:"
      ^ SymbolicValueId.Set.show shared_sids_in_fixed_abs
      ^ "\n- all_sids_to_values: "
      ^ SymbolicValueId.Map.show (symbolic_value_to_string ctx) sids_to_values
      ^ "\n"));

  let sids_to_values =
    SymbolicValueId.Map.filter
      (fun sid _ -> not (SymbolicValueId.Set.mem sid shared_sids_in_fixed_abs))
      sids_to_values
  in

  (* List the input symbolic values in proper order.

     We explore the environment, and order the symbolic values in the order
     in which they are found - this way, the symbolic values found in a
     variable [x] which appears before [y] are listed first, for instance.
  *)
  let input_svalues =
    let found_sids = ref SymbolicValueId.Set.empty in
    let ordered_sids = ref [] in

    let visitor =
      object (self)
        inherit [_] iter_env

        (** We lookup the shared values *)
        method! visit_VSharedBorrow env bid =
          let open InterpreterBorrowsCore in
          let v =
            match snd (lookup_loan ek_all bid fp_ctx) with
            | Concrete (VSharedLoan (_, v)) -> v
            | Abstract (ASharedLoan (_, v, _)) -> v
            | _ -> raise (Failure "Unreachable")
          in
          self#visit_typed_value env v

        method! visit_symbolic_value_id _ id =
          if not (SymbolicValueId.Set.mem id !found_sids) then (
            found_sids := SymbolicValueId.Set.add id !found_sids;
            ordered_sids := id :: !ordered_sids)
      end
    in

    List.iter (visitor#visit_env_elem ()) (List.rev fp_ctx.env);

    List.filter_map
      (fun id -> SymbolicValueId.Map.find_opt id sids_to_values)
      (List.rev !ordered_sids)
  in

  log#ldebug
    (lazy
      ("compute_fp_ctx_symbolic_values:" ^ "\n- src context:\n"
      ^ eval_ctx_to_string_no_filter ctx
      ^ "\n- fixed point:\n"
      ^ eval_ctx_to_string_no_filter fp_ctx
      ^ "\n- fresh_sids: "
      ^ SymbolicValueId.Set.show fresh_sids
      ^ "\n- input_svalues: "
      ^ Print.list_to_string (symbolic_value_to_string ctx) input_svalues
      ^ "\n\n"));

  (fresh_sids, input_svalues)